Spaces:
Running
Running
RakeshUtekar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,48 +2,10 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.prompts import ChatPromptTemplate
|
5 |
-
from langchain_community.llms import
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
-
|
8 |
-
# ---------------------------------------
|
9 |
-
# Utility functions
|
10 |
-
# ---------------------------------------
|
11 |
-
|
12 |
-
def load_model_pipeline(model_name: str):
|
13 |
-
"""Load a HuggingFace pipeline for a given model name.
|
14 |
-
|
15 |
-
For large models, ensure you have the model downloaded and configured.
|
16 |
-
Adjust device_map, load_in_8bit, etc., as needed for your hardware.
|
17 |
-
"""
|
18 |
-
try:
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(
|
21 |
-
model_name,
|
22 |
-
device_map="auto", # Adjust as needed (e.g. "cpu", "cuda:0")
|
23 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
24 |
-
trust_remote_code=True
|
25 |
-
)
|
26 |
-
# Create pipeline
|
27 |
-
pipe = pipeline(
|
28 |
-
"text-generation",
|
29 |
-
model=model,
|
30 |
-
tokenizer=tokenizer,
|
31 |
-
max_length=512,
|
32 |
-
temperature=0.7,
|
33 |
-
top_p=0.9,
|
34 |
-
repetition_penalty=1.1,
|
35 |
-
pad_token_id=tokenizer.eos_token_id,
|
36 |
-
)
|
37 |
-
return pipe
|
38 |
-
except Exception as e:
|
39 |
-
st.error(f"Error loading model {model_name}: {e}")
|
40 |
-
return None
|
41 |
-
|
42 |
|
43 |
def create_prompt(name: str, persona_style: str):
|
44 |
"""Create the chat prompt template as described."""
|
45 |
-
# The prompt template from the user prompt
|
46 |
-
# We combine both snippet versions into one final template.
|
47 |
prompt_template_str = f"""
|
48 |
In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
|
49 |
//////////
|
@@ -69,19 +31,9 @@ def create_prompt(name: str, persona_style: str):
|
|
69 |
"""
|
70 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
71 |
|
72 |
-
|
73 |
def simulate_conversation(chain: LLMChain, turns: int = 15):
|
74 |
-
"""Simulate a conversation for a given number of turns.
|
75 |
-
|
76 |
-
Here, we'll pretend the "Human" says something generic each time,
|
77 |
-
and we get the AI's response. We store and update the chat history.
|
78 |
-
|
79 |
-
After 15 responses from the AI, we return the full conversation.
|
80 |
-
"""
|
81 |
-
|
82 |
chat_history = ""
|
83 |
-
# We will simulate the human input as a rotating set of simple messages
|
84 |
-
# or just a single repeated message to show the flow.
|
85 |
human_messages = [
|
86 |
"Hey, what's up?",
|
87 |
"That's interesting, tell me more!",
|
@@ -103,19 +55,15 @@ def simulate_conversation(chain: LLMChain, turns: int = 15):
|
|
103 |
try:
|
104 |
for i in range(turns):
|
105 |
human_input = human_messages[i % len(human_messages)]
|
106 |
-
# Generate AI response
|
107 |
response = chain.run(chat_history=chat_history, input=human_input)
|
108 |
-
# Update the chat history
|
109 |
chat_history += f"Human: {human_input}\nAI: {response}\n"
|
110 |
return chat_history
|
111 |
except Exception as e:
|
112 |
st.error(f"Error during conversation simulation: {e}")
|
113 |
return None
|
114 |
|
115 |
-
|
116 |
def summarize_conversation(chain: LLMChain, conversation: str):
|
117 |
"""Use the LLM to summarize the completed conversation."""
|
118 |
-
# We'll provide a simple prompt for summary:
|
119 |
summary_prompt = f"Summarize the following conversation in a few short sentences highlighting the main points, tone, and conclusion:\n\n{conversation}\nSummary:"
|
120 |
try:
|
121 |
response = chain.run(chat_history="", input=summary_prompt)
|
@@ -124,14 +72,9 @@ def summarize_conversation(chain: LLMChain, conversation: str):
|
|
124 |
st.error(f"Error summarizing conversation: {e}")
|
125 |
return "No summary available due to error."
