Spaces:
Running
Running
Commit
·
c02823d
1
Parent(s):
6c96578
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import matplotlib.pyplot as plt
|
|
9 |
|
10 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
11 |
|
12 |
-
|
13 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
14 |
description_dataset = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
15 |
|
@@ -102,4 +102,43 @@ iface_dataset = gr.Interface(
|
|
102 |
|
103 |
iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"])
|
104 |
|
105 |
-
iface.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
11 |
|
12 |
+
"""
|
13 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
14 |
description_dataset = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
15 |
|
|
|
102 |
|
103 |
iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"])
|
104 |
|
105 |
+
iface.queue().launch()
|
106 |
+
"""
|
107 |
+
|
108 |
+
def inference_sentence(text):
|
109 |
+
output = "This sentence will be processed:\n" + text
|
110 |
+
return output
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
with gr.Blocks() as demo:
|
116 |
+
with gr.Tab("Sentence"):
|
117 |
+
gr.Markdown("""
|
118 |
+
# Demo EmotioNL
|
119 |
+
This demo allows you to analyse the emotion in a sentence.
|
120 |
+
""")
|
121 |
+
with gr.Row():
|
122 |
+
input = gr.Textbox(
|
123 |
+
label="Enter a sentence",
|
124 |
+
lines=1)
|
125 |
+
output = gr.Textbox()
|
126 |
+
with gr.Row():
|
127 |
+
send_btn = gr.Button("Send")
|
128 |
+
send_btn.click(fn=, inputs=input, outputs=output)
|
129 |
+
with gr.Tab("Dataset"):
|
130 |
+
gr.Markdown("""
|
131 |
+
# Demo EmotioNL
|
132 |
+
This demo allows you to analyse the emotion in a sentence.
|
133 |
+
""")
|
134 |
+
with gr.Row():
|
135 |
+
input = gr.Textbox(
|
136 |
+
label="Enter a sentence",
|
137 |
+
lines=1)
|
138 |
+
output = gr.Textbox()
|
139 |
+
with gr.Row():
|
140 |
+
send_btn = gr.Button("Send")
|
141 |
+
send_btn.click(fn=, inputs=input, outputs=output)
|
142 |
+
|
143 |
+
demo.launch()
|
144 |
+
|