Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Load the dataset
|
6 |
+
DATASET_URL = 'https://huggingface.co/datasets/ZennyKenny/demo_customer_nps/resolve/main/customer_feedback_dataset.csv'
|
7 |
+
df = pd.read_csv(DATASET_URL)
|
8 |
+
|
9 |
+
# Initialize the model pipeline
|
10 |
+
pipe = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Base-2501")
|
11 |
+
|
12 |
+
# Function to classify customer comments
|
13 |
+
def classify_comments():
|
14 |
+
results = []
|
15 |
+
for comment in df['customer_comment']:
|
16 |
+
prompt = f"Classify this customer feedback: '{comment}' into one of five categories."
|
17 |
+
category = pipe(prompt, max_length=30)[0]['generated_text']
|
18 |
+
results.append(category)
|
19 |
+
df['comment_category'] = results
|
20 |
+
return df[['customer_comment', 'comment_category']].to_html(index=False)
|
21 |
+
|
22 |
+
# Gradio Interface
|
23 |
+
with gr.Blocks() as nps:
|
24 |
+
gr.Markdown("# NPS Comment Categorization")
|
25 |
+
classify_btn = gr.Button("Classify Comments")
|
26 |
+
output = gr.HTML()
|
27 |
+
|
28 |
+
classify_btn.click(fn=classify_comments, outputs=output)
|
29 |
+
|
30 |
+
nps.launch()
|