Spaces:
Running
Running
RakeshUtekar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,92 +6,39 @@ from langchain.prompts import ChatPromptTemplate
|
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
|
8 |
def create_prompt(name1: str, name2: str, persona_style: str):
|
9 |
-
"""Create the
|
10 |
prompt_template_str = f"""
|
11 |
-
You are
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
Make sure that each turn is clearly designated as {name1} or {name2}.
|
28 |
-
The conversation should continue for a total of 15 messages. Start with {name1} speaking first. Alternate between {name1} and {name2}.
|
29 |
-
Once the 15th message (by {name1}) is given, the conversation ends.
|
30 |
-
Do not continue the conversation after 15 messages.
|
31 |
"""
|
32 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
33 |
|
34 |
-
def simulate_conversation(chain: LLMChain, name1: str, name2: str, total_messages: int = 15):
|
35 |
-
"""
|
36 |
-
Simulate a conversation of exactly total_messages turns.
|
37 |
-
name1 starts the conversation (message 1), then name2 (message 2), etc., alternating.
|
38 |
-
"""
|
39 |
-
conversation_lines = []
|
40 |
-
st.write("**Starting conversation simulation...**")
|
41 |
-
print("Starting conversation simulation...")
|
42 |
-
|
43 |
-
try:
|
44 |
-
for i in range(total_messages):
|
45 |
-
truncated_history = "\n".join(conversation_lines)
|
46 |
-
# Determine whose turn it is:
|
47 |
-
current_speaker = name1 if i % 2 == 0 else name2
|
48 |
-
st.write(f"**[Message {i+1}/{total_messages}] {current_speaker} is speaking...**")
|
49 |
-
print(f"[Message {i+1}/{total_messages}] {current_speaker} is speaking...")
|
50 |
-
|
51 |
-
# Prompt the chain with a generic "continue" instruction, the chain uses the template + history to produce the next message
|
52 |
-
response = chain.run(chat_history=truncated_history, input="Continue the conversation.")
|
53 |
-
response = response.strip()
|
54 |
-
|
55 |
-
# Extract the line for the current speaker
|
56 |
-
lines = response.split("\n")
|
57 |
-
chosen_line = None
|
58 |
-
for line in lines:
|
59 |
-
line = line.strip()
|
60 |
-
if line.startswith(f"{current_speaker}:"):
|
61 |
-
chosen_line = line
|
62 |
-
break
|
63 |
-
|
64 |
-
if not chosen_line:
|
65 |
-
# Fallback: If the model didn't format properly, try first non-empty line
|
66 |
-
chosen_line = next((l for l in lines if l.strip()), f"{current_speaker}: (No response)")
|
67 |
-
|
68 |
-
st.write(chosen_line)
|
69 |
-
print(chosen_line)
|
70 |
-
|
71 |
-
conversation_lines.append(chosen_line)
|
72 |
-
|
73 |
-
final_conversation = "\n".join(conversation_lines)
|
74 |
-
return final_conversation
|
75 |
-
except Exception as e:
|
76 |
-
st.error(f"Error during conversation simulation: {e}")
|
77 |
-
print(f"Error during conversation simulation: {e}")
|
78 |
-
return None
|
79 |
-
|
80 |
def summarize_conversation(chain: LLMChain, conversation: str, name1: str, name2: str):
|
81 |
-
"""
|
82 |
st.write("**Summarizing the conversation...**")
|
83 |
print("Summarizing the conversation...")
|
84 |
|
85 |
-
# Updated prompt: no continuation instructions, just a direct request.
|
86 |
summary_prompt = f"""
|
87 |
Below is a completed conversation between {name1} and {name2}:
|
88 |
{conversation}
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
Do not continue the conversation. Do not add extra lines beyond the title and summary.
|
95 |
"""
|
96 |
|
97 |
try:
|
@@ -112,7 +59,6 @@ def main():
|
|
112 |
]
|
113 |
selected_model = st.selectbox("Select a model:", model_names)
|
114 |
|
115 |
-
# Two user names
|
116 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
117 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
118 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
@@ -131,7 +77,7 @@ def main():
|
|
131 |
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
132 |
task="text-generation",
|
133 |
temperature=0.7,
|
134 |
-
max_new_tokens=
|
135 |
)
|
136 |
st.write("**Model loaded successfully!**")
|
137 |
print("Model loaded successfully!")
