File size: 20,679 Bytes
6c96578
 
 
ade73e6
6c96578
 
 
 
5b6eeaf
6c96578
fff91af
6c96578
 
 
c02823d
6c96578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02823d
 
 
b2a109a
bc251bf
b2a109a
 
 
 
 
 
 
 
 
767781f
b2a109a
c02823d
 
 
b2a109a
c02823d
f8a3f83
653e1d1
f8a3f83
 
b0f937c
e974c2a
fbababd
b0f937c
c820969
7ac98e2
 
 
 
e974c2a
c820969
 
30512d3
c820969
3afb663
c820969
3afb663
c7ec0f1
3afb663
c7ec0f1
bc251bf
8f08788
7ac98e2
 
 
 
e974c2a
7ac98e2
 
 
 
 
 
 
 
 
 
 
8f08788
7ac98e2
 
8f08788
 
 
 
 
f3aef14
8f08788
 
 
 
f3aef14
8f08788
 
e974c2a
8f08788
 
 
 
 
 
 
 
 
dcfd073
fff91af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946844d
fff91af
 
 
946844d
 
 
 
dcfd073
49443a1
 
 
 
 
a19e7ce
946844d
71f6b58
49443a1
 
 
 
 
 
1eea227
49443a1
 
 
 
 
 
 
 
dcfd073
e974c2a
0186e6d
dcfd073
0e3d8df
dcfd073
0e3d8df
c7ec0f1
 
f5ee1f4
 
 
 
 
 
 
 
01608b1
 
 
 
 
1742f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e974c2a
26daae1
 
 
c7ec0f1
 
ade73e6
da1cbbc
 
c02823d
 
 
 
 
443c823
c02823d
 
5d12990
 
 
4aaf98d
5d12990
 
c02823d
011cb7f
c02823d
 
 
84d8036
3891a69
 
84d8036
 
4aaf98d
 
c02823d
 
5d12990
b59d991
5481b27
b59d991
 
 
71f6b58
 
3b63119
53b74c4
 
8034ef9
dcfd073
bc251bf
53b74c4
dcfd073
bc251bf
53b74c4
dcfd073
bc251bf
f5ee1f4
dcfd073
bc251bf
da1cbbc
bc251bf
2c4f796
53b74c4
 
 
 
2c4f796
7ec489a
bc251bf
31fe7d7
c02823d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gradio as gr
import torch
import numpy as np
import pickle

import pandas as pd
from tqdm import tqdm

import altair as alt
import matplotlib.pyplot as plt
from datetime import date, timedelta

from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification

"""
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
description_dataset = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."

inference_modelpath = "model/checkpoint-128"

def inference_sentence(text):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    for text in tqdm([text]):
        inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad(): # run model
        logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return output

def frequencies(preds):
	preds_dict = {"neutral": 0, "anger": 0, "fear": 0, "joy": 0, "love": 0, "sadness": 0}
	for pred in preds:
		preds_dict[pred] = preds_dict[pred] + 1
	bars = list(preds_dict.keys())
	height = list(preds_dict.values())

	x_pos = np.arange(len(bars))
	plt.bar(x_pos, height, color=['lightgrey', 'firebrick', 'rebeccapurple', 'orange', 'palevioletred', 'cornflowerblue'])
	plt.xticks(x_pos, bars)
	return plt
    
def inference_dataset(file_object, option_list):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    data_path = open(file_object.name, 'r')
    df = pd.read_csv(data_path, delimiter='\t', header=0, names=['id', 'text'])
    ids = df["id"].tolist()
    texts = df["text"].tolist()
    preds = []
    for text in tqdm(texts): # progressbar
        inputs = tokenizer(text, return_tensors="pt")
        with torch.no_grad(): # run model
            logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
        prediction = model.config.id2label[predicted_class_id]
        preds.append(prediction)
    predictions_content = list(zip(ids, texts, preds))
    # write predictions to file
    output = "output.txt"
    f = open(output, 'w')
    f.write("id\ttext\tprediction\n")
    for line in predictions_content:
        f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n')
    output1 = output
    output2 = output3 = output4 = output5 = "This option was not selected."
    if "emotion frequencies" in option_list:
        output2 = frequencies(preds)
    else:
        output2 = None
    if "emotion distribution over time" in option_list:
        output3 = "This option was selected."
    if "peaks" in option_list:
        output4 = "This option was selected."
    if "topics" in option_list:
        output5 = "This option was selected."
    return [output1, output2, output3, output4, output5]

