lunadebruyne commited on
Commit
fff91af
·
1 Parent(s): 7ac98e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -4
app.py CHANGED
@@ -7,7 +7,7 @@ from tqdm import tqdm
7
 
8
  import altair as alt
9
  import matplotlib.pyplot as plt
10
- import datetime
11
 
12
  from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
13
 
@@ -177,10 +177,44 @@ def freq(output_file, input_checks):
177
 
178
 
179
  def dist(output_file, input_checks):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
  data = pd.DataFrame({
181
- 'Date': ['1/1', '1/1', '1/1', '1/1', '1/1', '1/1', '2/1', '2/1', '2/1', '2/1', '2/1', '2/1', '3/1', '3/1', '3/1', '3/1', '3/1', '3/1'],
182
- 'Frequency': [3, 5, 1, 8, 2, 3, 4, 7, 1, 12, 4, 2, 3, 6, 3, 10, 3, 4],
183
- 'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness']})
184
 
185
  domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
186
  range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
 
7
 
8
  import altair as alt
9
  import matplotlib.pyplot as plt
10
+ from datetime import date, timedelta
11
 
12
  from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
13
 
 
177
 
178
 
179
  def dist(output_file, input_checks):
180
+ #data = pd.DataFrame({
181
+ #'Date': ['1/1', '1/1', '1/1', '1/1', '1/1', '1/1', '2/1', '2/1', '2/1', '2/1', '2/1', '2/1', '3/1', '3/1', '3/1', '3/1', '3/1', '3/1'],
182
+ #'Frequency': [3, 5, 1, 8, 2, 3, 4, 7, 1, 12, 4, 2, 3, 6, 3, 10, 3, 4],
183
+ #'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness']})
184
+
185
+ f = open("showcase/data.txt", 'r')
186
+ data = f.read().split("\n")
187
+ f.close()
188
+ data = [line.split("\t") for line in data[1:-1]]
189
+
190
+ freq_dict = {}
191
+ for line in data:
192
+ dat = str(date(2000+int(line[0].split("/")[2]), int(line[0].split("/")[1]), int(line[0].split("/")[0])))
193
+ if dat not in freq_dict.keys():
194
+ freq_dict[dat] = {}
195
+ if line[1] not in freq_dict[dat].keys():
196
+ freq_dict[dat][line[1]] = 1
197
+ else:
198
+ freq_dict[dat][line[1]] += 1
199
+ else:
200
+ if line[1] not in freq_dict[dat].keys():
201
+ freq_dict[dat][line[1]] = 1
202
+ else:
203
+ freq_dict[dat][line[1]] += 1
204
+
205
+ start_date = date(2000+int(data[0][0].split("/")[2]), int(data[0][0].split("/")[1]), int(data[0][0].split("/")[0]))
206
+ end_date = date(2000+int(data[-1][0].split("/")[2]), int(data[-1][0].split("/")[1]), int(data[-1][0].split("/")[0]))
207
+ delta = end_date - start_date # returns timedelta
208
+ date_range = [str(start_date + timedelta(days=i)) for i in range(delta.days + 1)]
209
+
210
+ dates = [dat for dat in date_range for i in range(6)]
211
+ frequency = [freq_dict[dat][emotion] if (dat in freq_dict.keys() and emotion in freq_dict[dat].keys()) else 0 for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
212
+ categories = [emotion for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
213
+
214
  data = pd.DataFrame({
215
+ 'Date': dates,
216
+ 'Frequency': frequency,
217
+ 'Emotion category': categories})
218
 
219
  domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
220
  range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']