|
126 |
|
127 |
-
|
128 |
-
# ---------------------------------------
|
129 |
-
# Streamlit App
|
130 |
-
# ---------------------------------------
|
131 |
def main():
|
132 |
st.title("LLM Conversation Simulation")
|
133 |
|
134 |
-
# Model selection
|
135 |
model_names = [
|
136 |
"meta-llama/Llama-3.3-70B-Instruct",
|
137 |
"meta-llama/Llama-3.1-405B-Instruct",
|
@@ -139,34 +82,39 @@ def main():
|
|
139 |
]
|
140 |
selected_model = st.selectbox("Select a model:", model_names)
|
141 |
|
142 |
-
# Persona Inputs
|
143 |
name = st.text_input("Enter the persona's name:", value="Alex")
|
144 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
145 |
value="friendly, curious, and a bit sarcastic")
|
146 |
|
147 |
-
# Button to start simulation
|
148 |
if st.button("Start Conversation Simulation"):
|
149 |
-
with st.spinner("
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
main()
|
|
|
2 |
import torch
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.prompts import ChatPromptTemplate
|
5 |
+
from langchain_community.llms import HuggingFaceHub # Using HuggingFaceHub now
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def create_prompt(name: str, persona_style: str):
|
8 |
"""Create the chat prompt template as described."""
|
|
|
|
|
9 |
prompt_template_str = f"""
|
10 |
In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
|
11 |
//////////
|
|
|
31 |
"""
|
32 |
return ChatPromptTemplate.from_template(prompt_template_str)
|
33 |
|
|
|
34 |
def simulate_conversation(chain: LLMChain, turns: int = 15):
|
35 |
+
"""Simulate a conversation for a given number of turns."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
chat_history = ""
|
|
|
|
|
37 |
human_messages = [
|
38 |
"Hey, what's up?",
|
39 |
"That's interesting, tell me more!",
|
|
|
55 |
try:
|
56 |
for i in range(turns):
|
57 |
human_input = human_messages[i % len(human_messages)]
|
|
|
58 |
response = chain.run(chat_history=chat_history, input=human_input)
|
|
|
59 |
chat_history += f"Human: {human_input}\nAI: {response}\n"
|
60 |
return chat_history
|
61 |
except Exception as e:
|
62 |
st.error(f"Error during conversation simulation: {e}")
|
63 |
return None
|
64 |
|
|
|
65 |
def summarize_conversation(chain: LLMChain, conversation: str):
|
66 |
"""Use the LLM to summarize the completed conversation."""
|
|
|
67 |
summary_prompt = f"Summarize the following conversation in a few short sentences highlighting the main points, tone, and conclusion:\n\n{conversation}\nSummary:"
|
68 |
try:
|
69 |
response = chain.run(chat_history="", input=summary_prompt)
|
|
|
72 |
st.error(f"Error summarizing conversation: {e}")
|
73 |
return "No summary available due to error."
|
74 |
|
|
|
|
|
|
|
|
|
75 |
def main():
|
76 |
st.title("LLM Conversation Simulation")
|
77 |
|
|
|
78 |
model_names = [
|
79 |
"meta-llama/Llama-3.3-70B-Instruct",
|
80 |
"meta-llama/Llama-3.1-405B-Instruct",
|
|
|
82 |
]
|
83 |
selected_model = st.selectbox("Select a model:", model_names)
|
84 |
|
|
|
85 |
name = st.text_input("Enter the persona's name:", value="Alex")
|
86 |
persona_style = st.text_area("Enter the persona style characteristics:",
|
87 |
value="friendly, curious, and a bit sarcastic")
|
88 |
|
|
|
89 |
if st.button("Start Conversation Simulation"):
|
90 |
+
with st.spinner("Starting simulation..."):
|
91 |
+
try:
|
92 |
+
# Using HuggingFaceHub for remote model inference
|
93 |
+
llm = HuggingFaceHub(
|
94 |
+
repo_id=selected_model,
|
95 |
+
model_kwargs={
|
96 |
+
"temperature": 0.7,
|
97 |
+
"max_new_tokens": 512
|
98 |
+
}
|
99 |
+
)
|
100 |
+
except Exception as e:
|
101 |
+
st.error(f"Error initializing model from Hugging Face Hub: {e}")
|
102 |
+
return
|
103 |
+
|
104 |
+
# Create our prompt template chain
|
105 |
+
prompt = create_prompt(name, persona_style)
|
106 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
107 |
+
|
108 |
+
# Simulate conversation
|
109 |
+
conversation = simulate_conversation(chain, turns=15)
|
110 |
+
if conversation:
|
111 |
+
st.subheader("Conversation:")
|
112 |
+
st.text(conversation)
|
113 |
+
|
114 |
+
# Summarize conversation
|
115 |
+
st.subheader("Summary:")
|
116 |
+
summary = summarize_conversation(chain, conversation)
|
117 |
+
st.write(summary)
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
main()
|