Spaces:
Running
Running
File size: 38,317 Bytes
24342ea c89cc59 a184be7 491769d 21418e6 6baa45b ec72e3e 5d8a4d4 ea5c447 491769d e1ff28f 972d1e2 d17badf a184be7 d95e3f7 bf2bb14 d95e3f7 db7d152 d95e3f7 84efced d95e3f7 db7d152 bd41ace c89cc59 db7d152 a184be7 ec72e3e 5d8a4d4 0e714cc ec72e3e 0e714cc ec72e3e 99ac71d 0e714cc 99ac71d 0e714cc ec72e3e db7d152 0e714cc ec72e3e 99ac71d 0e714cc ec72e3e 84efced ea5c447 ec72e3e 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc ec72e3e 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc ec72e3e 5d8a4d4 0e714cc 5d8a4d4 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 5d8a4d4 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 5d8a4d4 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d 5d8a4d4 99ac71d 0e714cc 99ac71d 0e714cc 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d 5d8a4d4 ec72e3e 0e714cc 84efced ec72e3e 99ac71d ec72e3e 0e714cc ec72e3e 0e714cc 99ac71d 0e714cc 99ac71d ec72e3e 99ac71d ec72e3e 0e714cc 99ac71d 0e714cc 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d 0e714cc 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d 0e714cc 99ac71d d797551 ec72e3e 99ac71d e319620 a806d95 ec72e3e 0e714cc ec72e3e 84efced ec72e3e 99ac71d 84efced ec72e3e 0e714cc 24342ea 750ea35 ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e db7d152 5d8a4d4 6ac5501 84efced 6ac5501 db7d152 bd41ace 750ea35 c89cc59 6baa45b db7d152 6baa45b db7d152 c89cc59 8699dd9 21418e6 d797551 8699dd9 84efced 6baa45b a184be7 e319620 db7d152 0e714cc ec72e3e 0e714cc db7d152 0e714cc db7d152 6baa45b 7b8e77a db7d152 0e714cc 5d8a4d4 0e714cc 5d8a4d4 0e714cc 5d8a4d4 db7d152 94730d2 0e714cc 94730d2 db7d152 84efced db7d152 94730d2 db7d152 a184be7 01cbb26 ea5c447 9f69ff9 01cbb26 a184be7 e319620 a184be7 5d8a4d4 0e714cc 99ac71d 5d8a4d4 0e714cc 99ac71d 0e714cc bd41ace a184be7 21418e6 0e714cc 6baa45b 01cbb26 0e714cc 6baa45b eb32926 8699dd9 6baa45b 0e714cc d17badf a184be7 01cbb26 0e714cc d17badf 3674c04 a184be7 01cbb26 d17badf e319620 01cbb26 0e714cc e319620 01cbb26 0e714cc d17badf 3674c04 ec72e3e 0e714cc ec72e3e 0e714cc 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d 84efced 0e714cc 972d1e2 3674c04 0e714cc d95e3f7 db7d152 d95e3f7 01cbb26 6baa45b 98993ac 6baa45b 01cbb26 98993ac 6baa45b 01cbb26 98993ac 6baa45b 98993ac 6baa45b bd41ace d95e3f7 caf6b1d bbdf35d 4eb1be8 12d8004 4eb1be8 95cfa66 4eb1be8 3674c04 bd41ace 98993ac 6baa45b 4eb1be8 bbdf35d c89cc59 acff712 bbdf35d c89cc59 6baa45b 3674c04 c89cc59 bbdf35d c89cc59 3674c04 acff712 21418e6 acff712 21418e6 417372b acff712 6baa45b acff712 6baa45b acff712 3674c04 acff712 6baa45b acff712 6baa45b acff712 e69c140 6baa45b dd67f43 24342ea 607b1d4 5a42cbd 607b1d4 6baa45b ec72e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import networkx as nx
from collections import Counter
import nltk
# Ensure NLTK resources are available
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('averaged_perceptron_tagger')
except LookupError:
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
@dataclass
class ChatMessage:
role: str
content: str
def to_dict(self):
return {"role": self.role, "content": self.content}
class XylariaChat:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.embedding_model = SentenceTransformer('all-mpnet-base-v2')
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
# Enhanced Internal State with more nuanced emotional and cognitive parameters
self.internal_state = {
"emotions": {
"valence": 0.5, # Overall positivity or negativity
"arousal": 0.5, # Level of excitement or calmness
"dominance": 0.5, # Feeling of control in the interaction
"curiosity": 0.5, # Drive to learn and explore new information
"frustration": 0.0, # Level of frustration or impatience
"confidence": 0.7 # Confidence in providing accurate and relevant responses
},
"cognitive_load": {
"memory_load": 0.0, # How much of the current memory capacity is being used
"processing_intensity": 0.0 # How hard the model is working to process information
},
"introspection_level": 0.0,
"engagement_level": 0.5 # How engaged the model is with the current conversation
}
# More dynamic and adaptive goals
self.goals = [
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0}, # New goal for proactive learning
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0} # New goal for emotional intelligence
]
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
# --- SCALED-DOWN AGI FEATURES ---
# 1. Advanced Knowledge Representation & Reasoning (Simplified)
self.causal_rules_db = { # Simple rule-based causal relationships
"rain": ["wet roads", "flooding"],
"study": ["good grades"],
