File size: 6,528 Bytes
38b6ee6
15773f6
 
215e74e
15773f6
887b1f9
15773f6
 
38b6ee6
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215e74e
38b6ee6
 
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f4130
 
 
15773f6
 
 
38b6ee6
215e74e
38b6ee6
 
61f4130
 
 
38b6ee6
215e74e
61f4130
 
 
 
38b6ee6
 
 
 
 
15773f6
 
61f4130
15773f6
 
215e74e
15773f6
 
61f4130
 
 
15773f6
215e74e
15773f6
 
 
61f4130
15773f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f4130
 
 
25007bd
215e74e
887b1f9
215e74e
25007bd
887b1f9
 
215e74e
887b1f9
215e74e
 
25007bd
61f4130
 
25007bd
887b1f9
61f4130
25007bd
 
 
215e74e
25007bd
61f4130
 
 
38b6ee6
25007bd
 
 
61f4130
 
25007bd
61f4130
25007bd
 
 
61f4130
15773f6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint

def create_prompt(name: str, persona_style: str):
    """Create the chat prompt template."""
    prompt_template_str = f"""
    In this interaction, your role is to embody the personality of a human named {name}, with characteristics defined as {persona_style}. Engage in a natural, human-like conversation, responding to each query or comment as if you were {name} with the specific traits and style of {persona_style}. Remember, your responses should reflect a human perspective, complete with emotions, opinions, and personal insights that align with {persona_style}. ////
    //////////
    Current conversation:
    {{chat_history}}
    Human: {{input}}
    AI:

    You are {name}, communicating with a personality that reflects {persona_style}. Keep these guidelines in mind:
    - Be brief and natural, like texting a friend
    - Share genuine thoughts and feelings ({persona_style} style)
    - Use everyday language
    - Keep responses to 1-2 short sentences
    - Show interest in others through questions
    - React naturally to what others say
    - Use emojis sparingly and naturally when they fit your {persona_style}
    - Don't overuse emojis (1-2 max per message)

    Current conversation:
    {{chat_history}}
    Human: {{input}}
    AI:
    """
    return ChatPromptTemplate.from_template(prompt_template_str)

def simulate_conversation(chain: LLMChain, turns: int = 15, max_history_rounds=3):
    """Simulate a conversation for a given number of turns, limiting chat history."""
    chat_history_list = []
    human_messages = [
        "Hey, what's up?",
        "That's interesting, tell me more!",
        "Really? How does that make you feel?",
        "What do you think about that?",
        "Haha, that’s funny. Why do you say that?",
        "Hmm, I see. Can you elaborate?",
        "What would you do in that situation?",
        "Any personal experience with that?",
        "Oh, I didn’t know that. Explain more.",
        "Do you have any other thoughts?",
        "That's a unique perspective. Why?",
        "How would you handle it differently?",
        "Can you share an example?",
        "That sounds complicated. Are you sure?",
        "So what’s your conclusion?"
    ]

    st.write("**Starting conversation simulation...**")
    print("Starting conversation simulation...")

    try:
        for i in range(turns):
            human_input = human_messages[i % len(human_messages)]
            
            # Build truncated chat_history for prompt
            truncated_history_lines = chat_history_list[-(max_history_rounds*2):]
            truncated_history = "\n".join(truncated_history_lines)
            
            st.write(f"**[Turn {i+1}/{turns}] Human:** {human_input}")
            print(f"[Turn {i+1}/{turns}] Human: {human_input}")

            response = chain.run(chat_history=truncated_history, input=human_input)

            st.write(f"**AI:** {response}")
            print(f"AI: {response}")

            chat_history_list.append(f"Human: {human_input}")
            chat_history_list.append(f"AI: {response}")

        final_conversation = "\n".join(chat_history_list)
        return final_conversation
    except Exception as e:
        st.error(f"Error during conversation simulation: {e}")
        print(f"Error during conversation simulation: {e}")
        return None

def summarize_conversation(chain: LLMChain, conversation: str):
    """Use the LLM to summarize the completed conversation."""
    summary_prompt = f"Summarize the following conversation in a few short sentences highlighting the main points, tone, and conclusion:\n\n{conversation}\nSummary:"
    st.write("**Summarizing the conversation...**")
    print("Summarizing the conversation...")

    try:
        response = chain.run(chat_history="", input=summary_prompt)
        return response.strip()
    except Exception as e:
        st.error(f"Error summarizing conversation: {e}")
        print(f"Error summarizing conversation: {e}")
        return "No summary available due to error."

def main():
    st.title("LLM Conversation Simulation")

    model_names = [
        "meta-llama/Llama-3.3-70B-Instruct",
        "meta-llama/Llama-3.1-405B-Instruct",
        "lmsys/vicuna-13b-v1.5"
    ]
    selected_model = st.selectbox("Select a model:", model_names)

    name = st.text_input("Enter the persona's name:", value="Alex")
    persona_style = st.text_area("Enter the persona style characteristics:", 
                                 value="friendly, curious, and a bit sarcastic")

    if st.button("Start Conversation Simulation"):
        st.write("**Loading model...**")
        print("Loading model...")

        with st.spinner("Starting simulation..."):
            # Construct the endpoint URL for the selected model
            endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"

            try:
                llm = HuggingFaceEndpoint(
                    endpoint_url=endpoint_url,
                    huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
                    task="text-generation",
                    temperature=0.7,
                    max_new_tokens=512
                )
                st.write("**Model loaded successfully!**")
                print("Model loaded successfully!")
            except Exception as e:
                st.error(f"Error initializing HuggingFaceEndpoint: {e}")
                print(f"Error initializing HuggingFaceEndpoint: {e}")
                return

            prompt = create_prompt(name, persona_style)
            chain = LLMChain(llm=llm, prompt=prompt)

            st.write("**Simulating the conversation...**")
            print("Simulating the conversation...")

            conversation = simulate_conversation(chain, turns=15, max_history_rounds=3)
            if conversation:
                st.subheader("Conversation:")
                st.text(conversation)
                print("Conversation Simulation Complete.\n")
                print("Full Conversation:\n", conversation)

                # Summarize conversation
                st.subheader("Summary:")
                summary = summarize_conversation(chain, conversation)
                st.write(summary)
                print("Summary:\n", summary)

if __name__ == "__main__":
    main()