ToastyPigeon's picture
Model save
8195459 verified
|
raw
history blame
4.32 kB
---
base_model: mistralai/Mistral-Small-Instruct-2409
library_name: peft
license: other
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mistral-small-adventure-qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess ms-adventure.yml
# accelerate launch -m axolotl.cli.train ms-adventure.yml
# python -m axolotl.cli.merge_lora ms-adventure.yml
base_model: mistralai/Mistral-Small-Instruct-2409
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
sequence_len: 16384 # 99% vram
min_sample_len: 128
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:
# Data
dataset_prepared_path: last_run_prepared
datasets:
- path: ColumbidAI/adventure-ms-16k
type: completion
warmup_steps: 20
shuffle_merged_datasets: true
save_safetensors: true
# WandB
wandb_project: Mistral-Small-Skein
wandb_entity:
# Iterations
num_epochs: 1
# Output
output_dir: ./adventure-workspace
hub_model_id: ToastyPigeon/mistral-small-adventure-qlora
hub_strategy: "all_checkpoints"
saves_per_epoch: 5
# Sampling
sample_packing: true
pad_to_sequence_len: true
# Batching
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: true
#unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# Evaluation
val_set_size: 100
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.125
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0001
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 10.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:
# Checkpoints
resume_from_checkpoint:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
```
</details><br>
# mistral-small-adventure-qlora
This model is a fine-tuned version of [mistralai/Mistral-Small-Instruct-2409](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8182 | 0.0035 | 1 | 2.1284 |
| 1.8279 | 0.2043 | 59 | 1.9991 |
| 1.8002 | 0.4087 | 118 | 1.9488 |
| 1.7188 | 0.6130 | 177 | 1.9185 |
| 1.7306 | 0.8173 | 236 | 1.9117 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0