iface_sentence = gr.Interface(
            fn=inference_sentence,
            description = description_sentence,
            inputs = gr.Textbox(
                    label="Enter a sentence",
                    lines=1),
            outputs="text")

inputs = [gr.File(
            label="Upload a dataset"),
          gr.CheckboxGroup(
            ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
            label = "Select options")]

outputs = [gr.File(),
           gr.Plot(label="Emotion frequencies"),
           gr.Textbox(label="Emotion distribution over time"),
           gr.Textbox(label="Peaks"),
           gr.Textbox(label="Topics")]

iface_dataset = gr.Interface(
            fn = inference_dataset,
            description = description_dataset,
            inputs=inputs,
            outputs = outputs)

iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"])

iface.queue().launch()
"""

inference_modelpath = "model/checkpoint-128"

def inference_sentence(text):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    for text in tqdm([text]):
        inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad(): # run model
        logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return "Predicted emotion:\n" + output
"""
def inference_sentence(text):
    output = "This sentence will be processed:\n" + text
    return output
"""

def unavailable(input_file, input_checks):
    output = "As we are currently updating this demo, submitting your own data is unavailable for the moment. However, you can try out the showcase mode 😊"
    return gr.update(value=output, label="Oops!", visible=True)

def showcase(input_file):
    output = "showcase/example_predictions.txt"
    return gr.update(visible=False), gr.update(value=output, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # next_button_freq becomes available

def file(input_file, input_checks):
    #output = "output.txt"
    #f = open(output, 'w')
    #f.write("The predictions come here.")
    #f.close()
    output = "showcase/example_predictions.txt"
    if "emotion frequencies" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # next_button_freq becomes available
    elif "emotion distribution over time" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)  # next_button_dist becomes available
    elif "peaks" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available

def freq(output_file, input_checks):
    #simple = pd.DataFrame({
    #'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness'],
    #'Frequency': [10, 8, 2, 15, 3, 4]})
    
    f = open("showcase/example_predictions.txt", 'r')
    data = f.read().split("\n")
    f.close()
    data = [line.split("\t") for line in data[1:-1]]
    
    freq_dict = {}
    for line in data:
    	if line[1] not in freq_dict.keys():
    		freq_dict[line[1]] = 1
    	else:
    		freq_dict[line[1]] += 1
    
    simple = pd.DataFrame({
    	'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness'],
    	'Frequency': [freq_dict['neutral'], freq_dict['anger'], freq_dict['fear'], freq_dict['joy'], freq_dict['love'], freq_dict['sadness']]})

    domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
    range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
    n = max(simple['Frequency'])

    plot = alt.Chart(simple).mark_bar().encode(
    x=alt.X("Emotion category", sort=['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']),
    y=alt.Y("Frequency", axis=alt.Axis(grid=False), scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
    color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=None),
    tooltip=['Emotion category', 'Frequency']).properties(
    width=600).configure_axis(
    grid=False).interactive()

    if "emotion distribution over time" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
        return gr.update(value=plot, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)  # next_button_dist becomes available
    elif "peaks" in input_checks:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available


def dist(output_file, input_checks):
    #data = pd.DataFrame({
    #'Date': ['1/1', '1/1', '1/1', '1/1', '1/1', '1/1', '2/1', '2/1', '2/1', '2/1', '2/1', '2/1', '3/1', '3/1', '3/1', '3/1', '3/1', '3/1'],
    #'Frequency': [3, 5, 1, 8, 2, 3, 4, 7, 1, 12, 4, 2, 3, 6, 3, 10, 3, 4],
    #'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness']})

    f = open("showcase/data.txt", 'r')
    data = f.read().split("\n")
    f.close()
    data = [line.split("\t") for line in data[1:-1]]
    
    freq_dict = {}
    for line in data:
    	dat = str(date(2000+int(line[0].split("/")[2]), int(line[0].split("/")[1]), int(line[0].split("/")[0])))
    	if dat not in freq_dict.keys():
    		freq_dict[dat] = {}
    		if line[1] not in freq_dict[dat].keys():
    			freq_dict[dat][line[1]] = 1
    		else:
    			freq_dict[dat][line[1]] += 1
    	else:
    		if line[1] not in freq_dict[dat].keys():
    			freq_dict[dat][line[1]] = 1
    		else:
    			freq_dict[dat][line[1]] += 1
    
