File size: 4,316 Bytes
316c13d
 
 
8195459
 
 
 
 
 
 
316c13d
 
8195459
 
316c13d
8195459
 
316c13d
8195459
 
 
 
 
 
316c13d
8195459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316c13d
 
 
 
8195459
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
base_model: mistralai/Mistral-Small-Instruct-2409
library_name: peft
license: other
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mistral-small-adventure-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess ms-adventure.yml
# accelerate launch -m axolotl.cli.train ms-adventure.yml
# python -m axolotl.cli.merge_lora ms-adventure.yml

base_model: mistralai/Mistral-Small-Instruct-2409
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false
sequence_len: 16384 # 99% vram
min_sample_len: 128
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:

# Data
dataset_prepared_path: last_run_prepared
datasets:
  - path: ColumbidAI/adventure-ms-16k
    type: completion
warmup_steps: 20
shuffle_merged_datasets: true

save_safetensors: true

# WandB
wandb_project: Mistral-Small-Skein
wandb_entity:

# Iterations
num_epochs: 1

# Output
output_dir: ./adventure-workspace
hub_model_id: ToastyPigeon/mistral-small-adventure-qlora
hub_strategy: "all_checkpoints"
saves_per_epoch: 5

# Sampling
sample_packing: true
pad_to_sequence_len: true

# Batching
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
   use_reentrant: true

#unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

# Evaluation
val_set_size: 100
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false

# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.125
lora_target_linear: 
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:

# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0001
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 10.0

# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:

# Checkpoints
resume_from_checkpoint:


plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
```

</details><br>

# mistral-small-adventure-qlora

This model is a fine-tuned version of [mistralai/Mistral-Small-Instruct-2409](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9117

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8182        | 0.0035 | 1    | 2.1284          |
| 1.8279        | 0.2043 | 59   | 1.9991          |
| 1.8002        | 0.4087 | 118  | 1.9488          |
| 1.7188        | 0.6130 | 177  | 1.9185          |
| 1.7306        | 0.8173 | 236  | 1.9117          |


### Framework versions

- PEFT 0.13.0
- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0