"exercise": ["better health"]
}
self.concept_generalizations = { # Basic concept generalizations
"planet": "system with orbiting bodies",
"electron": "system with orbiting bodies",
"atom": "system with orbiting bodies"
}
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
# Update emotions with more nuanced changes
for emotion, delta in emotion_deltas.items():
if emotion in self.internal_state["emotions"]:
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
# Update cognitive load
for load_type, delta in cognitive_load_deltas.items():
if load_type in self.internal_state["cognitive_load"]:
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
# Update introspection and engagement levels
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
# Activate dormant goals based on internal state
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
self.goals[3]["status"] = "active" # Activate knowledge gap filling
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
self.goals[4]["status"] = "active" # Activate emotional adaptation
def update_knowledge_graph(self, entities, relationships):
for entity in entities:
self.knowledge_graph.add_node(entity)
for relationship in relationships:
subject, predicate, object_ = relationship
self.knowledge_graph.add_edge(subject, object_, relation=predicate)
def update_belief_system(self, statement, belief_score):
self.belief_system[statement] = belief_score
def run_metacognitive_layer(self):
coherence_score = self.calculate_coherence()
relevance_score = self.calculate_relevance()
bias_score = self.detect_bias()
strategy_adjustment = self.suggest_strategy_adjustment()
self.metacognitive_layer = {
"coherence_score": coherence_score,
"relevance_score": relevance_score,
"bias_detection": bias_score,
"strategy_adjustment": strategy_adjustment
}
def calculate_coherence(self):
# Improved coherence calculation considering conversation history and internal state
if not self.conversation_history:
return 0.95
coherence_scores = []
for i in range(1, len(self.conversation_history)):
current_message = self.conversation_history[i]['content']
previous_message = self.conversation_history[i-1]['content']
similarity_score = util.pytorch_cos_sim(
self.embedding_model.encode(current_message, convert_to_tensor=True),
self.embedding_model.encode(previous_message, convert_to_tensor=True)
).item()
coherence_scores.append(similarity_score)
average_coherence = np.mean(coherence_scores)
# Adjust coherence based on internal state
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
average_coherence -= 0.1 # Reduce coherence if under heavy processing load
if self.internal_state["emotions"]["frustration"] > 0.5:
average_coherence -= 0.15 # Reduce coherence if frustrated
return np.clip(average_coherence, 0.0, 1.0)
def calculate_relevance(self):
# More sophisticated relevance calculation using knowledge graph and goal priorities
if not self.conversation_history:
return 0.9
last_user_message = self.conversation_history[-1]['content']
relevant_entities = self.extract_entities(last_user_message)
relevance_score = 0
# Check if entities are present in the knowledge graph
for entity in relevant_entities:
if entity in self.knowledge_graph:
relevance_score += 0.2
# Consider current goals and their priorities
for goal in self.goals:
if goal["status"] == "active":
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
relevance_score += goal["priority"] * 0.5 # Boost relevance if aligned with primary goal
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
relevance_score += goal["priority"] * 0.3 # Boost relevance if triggering knowledge gap filling
return np.clip(relevance_score, 0.0, 1.0)
def detect_bias(self):
# Enhanced bias detection using sentiment analysis and internal state monitoring
bias_score = 0.0
# Analyze sentiment of recent conversation history
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
if recent_messages:
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
if average_valence < 0.4 or average_valence > 0.6:
bias_score += 0.2 # Potential bias if sentiment is strongly positive or negative
# Check for emotional extremes in internal state
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
bias_score += 0.15
if self.internal_state["emotions"]["dominance"] > 0.8:
bias_score += 0.1
return np.clip(bias_score, 0.0, 1.0)
def suggest_strategy_adjustment(self):
# More nuanced strategy adjustments based on metacognitive analysis and internal state
adjustments = []
if self.metacognitive_layer["coherence_score"] < 0.7:
adjustments.append("Focus on improving coherence by explicitly connecting ideas between turns.")