    start_date = date(2000+int(data[0][0].split("/")[2]), int(data[0][0].split("/")[1]), int(data[0][0].split("/")[0]))
    end_date = date(2000+int(data[-1][0].split("/")[2]), int(data[-1][0].split("/")[1]), int(data[-1][0].split("/")[0]))
    delta = end_date - start_date   # returns timedelta
    date_range = [str(start_date + timedelta(days=i)) for i in range(delta.days + 1)]
    
    dates = [dat for dat in date_range for i in range(6)]
    frequency = [freq_dict[dat][emotion] if (dat in freq_dict.keys() and emotion in freq_dict[dat].keys()) else 0 for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
    categories = [emotion for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
    
    data = pd.DataFrame({
    	'Date': dates,
    	'Frequency': frequency,
    	'Emotion category': categories})

    domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
    range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
    n = max(data['Frequency'])
    
    highlight = alt.selection(
    type='single', on='mouseover', fields=["Emotion category"], nearest=True)

    
    base = alt.Chart(data).encode(
    x ="Date:T",
    y=alt.Y("Frequency", scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
    color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=alt.Legend(orient='bottom', direction='horizontal')))
    
    
    points = base.mark_circle().encode(
        opacity=alt.value(0),
        tooltip=[
            alt.Tooltip('Emotion category', title='Emotion category'),
            alt.Tooltip('Date:T', title='Date'),
            alt.Tooltip('Frequency', title='Frequency')
        ]).add_selection(highlight)

    
    lines = base.mark_line().encode(
        size=alt.condition(~highlight, alt.value(1), alt.value(3)))
    
    plot = (points + lines).properties(width=600, height=350).interactive()
    
    if "peaks" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available

def peaks(output_file, input_checks):
    plot = pickle.load(open('showcase/peaks_covid.p', 'rb'))
	if "topics" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
		return gr.Plot.update(value=plot, visible=True), gr.update(visible=True)  # next_button_topics becomes available
	else:
		return gr.Plot.update(value=plot, visible=True), gr.update(visible=False)  # no next_button becomes available
    

def peaks2(output_file, input_checks):
	peaks_anger = {"9/2/2020": "up", "18/2/2020": "down", "8/3/2020": "up", "20/3/2020": "up", "31/5/2020": "up", "6/6/2020": "up", "19/6/2020": "up", "19/7/2020": "up"}
	peaks_fear = {"8/2/2020": "up", "11/2/2020": "down", "31/5/2020": "down", "12/6/2020": "up", "5/7/2020": "up", "19/7/2020": "up"}
	peaks_joy = {"13/3/2020": "up", "4/4/2020": "up", "19/6/2020": "up", "26/6/2020": "up"}
	peaks_love = {"12/3/2020": "up", "5/5/2020": "down", "26/6/2020": "up", "7/8/2020": "up",}
	peaks_sadness = {"14/2/2020": "up", "3/4/2020": "up", "5/5/2020": "down", "18/5/2020": "down", "30/6/2020": "up", "5/7/2020": "up"}

	text_anger = ", ".join([str(key) + " (↑)" if value == "up" else str(key) + " (↓)" for key, value in peaks_anger.items()])
	text_fear = ", ".join([str(key) + " (↑)" if value == "up" else str(key) + " (↓)" for key, value in peaks_fear.items()])
	text_joy = ", ".join([str(key) + " (↑)" if value == "up" else str(key) + " (↓)" for key, value in peaks_joy.items()])
	text_love = ", ".join([str(key) + " (↑)" if value == "up" else str(key) + " (↓)" for key, value in peaks_love.items()])
	text_sadness = ", ".join([str(key) + " (↑)" if value == "up" else str(key) + " (↓)" for key, value in peaks_sadness.items()])
 
