|
--- |
|
library_name: transformers |
|
language: |
|
- multilingual |
|
- bn |
|
- cs |
|
- de |
|
- en |
|
- et |
|
- fi |
|
- fr |
|
- gu |
|
- ha |
|
- hi |
|
- is |
|
- ja |
|
- kk |
|
- km |
|
- lt |
|
- lv |
|
- pl |
|
- ps |
|
- ru |
|
- ta |
|
- tr |
|
- uk |
|
- xh |
|
- zh |
|
- zu |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- quality-estimation |
|
- regression |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/wmt-da-human-evaluation |
|
model-index: |
|
- name: Quality Estimation for Machine Translation |
|
results: |
|
- task: |
|
type: regression |
|
dataset: |
|
name: ymoslem/wmt-da-human-evaluation-long-context |
|
type: QE |
|
metrics: |
|
- name: Pearson |
|
type: Pearson Correlation |
|
value: 0.2055 |
|
- name: MAE |
|
type: Mean Absolute Error |
|
value: 0.2004 |
|
- name: RMSE |
|
type: Root Mean Squared Error |
|
value: 0.2767 |
|
- name: R-R2 |
|
type: R-Squared |
|
value: -1.6745 |
|
- task: |
|
type: regression |
|
dataset: |
|
name: ymoslem/wmt-da-human-evaluation |
|
type: QE |
|
metrics: |
|
- name: Pearson |
|
type: Pearson Correlation |
|
value: null |
|
- name: MAE |
|
type: Mean Absolute Error |
|
value: null |
|
- name: RMSE |
|
type: Root Mean Squared Error |
|
value: null |
|
- name: R-R2 |
|
type: R-Squared |
|
value: null |
|
metrics: |
|
- pearsonr |
|
- mae |
|
- r_squared |
|
new_version: ymoslem/ModernBERT-base-qe-v1 |
|
--- |
|
|
|
|
|
# Quality Estimation for Machine Translation |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0561 |
|
|
|
## Model description |
|
|
|
This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. |
|
The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), |
|
which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) |
|
|
|
## Training and evaluation data |
|
|
|
This model is trained on the sentence-level quality estimation dataset: [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
This version of the model uses tokenizer.model_max_length=512. |
|
The model with full length of 8192 can be found here [ymoslem/ModernBERT-base-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-qe-v1), |
|
which is still trained on a sentence-level QE dataset [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) |
|
|
|
The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), |
|
which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.0656 | 0.1004 | 1000 | 0.0636 | |
|
| 0.0643 | 0.2007 | 2000 | 0.0623 | |
|
| 0.0592 | 0.3011 | 3000 | 0.0598 | |
|
| 0.0596 | 0.4015 | 4000 | 0.0586 | |
|
| 0.0575 | 0.5019 | 5000 | 0.0577 | |
|
| 0.0574 | 0.6022 | 6000 | 0.0570 | |
|
| 0.0584 | 0.7026 | 7000 | 0.0566 | |
|
| 0.0574 | 0.8030 | 8000 | 0.0563 | |
|
| 0.0565 | 0.9033 | 9000 | 0.0561 | |
|
| 0.0557 | 1.0037 | 10000 | 0.0561 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0 |
|
- Pytorch 2.4.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |