Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.prompts import ChatPromptTemplate
|
5 |
-
from langchain_community.llms import HuggingFaceHub
|
6 |
|
7 |
def create_prompt(name: str, persona_style: str):
|
8 |
-
"""Create the chat prompt template
|
9 |
prompt_template_str = f"""
|
10 |
In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
|
11 |
//////////
|
@@ -31,9 +32,9 @@ def create_prompt(name: str, persona_style: str):
|
|
31 |
"""
|
32 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
33 |
|
34 |
-
def simulate_conversation(chain: LLMChain, turns: int = 15):
|
35 |
-
"""Simulate a conversation for a given number of turns."""
|
36 |
-
|
37 |
human_messages = [
|
38 |
"Hey, what's up?",
|
39 |
"That's interesting, tell me more!",
|
@@ -55,9 +56,19 @@ def simulate_conversation(chain: LLMChain, turns: int = 15):
|
|
55 |
try:
|
56 |
for i in range(turns):
|
57 |
human_input = human_messages[i % len(human_messages)]
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
st.error(f"Error during conversation simulation: {e}")
|
63 |
return None
|
@@ -75,6 +86,7 @@ def summarize_conversation(chain: LLMChain, conversation: str):
|
|
75 |
def main():
|
76 |
st.title("LLM Conversation Simulation")
|
77 |
|
|
|
78 |
model_names = [
|
79 |
"meta-llama/Llama-3.3-70B-Instruct",
|
80 |
"meta-llama/Llama-3.1-405B-Instruct",
|
@@ -82,6 +94,7 @@ def main():
|
|
82 |
]
|
83 |
selected_model = st.selectbox("Select a model:", model_names)
|
84 |
|
|
|
85 |
name = st.text_input("Enter the persona's name:", value="Alex")
|
86 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
87 |
value="friendly, curious, and a bit sarcastic")
|
@@ -89,7 +102,8 @@ def main():
|
|
89 |
if st.button("Start Conversation Simulation"):
|
90 |
with st.spinner("Starting simulation..."):
|
91 |
try:
|
92 |
-
#
|
|
|
93 |
llm = HuggingFaceHub(
|
94 |
repo_id=selected_model,
|
95 |
model_kwargs={
|
@@ -106,7 +120,7 @@ def main():
|
|
106 |
chain = LLMChain(llm=llm, prompt=prompt)
|
107 |
|
108 |
# Simulate conversation
|
109 |
-
conversation = simulate_conversation(chain, turns=15)
|
110 |
if conversation:
|
111 |
st.subheader("Conversation:")
|
112 |
st.text(conversation)
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from langchain.chains import LLMChain
|
5 |
from langchain.prompts import ChatPromptTemplate
|
6 |
+
from langchain_community.llms import HuggingFaceHub
|
7 |
|
8 |
def create_prompt(name: str, persona_style: str):
|
9 |
+
"""Create the chat prompt template."""
|
10 |
prompt_template_str = f"""
|
11 |
In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
|
12 |
//////////
|
|
|
32 |
"""
|
33 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
34 |
|
35 |
+
def simulate_conversation(chain: LLMChain, turns: int = 15, max_history_rounds=3):
|
36 |
+
"""Simulate a conversation for a given number of turns, limiting chat history."""
|
37 |
+
chat_history_list = []
|
38 |
human_messages = [
|
39 |
"Hey, what's up?",
|
40 |
"That's interesting, tell me more!",
|
|
|
56 |
try:
|
57 |
for i in range(turns):
|
58 |
human_input = human_messages[i % len(human_messages)]
|
59 |
+
|
60 |
+
# Build truncated chat_history for prompt
|
61 |
+
# Keep only the last max_history_rounds * 2 lines (Human + AI pairs)
|
62 |
+
truncated_history_lines = chat_history_list[-(max_history_rounds*2):]
|
63 |
+
truncated_history = "\n".join(truncated_history_lines)
|
64 |
+
|
65 |
+
response = chain.run(chat_history=truncated_history, input=human_input)
|
66 |
+
# Update chat history
|
67 |
+
chat_history_list.append(f"Human: {human_input}")
|
68 |
+
chat_history_list.append(f"AI: {response}")
|
69 |
+
|
70 |
+
final_conversation = "\n".join(chat_history_list)
|
71 |
+
return final_conversation
|
72 |
except Exception as e:
|
73 |
st.error(f"Error during conversation simulation: {e}")
|
74 |
return None
|
|
|
86 |
def main():
|
87 |
st.title("LLM Conversation Simulation")
|
88 |
|
89 |
+
# Model selection
|
90 |
model_names = [
|
91 |
"meta-llama/Llama-3.3-70B-Instruct",
|
92 |
"meta-llama/Llama-3.1-405B-Instruct",
|
|
|
94 |
]
|
95 |
selected_model = st.selectbox("Select a model:", model_names)
|
96 |
|
97 |
+
# Persona Inputs
|
98 |
name = st.text_input("Enter the persona's name:", value="Alex")
|
99 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
100 |
value="friendly, curious, and a bit sarcastic")
|
|
|
102 |
if st.button("Start Conversation Simulation"):
|
103 |
with st.spinner("Starting simulation..."):
|
104 |
try:
|
105 |
+
# Use HuggingFaceHub as LLM
|
106 |
+
# Make sure you have a valid HUGGINGFACEHUB_API_TOKEN set
|
107 |
llm = HuggingFaceHub(
|
108 |
repo_id=selected_model,
|
109 |
model_kwargs={
|
|
|
120 |
chain = LLMChain(llm=llm, prompt=prompt)
|
121 |
|
122 |
# Simulate conversation
|
123 |
+
conversation = simulate_conversation(chain, turns=15, max_history_rounds=3)
|
124 |
if conversation:
|
125 |
st.subheader("Conversation:")
|
126 |
st.text(conversation)
|