|
@@ -143,21 +89,29 @@ def main():
|
|
143 |
prompt = create_prompt(name1, name2, persona_style)
|
144 |
chain = LLMChain(llm=llm, prompt=prompt)
|
145 |
|
146 |
-
st.write("**
|
147 |
-
print("
|
148 |
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
151 |
st.subheader("Final Conversation:")
|
152 |
st.text(conversation)
|
153 |
-
print("Conversation
|
154 |
print("Full Conversation:\n", conversation)
|
155 |
|
156 |
-
# Summarize conversation
|
157 |
st.subheader("Summary and Title:")
|
158 |
summary = summarize_conversation(chain, conversation, name1, name2)
|
159 |
st.write(summary)
|
160 |
print("Summary:\n", summary)
|
161 |
|
|
|
|
|
|
|
|
|
162 |
if __name__ == "__main__":
|
163 |
main()
|
|
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
|
8 |
def create_prompt(name1: str, name2: str, persona_style: str):
|
9 |
+
"""Create a prompt that instructs the model to produce all 15 messages at once."""
|
10 |
prompt_template_str = f"""
|
11 |
+
You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}.
|
12 |
+
The conversation should reflect the style: {persona_style}.
|
13 |
+
{name1} speaks first (message 1), {name2} responds (message 2), then {name1} (message 3), and so on, alternating until 15 messages are complete.
|
14 |
+
Rules:
|
15 |
+
- Each message should be written as:
|
16 |
+
{name1}: <message> or {name2}: <message>
|
17 |
+
- Each message should be 1-2 short sentences, friendly, and natural.
|
18 |
+
- Keep it casual, can ask questions, share opinions.
|
19 |
+
- Use emojis sparingly if it fits the persona (no more than 1-2 per message).
|
20 |
+
- Do not repeat the same line over and over.
|
21 |
+
- The conversation must flow logically and naturally.
|
22 |
+
- After producing exactly 15 messages (the 15th message by {name1}), stop. Do not add anything else.
|
23 |
+
- Do not continue the conversation beyond 15 messages.
|
24 |
+
|
25 |
+
Produce all 15 messages now:
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def summarize_conversation(chain: LLMChain, conversation: str, name1: str, name2: str):
|
30 |
+
"""Summarize the completed conversation."""
|
31 |
st.write("**Summarizing the conversation...**")
|
32 |
print("Summarizing the conversation...")
|
33 |
|
|
|
34 |
summary_prompt = f"""
|
35 |
Below is a completed conversation between {name1} and {name2}:
|
36 |
{conversation}
|
37 |
|
38 |
+
Please provide:
|
39 |
+
Title: <A short descriptive title of the conversation>
|
40 |
+
Summary: <A few short sentences highlighting the main points, tone, and conclusion of the conversation>
|
41 |
+
Do not continue the conversation, just provide the title and summary.
|
|
|
42 |
"""
|
43 |
|
44 |
try:
|
|
|
59 |
]
|
60 |
selected_model = st.selectbox("Select a model:", model_names)
|
61 |
|
|
|
62 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
63 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
64 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
|
|
77 |
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
78 |
task="text-generation",
|
79 |
temperature=0.7,
|
80 |
+
max_new_tokens=512
|
81 |
)
|
82 |
st.write("**Model loaded successfully!**")
|
83 |
print("Model loaded successfully!")
|
|
|
89 |
prompt = create_prompt(name1, name2, persona_style)
|
90 |
chain = LLMChain(llm=llm, prompt=prompt)
|
91 |
|
92 |
+
st.write("**Generating the full 15-message conversation...**")
|
93 |
+
print("Generating the full 15-message conversation...")
|
94 |
|
95 |
+
try:
|
96 |
+
# Generate all 15 messages in one go
|
97 |
+
conversation = chain.run(chat_history="", input="Produce the full conversation now.")
|
98 |
+
conversation = conversation.strip()
|
99 |
+
|
100 |
+
# Print and display the conversation
|
101 |
st.subheader("Final Conversation:")
|
102 |
st.text(conversation)
|
103 |
+
print("Conversation Generation Complete.\n")
|
104 |
print("Full Conversation:\n", conversation)
|
105 |
|
106 |
+
# Summarize the conversation
|
107 |
st.subheader("Summary and Title:")
|
108 |
summary = summarize_conversation(chain, conversation, name1, name2)
|
109 |
st.write(summary)
|
110 |
print("Summary:\n", summary)
|
111 |
|
112 |
+
except Exception as e:
|
113 |
+
st.error(f"Error generating conversation: {e}")
|
114 |
+
print(f"Error generating conversation: {e}")
|
115 |
+
|
116 |
if __name__ == "__main__":
|
117 |
main()
|