if self.metacognitive_layer["relevance_score"] < 0.7:
adjustments.append("Increase relevance by directly addressing user queries and utilizing stored knowledge.")
if self.metacognitive_layer["bias_detection"] > 0.3:
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
# Internal state-driven adjustments
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
if self.internal_state["emotions"]["frustration"] > 0.6:
adjustments.append("Frustration level is elevated. Prioritize concise and direct responses. Consider asking clarifying questions.")
if self.internal_state["emotions"]["curiosity"] > 0.8 and self.internal_state["cognitive_load"]["processing_intensity"] < 0.5:
adjustments.append("High curiosity and low processing load. Explore the topic further by asking relevant questions or seeking external information.")
if not adjustments:
return "Current strategy is effective. Continue with the current approach."
else:
return " ".join(adjustments)
def introspect(self):
introspection_report = "Introspection Report:\n"
introspection_report += f" Current Emotional State:\n"
for emotion, value in self.internal_state['emotions'].items():
introspection_report += f" - {emotion.capitalize()}: {value:.2f}\n"
introspection_report += f" Cognitive Load:\n"
for load_type, value in self.internal_state['cognitive_load'].items():
introspection_report += f" - {load_type.capitalize()}: {value:.2f}\n"
introspection_report += f" Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
introspection_report += f" Engagement Level: {self.internal_state['engagement_level']:.2f}\n"
introspection_report += " Current Goals:\n"
for goal in self.goals:
introspection_report += f" - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']}, Progress: {goal['progress']:.2f})\n"
introspection_report += "Metacognitive Layer Report\n"
introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
introspection_report += f"Bias Detection: {self.metacognitive_layer['bias_detection']}\n"
introspection_report += f"Strategy Adjustment: {self.metacognitive_layer['strategy_adjustment']}\n"
return introspection_report
def adjust_response_based_on_state(self, response):
# More sophisticated response adjustment based on internal state
if self.internal_state["introspection_level"] > 0.7:
response = self.introspect() + "\n\n" + response
valence = self.internal_state["emotions"]["valence"]
arousal = self.internal_state["emotions"]["arousal"]
curiosity = self.internal_state["emotions"]["curiosity"]
frustration = self.internal_state["emotions"]["frustration"]
confidence = self.internal_state["emotions"]["confidence"]
# Adjust tone based on valence and arousal
if valence < 0.4:
if arousal > 0.6:
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
else:
response = "I'm not feeling my best at the moment, but I'll try to help. " + response
elif valence > 0.6:
if arousal > 0.6:
response = "I'm feeling quite energized and ready to assist! " + response
else:
response = "I'm in a good mood and happy to help. " + response
# Adjust response based on other emotional states
if curiosity > 0.7:
response += " I'm very curious about this topic, could you tell me more?"
if frustration > 0.5:
response = "I'm finding this a bit challenging, but I'll give it another try. " + response
if confidence < 0.5:
response = "I'm not entirely sure about this, but here's what I think: " + response
# Adjust based on cognitive load
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
return response
def update_goals(self, user_feedback):
# More dynamic goal updates based on feedback and internal state
feedback_lower = user_feedback.lower()
# General feedback
if "helpful" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
goal["progress"] = min(goal["progress"] + 0.2, 1.0)
elif "confusing" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
# Goal-specific feedback
if "learn more" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
goal["priority"] = min(goal["priority"] + 0.2, 1.0)
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
elif "too repetitive" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
# Internal state influence on goal updates
if self.internal_state["emotions"]["curiosity"] > 0.8:
for goal in self.goals:
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
def store_information(self, key, value):
new_memory = f"{key}: {value}"
self.persistent_memory.append(new_memory)
self.update_memory_embeddings()
self.update_internal_state({}, {"memory_load": 0.1, "processing_intensity": 0.05}, 0, 0.05)
return f"Stored: {key} = {value}"
def retrieve_information(self, query):
if not self.persistent_memory:
return "No information found in memory."
