ZennyKenny commited on
Commit
3fac692
Β·
verified Β·
1 Parent(s): ee68faf

add category output

Browse files
Files changed (1) hide show
  1. app.py +13 -7
app.py CHANGED
@@ -16,18 +16,24 @@ import os
16
  hf_api_key = os.getenv("API_KEY")
17
  login(token=hf_api_key)
18
 
19
- pipe = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
 
20
 
21
  # Function to classify customer comments
22
- @spaces.GPU
23
  def classify_comments():
 
 
24
  results = []
25
  for comment in df['customer_comment']:
26
- prompt = comment
27
- category = pipe(prompt)[0]['label']
28
- results.append(category)
29
- df['comment_category'] = results
30
- return df[['customer_comment', 'comment_category']].to_html(index=False)
 
 
 
 
31
 
32
  # Gradio Interface
33
  with gr.Blocks() as nps:
 
16
  hf_api_key = os.getenv("API_KEY")
17
  login(token=hf_api_key)
18
 
19
+ classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
20
+ generator = pipeline("text-generation", model="mrm8488/t5-base-finetuned-question-generation-ap")
21
 
22
  # Function to classify customer comments
 
23
  def classify_comments():
24
+ sentiments = []
25
+ categories = []
26
  results = []
27
  for comment in df['customer_comment']:
28
+ # Classify the sentiment first
29
+ sentiment = pipe(comment)[0]['label']
30
+ prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: Product Experience, Customer Support, Price of Service, Other."
31
+ category = generator(prompt, max_length=30)[0]['generated_text']
32
+ categories.append(category)
33
+ sentiments.append(sentiment)
34
+ df['comment_sentiment'] = sentiments
35
+ df['comment_category'] = categories
36
+ return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False)
37
 
38
  # Gradio Interface
39
  with gr.Blocks() as nps: