File size: 5,348 Bytes
38b6ee6
15773f6
 
215e74e
15773f6
887b1f9
15773f6
4d94499
 
15773f6
bdcef72
 
4d94499
 
 
bdcef72
4d94499
bdcef72
4d94499
 
 
 
 
15773f6
 
 
4d94499
 
 
 
 
61f4130
88657de
d083506
4d94499
 
 
4ebf50c
4d94499
 
 
15773f6
 
 
 
 
 
59e9cef
 
 
 
 
 
15773f6
 
 
d083506
 
15773f6
 
 
 
61f4130
 
 
25007bd
887b1f9
215e74e
25007bd
887b1f9
 
215e74e
887b1f9
215e74e
bdcef72
25007bd
61f4130
 
25007bd
887b1f9
61f4130
25007bd
 
4d94499
 
 
25007bd
bdcef72
 
61f4130
bdcef72
 
4d94499
 
bdcef72
 
d083506
25007bd
bdcef72
61f4130
25007bd
4d94499
 
 
 
 
d083506
4d94499
 
 
 
 
 
25007bd
61f4130
15773f6
bdcef72
 
 
 
15773f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint

def create_conversation_prompt(name1: str, name2: str, persona_style: str):
    """Create a prompt for generating the entire 15-message conversation."""
    prompt_template_str = f"""
    You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}.
    The conversation should reflect the style: {persona_style}.
    {name1} speaks first (message 1), {name2} responds (message 2), then {name1} (message 3), and so forth,
    until 15 messages are complete (the 15th message by {name1}).

    Rules:
    - Each message is formatted as:
      {name1}: <message> or {name2}: <message>
    - Each message: 1-2 short sentences, friendly, natural.
    - Use everyday language, can ask questions, show opinions.
    - Use emojis sparingly if it fits the style.
    - Do not repeat the same line.
    - Produce all 15 messages now and do not continue beyond the 15th message.
    """
    return ChatPromptTemplate.from_template(prompt_template_str)

def create_summary_prompt(name1: str, name2: str, conversation: str):
    """Create a prompt specifically for generating a title and summary of the conversation."""
    # Here we explicitly create a new prompt template for the summary.
    summary_prompt_str = f"""
    The following is a completed conversation between {name1} and {name2}:

    {conversation}

    Please provide:
    Title: <A short descriptive title of the conversation>
    Summary: <A few short sentences highlighting the main points, tone, and conclusion>

    Do not continue the conversation, just provide title and summary.
    """
    return ChatPromptTemplate.from_template(summary_prompt_str)

def main():
    st.title("LLM Conversation Simulation")

    model_names = [
        "meta-llama/Llama-3.3-70B-Instruct",
        "mistralai/Mistral-7B-v0.1",
        "lmsys/vicuna-13b-v1.5",
        "tiiuae/falcon-180B",
        "EleutherAI/gpt-neox-20b",
        "dice-research/lola_v1"
        
    ]
    selected_model = st.selectbox("Select a model:", model_names)

    name1 = st.text_input("Enter the first user's name:", value="Alice")
    name2 = st.text_input("Enter the second user's name:", value="Bob")
    persona_style = st.text_area("Enter the persona style characteristics:", 
                                 value="friendly, curious, and a bit sarcastic")

    if st.button("Start Conversation Simulation"):
        st.write("**Loading model...**")
        print("Loading model...")

        with st.spinner("Starting simulation..."):
            endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"

            try:
                llm = HuggingFaceEndpoint(
                    endpoint_url=endpoint_url,
                    huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
                    task="text-generation",
                    temperature=0.7,
                    max_new_tokens=512
                )
                st.write("**Model loaded successfully!**")
                print("Model loaded successfully!")
            except Exception as e:
                st.error(f"Error initializing HuggingFaceEndpoint: {e}")
                print(f"Error initializing HuggingFaceEndpoint: {e}")
                return

            # Create a chain for the conversation generation
            conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
            conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)

            st.write("**Generating the full 15-message conversation...**")
            print("Generating the full 15-message conversation...")

            try:
                # Generate all 15 messages in one go
                # Here we send the prompt for the conversation to the LLM
                conversation = conversation_chain.run(chat_history="", input="Produce the full conversation now.")
                conversation = conversation.strip()
                
                st.subheader("Final Conversation:")
                st.text(conversation)
                print("Conversation Generation Complete.\n")
                print("Full Conversation:\n", conversation)

                # Now we create a separate prompt for the summary
                summary_prompt = create_summary_prompt(name1, name2, conversation)
                # Create a new chain for the summary using the summary prompt
                summary_chain = LLMChain(llm=llm, prompt=summary_prompt)

                st.subheader("Summary and Title:")
                st.write("**Summarizing the conversation...**")
                print("Summarizing the conversation...")

                # Here we explicitly call the summary chain with the summary prompt
                # This ensures we are actually sending the summary prompt to the LLM
                summary = summary_chain.run(chat_history="", input="")
                st.write(summary)
                print("Summary:\n", summary)

            except Exception as e:
                st.error(f"Error generating conversation: {e}")
                print(f"Error generating conversation: {e}")

if __name__ == "__main__":
    main()