Spaces:
Running
Running
File size: 13,276 Bytes
7869791 38b6ee6 15773f6 215e74e 15773f6 887b1f9 5612d16 15773f6 4d94499 b2c6609 15773f6 0b06d6e 4d94499 0b06d6e 15773f6 4d94499 0b06d6e 4d94499 0b06d6e 88657de 4d94499 0b06d6e 4d94499 15773f6 5612d16 15773f6 62f1f08 bce34f7 15773f6 d083506 15773f6 61f4130 25007bd 887b1f9 215e74e 25007bd 887b1f9 215e74e 887b1f9 215e74e bdcef72 25007bd 61f4130 25007bd 887b1f9 61f4130 25007bd 4d94499 25007bd bdcef72 61f4130 bdcef72 0b06d6e b2c6609 d083506 25007bd bdcef72 61f4130 25007bd 0b06d6e 4d94499 d083506 4d94499 25007bd 61f4130 15773f6 5612d16 7869791 5612d16 7869791 5612d16 7869791 bdcef72 7869791 bdcef72 15773f6 7869791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# import os
# import streamlit as st
# import torch
# from langchain.chains import LLMChain
# from langchain.prompts import ChatPromptTemplate
# from langchain_huggingface import HuggingFaceEndpoint
# def create_conversation_prompt(name1: str, name2: str, persona_style: str):
# """
# Create a prompt that instructs the model to produce exactly 15 messages
# of conversation, alternating between name1 and name2, starting with name1.
# We will be very explicit and not allow any formatting except the required lines.
# """
# prompt_template_str = f"""
# You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
# {name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth,
# alternating until all 15 messages are complete. The 15th message is by {name1}.
# Requirements:
# - Output exactly 15 lines, no more, no less.
# - Each line must be a single message in the format:
# {name1}: <message> or {name2}: <message>
# - Do not add any headings, numbers, sample outputs, or explanations.
# - Do not mention code, programming, or instructions.
# - Each message should be 1-2 short sentences, friendly, natural, reflecting the style: {persona_style}.
# - Use everyday language, can ask questions, show opinions.
# - Use emojis sparingly if it fits the style (no more than 1-2 total).
# - No repeated lines, each message should logically follow from the previous one.
# - Do not produce anything after the 15th message. No extra lines or text.
# Produce all 15 messages now:
# """
# return ChatPromptTemplate.from_template(prompt_template_str)
# def create_summary_prompt(name1: str, name2: str, conversation: str):
# """Prompt for generating a title and summary."""
# summary_prompt_str = f"""
# Below is a completed 15-message conversation between {name1} and {name2}:
# {conversation}
# Please provide:
# Title: <A short descriptive title of the conversation>
# Summary: <A few short sentences highlighting the main points, tone, and conclusion>
# Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
# - One line starting with "Title:"
# - One line starting with "Summary:"
# """
# return ChatPromptTemplate.from_template(summary_prompt_str)
# def main():
# st.title("LLM Conversation Simulation")
# model_names = [
# "meta-llama/Llama-3.3-70B-Instruct",
# "mistralai/Mistral-7B-v0.1",
# "tiiuae/falcon-7b"
# ]
# selected_model = st.selectbox("Select a model:", model_names)
# name1 = st.text_input("Enter the first user's name:", value="Alice")
# name2 = st.text_input("Enter the second user's name:", value="Bob")
# persona_style = st.text_area("Enter the persona style characteristics:",
# value="friendly, curious, and a bit sarcastic")
# if st.button("Start Conversation Simulation"):
# st.write("**Loading model...**")
# print("Loading model...")
# with st.spinner("Starting simulation..."):
# endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
# try:
# llm = HuggingFaceEndpoint(
# endpoint_url=endpoint_url,
# huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
# task="text-generation",
# temperature=0.7,
# max_new_tokens=512
# )
# st.write("**Model loaded successfully!**")
# print("Model loaded successfully!")
# except Exception as e:
# st.error(f"Error initializing HuggingFaceEndpoint: {e}")
# print(f"Error initializing HuggingFaceEndpoint: {e}")
# return
# conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
# conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
# st.write("**Generating the full 15-message conversation...**")
# print("Generating the full 15-message conversation...")
# try:
# # Generate all 15 messages in one go
# conversation = conversation_chain.run(chat_history="", input="").strip()
# st.subheader("Final Conversation:")
# st.text(conversation)
# print("Conversation Generation Complete.\n")
# print("Full Conversation:\n", conversation)
# # Summarize the conversation
# summary_prompt = create_summary_prompt(name1, name2, conversation)
# summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
# st.subheader("Summary and Title:")
# st.write("**Summarizing the conversation...**")
# print("Summarizing the conversation...")
# summary = summary_chain.run(chat_history="", input="")
# st.write(summary)
# print("Summary:\n", summary)
# except Exception as e:
# st.error(f"Error generating conversation: {e}")
# print(f"Error generating conversation: {e}")
# if __name__ == "__main__":
# main()
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
# Additional imports for AnimateDiff
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
"""
Create a prompt that instructs the model to produce exactly 15 messages
of conversation, alternating between name1 and name2, starting with name1.
