Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,674 Bytes
cbcd78b ee68faf cbcd78b a32f02f 4530b74 52d8051 cbcd78b a32f02f 4530b74 3fac692 3ae1eb6 cbcd78b 0180738 cbcd78b 3fac692 cbcd78b 3fac692 0a5100e 3fac692 cbcd78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")
# Function to classify customer comments
# https://huggingface.co/docs/hub/spaces-zerogpu
@spaces.GPU
def classify_comments():
sentiments = []
categories = []
results = []
for comment in df['customer_comment']:
# Classify the sentiment first
sentiment = classifier(comment)[0]['label']
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: Product Experience, Customer Support, Price of Service, Other."
category = generator(prompt, max_length=30)[0]['generated_text']
categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = categories
return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False)
# Gradio Interface
with gr.Blocks() as nps:
gr.Markdown("# NPS Comment Categorization")
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
classify_btn.click(fn=classify_comments, outputs=output)
nps.launch()
|