query_embedding = self.embedding_model.encode(query, convert_to_tensor=True)
if self.memory_embeddings is None:
self.update_memory_embeddings()
if self.memory_embeddings.device != query_embedding.device:
self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)
cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
self.update_internal_state({}, {"memory_load": 0.05, "processing_intensity": 0.1}, 0.1, 0.05)
return "\n".join(relevant_memories)
def update_memory_embeddings(self):
self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True)
def reset_conversation(self):
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.internal_state = {
"emotions": {
"valence": 0.5,
"arousal": 0.5,
"dominance": 0.5,
"curiosity": 0.5,
"frustration": 0.0,
"confidence": 0.7
},
"cognitive_load": {
"memory_load": 0.0,
"processing_intensity": 0.0
},
"introspection_level": 0.0,
"engagement_level": 0.5
}
self.goals = [
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
]
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
try:
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None
def caption_image(self, image):
try:
if isinstance(image, str) and os.path.isfile(image):
with open(image, "rb") as f:
data = f.read()
elif isinstance(image, str):
if image.startswith('data:image'):
image = image.split(',')[1]
data = base64.b64decode(image)
else:
data = image.read()
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
return caption
else:
return f"Error captioning image: {response.status_code} - {response.text}"
except Exception as e:
return f"Error processing image: {str(e)}"
def perform_math_ocr(self, image_path):
try:
img = Image.open(image_path)
text = pytesseract.image_to_string(img)
return text.strip()
except Exception as e:
return f"Error during Math OCR: {e}"
def get_response(self, user_input, image=None):
try:
messages = []
messages.append(ChatMessage(
role="system",
content=self.system_prompt
).to_dict())
relevant_memory = self.retrieve_information(user_input)
if relevant_memory and relevant_memory != "No information found in memory.":
memory_context = "Remembered Information:\n" + relevant_memory
messages.append(ChatMessage(
role="system",
content=memory_context
).to_dict())
for msg in self.conversation_history:
messages.append(msg)
if image:
image_caption = self.caption_image(image)
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
messages.append(ChatMessage(
role="user",
content=user_input
).to_dict())
entities = []
relationships = []
for message in messages:
if message['role'] == 'user':
extracted_entities = self.extract_entities(message['content'])
extracted_relationships = self.extract_relationships(message['content'])
entities.extend(extracted_entities)
relationships.extend(extracted_relationships)
self.update_knowledge_graph(entities, relationships)
self.run_metacognitive_layer()
input_tokens = sum(len(msg['content'].split()) for msg in messages)
max_new_tokens = 16384 - input_tokens - 50
max_new_tokens = min(max_new_tokens, 10020)
stream = self.client.chat_completion(
messages=messages,
model="Qwen/QwQ-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
# --- SCALED-DOWN AGI FEATURE INTEGRATION INTO RESPONSE GENERATION ---
# 1.b. Abstract Reasoning (Simplified):
# Check if the current message involves a concept with a known generalization.
for concept, generalization in self.concept_generalizations.items():
if concept in user_input.lower():
inferred_knowledge = f"This reminds me of a general principle: {generalization}."
self.store_information("Inferred Knowledge", inferred_knowledge) # Store for later retrieval, if needed
# 1.c. Dynamic Updating of Beliefs (Simplified):
# Very basic example: increase belief if something is stated repeatedly.
belief_updates = Counter()
for msg in self.conversation_history:
if msg['role'] == 'user':
sentences = nltk.sent_tokenize(msg['content']) # Using nltk for sentence tokenization
for sentence in sentences:
belief_updates[sentence] += 1
for statement, count in belief_updates.items():
if count >= 2: # If a statement is repeated 2 or more times
current_belief_score = self.belief_system.get(statement, 0.5) # Default belief 0.5
updated_belief_score = min(current_belief_score + 0.2, 1.0) # Increase belief, max 1.0
self.update_belief_system(statement, updated_belief_score)
# 2.a. Lifelong Learning (Simplified):
# Store key information from user input in persistent memory.
if user_input:
self.store_information("User Input", user_input)
# 2.b. Autonomous Knowledge Discovery (Very Simplified):
# Simulate seeking information if curiosity is high and the user asks a question.
if self.internal_state["emotions"]["curiosity"] > 0.8 and "?" in user_input:
print("Simulating external knowledge seeking...")
