Quality Estimation for Machine Translation
This model is a fine-tuned version of answerdotai/ModernBERT-base on the ymoslem/wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set:
- Loss: 0.0561
Model description
This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. The long-context / document-level model can be found at: ModernBERT-base-long-context-qe-v1, which is trained on a long-context / document-level QE dataset ymoslem/wmt-da-human-evaluation-long-context
Training and evaluation data
This model is trained on the sentence-level quality estimation dataset: ymoslem/wmt-da-human-evaluation
Training procedure
Training hyperparameters
This version of the model uses tokenizer.model_max_length=512. The model with full length of 8192 can be found here ymoslem/ModernBERT-base-qe-v1, which is still trained on a sentence-level QE dataset ymoslem/wmt-da-human-evaluation
The long-context / document-level model can be found at: ModernBERT-base-long-context-qe-v1, which is trained on a long-context / document-level QE dataset ymoslem/wmt-da-human-evaluation-long-context
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0656 | 0.1004 | 1000 | 0.0636 |
0.0643 | 0.2007 | 2000 | 0.0623 |
0.0592 | 0.3011 | 3000 | 0.0598 |
0.0596 | 0.4015 | 4000 | 0.0586 |
0.0575 | 0.5019 | 5000 | 0.0577 |
0.0574 | 0.6022 | 6000 | 0.0570 |
0.0584 | 0.7026 | 7000 | 0.0566 |
0.0574 | 0.8030 | 8000 | 0.0563 |
0.0565 | 0.9033 | 9000 | 0.0561 |
0.0557 | 1.0037 | 10000 | 0.0561 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Model tree for ymoslem/ModernBERT-base-qe-maxlen512-lr3e-04-v1
Base model
answerdotai/ModernBERT-baseDataset used to train ymoslem/ModernBERT-base-qe-maxlen512-lr3e-04-v1
Collection including ymoslem/ModernBERT-base-qe-maxlen512-lr3e-04-v1
Evaluation results
- Pearson on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.205
- MAE on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.200
- RMSE on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.277
- R-R2 on ymoslem/wmt-da-human-evaluation-long-contextself-reported-1.675
- Pearson on ymoslem/wmt-da-human-evaluationself-reportednull
- MAE on ymoslem/wmt-da-human-evaluationself-reportednull
- RMSE on ymoslem/wmt-da-human-evaluationself-reportednull
- R-R2 on ymoslem/wmt-da-human-evaluationself-reportednull