	html = (
			'<html>'
			'<head>'
			'<meta name="viewport" content="width=device-width, initial-scale=1">'
			'<style>'
			'.dot_neutral {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #999999;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.dot_anger {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #b22222;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.dot_fear {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #663399;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.dot_joy {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #ffcc00;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.dot_love {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #db7093;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.dot_sadness {'
			  'height: 11px;'
			  'width: 11px;'
			  'background-color: #6495ed;'
			  'border-radius: 50%;'
			  'display: inline-block;'
			'}'
			'.tab {'
			  'padding-left: 1em;'
			'}'
			'</style>'
			'</head>'
			'<body>'
			'<div>'
			  '<p>These significant fluctuations were found:</p>'
			  '<p><span class="dot_anger"></span> anger:</p>'
			  '<p class="tab">' + text_anger + '<p>'
			  '<p><span class="dot_fear"></span> fear:</p>'
			  '<p class="tab">' + text_fear + '<p>'
			  '<p><span class="dot_joy"></span> joy:</p>'
			  '<p class="tab">' + text_joy + '<p>'
			  '<p><span class="dot_love"></span> love:</p>'
			  '<p class="tab">' + text_love + '<p>'
			  '<p><span class="dot_sadness"></span> sadness:</p>'
			  '<p class="tab">' + text_sadness + '<p>'
			'</div>'
			'</body>'
			'</html>'
			)
	if "topics" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
		return gr.update(value=html, visible=True), gr.update(visible=True)  # next_button_topics becomes available
	else:
		return gr.update(value=html, visible=True), gr.update(visible=False)  # no next_button becomes available

def topics(output_file, input_checks):
    plot = pickle.load(open('showcase/vis_classes_covid.p', 'rb'))
    plot.update_layout(width=600, height=400)
    return gr.Plot.update(value=plot, visible=True)  # no next_button becomes available

with gr.Blocks() as demo:
    with gr.Tab("Sentence"):
        gr.Markdown("""
        # Demo EmotioNL
        This demo allows you to analyse the emotion in a Dutch sentence.
        """)
        with gr.Row():
            with gr.Column():
                input = gr.Textbox(
                        label="Enter a sentence",
                        value="Jaaah! Volgende vakantie Barcelona en na het zomerseizoen naar de Algarve",
                        lines=1)
                send_btn = gr.Button("Send")
            output = gr.Textbox()
        send_btn.click(fn=inference_sentence, inputs=input, outputs=output)
    with gr.Tab("Dataset"):
        gr.Markdown("""
        # Demo EmotioNL
        This demo allows you to analyse the emotions in a dataset with Dutch sentences.

        _! As we are currently updating this demo, submitting your own data is unavailable for the moment ! However, you can try out the showcase mode 😊_
        
        The data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected.
        
        You can also try out the demo in  showcase mode, which uses example data, namely a dataset with tweets about the COVID-19 pandemic.
        """)
        with gr.Row():
            with gr.Column():
                input_file = gr.File(
                    label="Upload a dataset")
                input_checks = gr.CheckboxGroup(
                    ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
                    label = "Select options")
                send_btn = gr.Button("Submit data")
                demo_btn = gr.Button("... or showcase with example data")
            with gr.Column():
                message = gr.Textbox(label="Message", visible=False)

                output_file = gr.File(label="Predictions", visible=False)
                next_button_freq = gr.Button("Show emotion frequencies", visible=False)
                
                output_plot = gr.Plot(show_label=False, visible=False).style(container=True)
                next_button_dist = gr.Button("Show emotion distribution over time", visible=False)
                
                output_dist = gr.Plot(show_label=False, visible=False)
                next_button_peaks = gr.Button("Show peaks", visible=False)
                
                output_peaks = gr.Plot(visible=False)
                next_button_topics = gr.Button("Show topics", visible=False)
                
                output_topics = gr.Plot(show_label=False, visible=False)
        
        #send_btn.click(fn=file, inputs=[input_file,input_checks], outputs=[output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
        next_button_freq.click(fn=freq, inputs=[output_file,input_checks], outputs=[output_plot,next_button_dist,next_button_peaks,next_button_topics])
        next_button_dist.click(fn=dist, inputs=[output_file,input_checks], outputs=[output_dist,next_button_peaks,next_button_topics])
        next_button_peaks.click(fn=peaks, inputs=[output_file,input_checks], outputs=[output_peaks,next_button_topics])
        next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
        send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=message)
        demo_btn.click(fn=showcase, inputs=[input_file], outputs=[message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])

        
demo.launch()