"""
prompt_template_str = f"""
You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
{name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth,
alternating until all 15 messages are complete. The 15th message is by {name1}.
Requirements:
- Output exactly 15 lines, no more, no less.
- Each line must be a single message in the format:
{name1}: <message> or {name2}: <message>
- Do not add any headings, numbers, sample outputs, or explanations.
- Do not mention code, programming, or instructions.
- Each message should be 1-2 short sentences, friendly, natural, reflecting the style: {persona_style}.
- Use everyday language, can ask questions, show opinions.
- Use emojis sparingly if it fits the style (no more than 1-2 total).
- No repeated lines, each message should logically follow from the previous one.
- Do not produce anything after the 15th message. No extra lines or text.
Produce all 15 messages now:
"""
return ChatPromptTemplate.from_template(prompt_template_str)
def create_summary_prompt(name1: str, name2: str, conversation: str):
"""Prompt for generating a title and summary."""
summary_prompt_str = f"""
Below is a completed 15-message conversation between {name1} and {name2}:
{conversation}
Please provide:
Title: <A short descriptive title of the conversation>
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
- One line starting with "Title:"
- One line starting with "Summary:"
"""
return ChatPromptTemplate.from_template(summary_prompt_str)
def main():
st.title("LLM Conversation Simulation + AnimateDiff Video")
model_names = [
"meta-llama/Llama-3.3-70B-Instruct",
"mistralai/Mistral-7B-v0.1",
"tiiuae/falcon-7b"
]
selected_model = st.selectbox("Select a model:", model_names)
name1 = st.text_input("Enter the first user's name:", value="Alice")
name2 = st.text_input("Enter the second user's name:", value="Bob")
persona_style = st.text_area("Enter the persona style characteristics:",
value="friendly, curious, and a bit sarcastic")
if st.button("Start Conversation Simulation"):
st.write("**Loading model...**")
print("Loading model...")
with st.spinner("Starting simulation..."):
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
try:
llm = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
task="text-generation",
temperature=0.7,
max_new_tokens=512
)
st.write("**Model loaded successfully!**")
print("Model loaded successfully!")
except Exception as e:
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
print(f"Error initializing HuggingFaceEndpoint: {e}")
return
conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
st.write("**Generating the full 15-message conversation...**")
print("Generating the full 15-message conversation...")
try:
# Generate all 15 messages in one go
conversation = conversation_chain.run(chat_history="", input="").strip()
st.subheader("Final Conversation:")
st.text(conversation)
print("Conversation Generation Complete.\n")
print("Full Conversation:\n", conversation)
# Summarize the conversation
summary_prompt = create_summary_prompt(name1, name2, conversation)
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
st.subheader("Summary and Title:")
st.write("**Summarizing the conversation...**")
print("Summarizing the conversation...")
summary = summary_chain.run(chat_history="", input="")
st.write(summary)
print("Summary:\n", summary)
# Extract the summary line from the summary text
lines = summary.split("\n")
summary_line = ""
for line in lines:
if line.strip().lower().startswith("summary:"):
summary_line = line.split("Summary:", 1)[-1].strip()
break
if not summary_line:
summary_line = "A friendly scene reflecting the conversation."
# Now integrate AnimateDiff for text-to-video generation
st.write("**Generating animation from summary using ByteDance/AnimateDiff-Lightning...**")
print("Generating animation from summary using ByteDance/AnimateDiff-Lightning...")
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
step = 4 # Adjust if needed
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism" # Check if this model exists or choose a known base model
# Load and configure AnimateDiff pipeline
adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device))
pipe = AnimateDiffPipeline.from_pretrained(
base,
motion_adapter=adapter,
torch_dtype=dtype
).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config,
timestep_spacing="trailing",
beta_schedule="linear"
)
# Generate the animation
output = pipe(prompt=summary_line, guidance_scale=1.0, num_inference_steps=step)
# Save as GIF
# output.frames is a list of frames (PIL images)
st.write("**Exporting animation to GIF...**")
print("Exporting animation to GIF...")
export_to_gif(output.frames, "animation.gif")
st.subheader("Generated Animation:")
st.image("animation.gif", caption="Generated by AnimateDiff using summary prompt")
except Exception as e:
st.error(f"Error generating conversation or summary: {e}")
print(f"Error generating conversation or summary: {e}")
if __name__ == "__main__":
main()
|