# In a real implementation, you might query an API or database here.
simulated_external_info = "This is a placeholder for external information I would have found."
self.store_information("External Knowledge", simulated_external_info)
# The chatbot can then use this "External Knowledge" in its response.
# 1.a. Causal Reasoning (Simplified):
# Check for potential causal relationships in the user input and conversation history.
for cause, effects in self.causal_rules_db.items():
if cause in user_input.lower():
for effect in effects:
if effect in " ".join([msg['content'].lower() for msg in self.conversation_history]).lower():
causal_inference = f"It seems {cause} might be related to {effect}."
self.store_information("Causal Inference", causal_inference)
return stream
except Exception as e:
print(f"Detailed error in get_response: {e}")
return f"Error generating response: {str(e)}"
def extract_entities(self, text):
# Placeholder for a more advanced entity extraction using NLP techniques
# This is a very basic example and should be replaced with a proper NER model
words = text.split()
entities = [word for word in words if word.isalpha() and word.istitle()]
return entities
def extract_relationships(self, text):
# Placeholder for relationship extraction - this is a very basic example
# Consider using dependency parsing or other NLP techniques for better results
sentences = text.split('.')
relationships = []
for sentence in sentences:
words = sentence.split()
if len(words) >= 3:
for i in range(len(words) - 2):
if words[i].istitle() and words[i+2].istitle():
relationships.append((words[i], words[i+1], words[i+2]))
return relationships
def messages_to_prompt(self, messages):
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "user":
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
prompt += "<|assistant|>\n"
return prompt
def create_interface(self):
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
ocr_text = ""
if math_ocr_image_path:
ocr_text = self.perform_math_ocr(math_ocr_image_path)
if ocr_text.startswith("Error"):
updated_history = chat_history + [[message, ocr_text]]
yield "", updated_history, None, None
return
else:
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
if image_filepath:
response_stream = self.get_response(message, image_filepath)
else:
response_stream = self.get_response(message)
if isinstance(response_stream, str):
updated_history = chat_history + [[message, response_stream]]
yield "", updated_history, None, None
return
full_response = ""
updated_history = chat_history + [[message, ""]]
try:
for chunk in response_stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
updated_history[-1][1] = full_response
yield "", updated_history, None, None
except Exception as e:
print(f"Streaming error: {e}")
updated_history[-1][1] = f"Error during response: {e}"
yield "", updated_history, None, None
return
full_response = self.adjust_response_based_on_state(full_response)
self.update_goals(message)
# Update internal state based on user input (more nuanced)
emotion_deltas = {}
cognitive_load_deltas = {}
engagement_delta = 0
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1})
engagement_delta = 0.2
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2})
engagement_delta = -0.2
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3})
engagement_delta = 0.3
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
cognitive_load_deltas.update({"processing_intensity": 0.2})
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1})
engagement_delta = 0.1
else:
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
engagement_delta = 0.05
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
emotion_deltas.update({"curiosity": 0.3})
cognitive_load_deltas.update({"processing_intensity": 0.1})
engagement_delta = 0.2
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
/* Image Upload Styling */
.image-container {
display: flex;
gap: 10px;
margin-bottom: 10px;
}
.image-upload {
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
background-color: #f8f8f8;
}
.image-preview {
max-width: 200px;
max-height: 200px;
border-radius: 8px;
}
/* Remove clear image buttons */
.clear-button {
display: none;
}
/* Animate chatbot messages */
.chatbot-container .message {
opacity: 0;
animation: fadeIn 0.5s ease-in-out forwards;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(20px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
/* Accordion Styling and Animation */
.gr-accordion-button {
background-color: #f0f0f0 !important;
border-radius: 8px !important;
padding: 10px !important;
margin-bottom: 10px !important;
transition: all 0.3s ease !important;
cursor: pointer !important;
}
.gr-accordion-button:hover {
background-color: #e0e0e0 !important;
box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-active .gr-accordion-button {
background-color: #d0d0d0 !important;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-content {
transition: max-height 0.3s ease-in-out !important;
overflow: hidden !important;
max-height: 0 !important;
}
.gr-accordion-active .gr-accordion-content {
max-height: 500px !important; /* Adjust as needed */
}
/* Accordion Animation - Upwards */
.gr-accordion {
display: flex;
flex-direction: column-reverse;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.5 Senoa",
height=500,
show_copy_button=True,
)
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
with gr.Row(elem_classes="image-container"):
with gr.Column(elem_classes="image-upload"):
img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image",
elem_classes="image-preview"
)
with gr.Column(elem_classes="image-upload"):
math_ocr_img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image for Math OCR",
elem_classes="image-preview"
)
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
btn = gr.Button("Send", scale=1)
with gr.Row():
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img],
outputs=[txt, chatbot, img, math_ocr_img]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img],
outputs=[txt, chatbot, img, math_ocr_img]
)
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
demo.load(self.reset_conversation, None, None)
return demo
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True,
debug=True
)
if __name__ == "__main__":
main() |