ToastyPigeon commited on
Commit
8195459
·
verified ·
1 Parent(s): f093b28

Model save

Browse files
Files changed (2) hide show
  1. README.md +182 -190
  2. adapter_model.safetensors +1 -1
README.md CHANGED
@@ -1,202 +1,194 @@
1
  ---
2
  base_model: mistralai/Mistral-Small-Instruct-2409
3
  library_name: peft
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.13.0
 
 
 
 
 
1
  ---
2
  base_model: mistralai/Mistral-Small-Instruct-2409
3
  library_name: peft
4
+ license: other
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: mistral-small-adventure-qlora
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ # huggingface-cli login --token $hf_key && wandb login $wandb_key
22
+ # python -m axolotl.cli.preprocess ms-adventure.yml
23
+ # accelerate launch -m axolotl.cli.train ms-adventure.yml
24
+ # python -m axolotl.cli.merge_lora ms-adventure.yml
25
 
26
+ base_model: mistralai/Mistral-Small-Instruct-2409
27
+ model_type: AutoModelForCausalLM
28
+ tokenizer_type: AutoTokenizer
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: true
32
+ strict: false
33
+ sequence_len: 16384 # 99% vram
34
+ min_sample_len: 128
35
+ bf16: true
36
+ fp16:
37
+ tf32: false
38
+ flash_attention: true
39
+ special_tokens:
40
+
41
+ # Data
42
+ dataset_prepared_path: last_run_prepared
43
+ datasets:
44
+ - path: ColumbidAI/adventure-ms-16k
45
+ type: completion
46
+ warmup_steps: 20
47
+ shuffle_merged_datasets: true
48
+
49
+ save_safetensors: true
50
+
51
+ # WandB
52
+ wandb_project: Mistral-Small-Skein
53
+ wandb_entity:
54
+
55
+ # Iterations
56
+ num_epochs: 1
57
+
58
+ # Output
59
+ output_dir: ./adventure-workspace
60
+ hub_model_id: ToastyPigeon/mistral-small-adventure-qlora
61
+ hub_strategy: "all_checkpoints"
62
+ saves_per_epoch: 5
63
+
64
+ # Sampling
65
+ sample_packing: true
66
+ pad_to_sequence_len: true
67
+
68
+ # Batching
69
+ gradient_accumulation_steps: 4
70
+ micro_batch_size: 1
71
+ eval_batch_size: 1
72
+ gradient_checkpointing: 'unsloth'
73
+ gradient_checkpointing_kwargs:
74
+ use_reentrant: true
75
+
76
+ #unsloth_cross_entropy_loss: true
77
+ #unsloth_lora_mlp: true
78
+ #unsloth_lora_qkv: true
79
+ #unsloth_lora_o: true
80
+
81
+ # Evaluation
82
+ val_set_size: 100
83
+ evals_per_epoch: 5
84
+ eval_table_size:
85
+ eval_max_new_tokens: 256
86
+ eval_sample_packing: false
87
+
88
+ # LoRA
89
+ adapter: qlora
90
+ lora_model_dir:
91
+ lora_r: 64
92
+ lora_alpha: 32
93
+ lora_dropout: 0.125
94
+ lora_target_linear:
95
+ lora_fan_in_fan_out:
96
+ lora_target_modules:
97
+ - gate_proj
98
+ - down_proj
99
+ - up_proj
100
+ - q_proj
101
+ - v_proj
102
+ - k_proj
103
+ - o_proj
104
+ lora_modules_to_save:
105
+
106
+ # Optimizer
107
+ optimizer: paged_adamw_8bit # adamw_8bit
108
+ lr_scheduler: cosine
109
+ learning_rate: 0.0001
110
+ cosine_min_lr_ratio: 0.1
111
+ weight_decay: 0.01
112
+ max_grad_norm: 10.0
113
+
114
+ # Misc
115
+ train_on_inputs: false
116
+ group_by_length: false
117
+ early_stopping_patience:
118
+ local_rank:
119
+ logging_steps: 1
120
+ xformers_attention:
121
+ debug:
122
+ deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
123
+ fsdp:
124
+ fsdp_config:
125
+
126
+ # Checkpoints
127
+ resume_from_checkpoint:
128
+
129
+
130
+ plugins:
131
+ - axolotl.integrations.liger.LigerPlugin
132
+ liger_rope: true
133
+ liger_rms_norm: true
134
+ liger_swiglu: true
135
+ liger_fused_linear_cross_entropy: true
136
+ ```
137
+
138
+ </details><br>
139
+
140
+ # mistral-small-adventure-qlora
141
+
142
+ This model is a fine-tuned version of [mistralai/Mistral-Small-Instruct-2409](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) on the None dataset.
143
+ It achieves the following results on the evaluation set:
144
+ - Loss: 1.9117
145
+
146
+ ## Model description
147
+
148
+ More information needed
149
+
150
+ ## Intended uses & limitations
151
+
152
+ More information needed
153
+
154
+ ## Training and evaluation data
155
+
156
+ More information needed
157
+
158
+ ## Training procedure
159
+
160
+ ### Training hyperparameters
161
+
162
+ The following hyperparameters were used during training:
163
+ - learning_rate: 0.0001
164
+ - train_batch_size: 1
165
+ - eval_batch_size: 1
166
+ - seed: 42
167
+ - distributed_type: multi-GPU
168
+ - num_devices: 2
169
+ - gradient_accumulation_steps: 4
170
+ - total_train_batch_size: 8
171
+ - total_eval_batch_size: 2
172
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
173
+ - lr_scheduler_type: cosine
174
+ - lr_scheduler_warmup_steps: 20
175
+ - num_epochs: 1
176
+
177
+ ### Training results
178
+
179
+ | Training Loss | Epoch | Step | Validation Loss |
180
+ |:-------------:|:------:|:----:|:---------------:|
181
+ | 1.8182 | 0.0035 | 1 | 2.1284 |
182
+ | 1.8279 | 0.2043 | 59 | 1.9991 |
183
+ | 1.8002 | 0.4087 | 118 | 1.9488 |
184
+ | 1.7188 | 0.6130 | 177 | 1.9185 |
185
+ | 1.7306 | 0.8173 | 236 | 1.9117 |
186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
 
 
188
  ### Framework versions
189
 
190
+ - PEFT 0.13.0
191
+ - Transformers 4.45.0
192
+ - Pytorch 2.3.1+cu121
193
+ - Datasets 2.21.0
194
+ - Tokenizers 0.20.0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7788f2c38a9146588fa4484face75dbb080db448f7c4c27405ce573d37b43df4
3
  size 763470136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd8e50e16912abbf3c41da22e4221d5312ad0485189c7651ead7069776d4a009
3
  size 763470136