File size: 38,317 Bytes
24342ea
c89cc59
 
a184be7
491769d
 
21418e6
6baa45b
ec72e3e
 
 
5d8a4d4
ea5c447
 
 
 
 
 
 
 
 
 
491769d
 
 
 
 
e1ff28f
972d1e2
d17badf
 
a184be7
 
d95e3f7
bf2bb14
d95e3f7
db7d152
d95e3f7
84efced
d95e3f7
 
db7d152
bd41ace
c89cc59
db7d152
a184be7
ec72e3e
 
 
 
5d8a4d4
 
 
 
 
 
 
 
 
0e714cc
ec72e3e
 
0e714cc
 
 
 
 
 
ec72e3e
99ac71d
0e714cc
 
99ac71d
 
0e714cc
ec72e3e
db7d152
0e714cc
ec72e3e
99ac71d
 
 
0e714cc
 
ec72e3e
 
84efced
ea5c447
 
 
 
 
 
 
 
 
 
 
 
 
 
ec72e3e
99ac71d
0e714cc
99ac71d
 
 
 
0e714cc
99ac71d
 
 
 
0e714cc
ec72e3e
99ac71d
 
0e714cc
99ac71d
0e714cc
99ac71d
0e714cc
ec72e3e
5d8a4d4
0e714cc
 
 
 
 
5d8a4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e714cc
99ac71d
 
 
 
 
 
 
0e714cc
 
 
 
99ac71d
 
 
 
0e714cc
99ac71d
0e714cc
99ac71d
0e714cc
99ac71d
 
5d8a4d4
 
0e714cc
99ac71d
 
 
 
 
 
 
0e714cc
99ac71d
 
 
 
0e714cc
99ac71d
 
 
0e714cc
99ac71d
 
0e714cc
99ac71d
 
 
5d8a4d4
0e714cc
99ac71d
 
0e714cc
99ac71d
 
0e714cc
99ac71d
0e714cc
99ac71d
0e714cc
99ac71d
 
 
 
5d8a4d4
99ac71d
 
 
0e714cc
99ac71d
 
 
 
 
 
 
 
 
0e714cc
99ac71d
 
 
 
 
 
 
 
 
 
 
 
ec72e3e
 
99ac71d
 
 
 
 
 
ec72e3e
99ac71d
ec72e3e
 
99ac71d
5d8a4d4
 
 
 
 
ec72e3e
 
 
0e714cc
84efced
ec72e3e
 
 
 
99ac71d
 
 
ec72e3e
0e714cc
ec72e3e
 
 
 
 
 
 
 
 
 
 
0e714cc
99ac71d
 
 
 
 
 
 
0e714cc
99ac71d
 
 
ec72e3e
99ac71d
ec72e3e
0e714cc
99ac71d
 
0e714cc
99ac71d
ec72e3e
99ac71d
ec72e3e
99ac71d
 
 
 
 
 
 
0e714cc
99ac71d
 
 
 
 
 
ec72e3e
99ac71d
ec72e3e
99ac71d
 
0e714cc
99ac71d
 
 
 
 
d797551
 
ec72e3e
 
 
99ac71d
e319620
a806d95
ec72e3e
 
 
 
0e714cc
ec72e3e
 
 
 
 
 
 
 
84efced
ec72e3e
 
99ac71d
84efced
ec72e3e
 
0e714cc
24342ea
750ea35
 
ec72e3e
 
 
 
 
 
 
99ac71d
 
 
ec72e3e
99ac71d
 
 
 
 
 
ec72e3e
 
99ac71d
 
 
 
 
ec72e3e
db7d152
5d8a4d4
 
 
 
 
 
 
 
 
6ac5501
 
84efced
6ac5501
 
 
 
db7d152
bd41ace
750ea35
c89cc59
 
6baa45b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7d152
6baa45b
 
 
 
 
db7d152
c89cc59
 
 
8699dd9
 
 
21418e6
d797551
8699dd9
 
84efced
6baa45b
a184be7
e319620
db7d152
0e714cc
 
 
 
 
ec72e3e
 
 
0e714cc
 
 
 
db7d152
0e714cc
 
db7d152
6baa45b
 
7b8e77a
db7d152
0e714cc
 
 
 
 
5d8a4d4
 
0e714cc
5d8a4d4
 
 
 
 
 
0e714cc
5d8a4d4
 
db7d152
94730d2
0e714cc
 
 
94730d2
db7d152
 
84efced
db7d152
94730d2
db7d152
a184be7
 
01cbb26
ea5c447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f69ff9
01cbb26
a184be7
e319620
a184be7
 
5d8a4d4
0e714cc
 
99ac71d
 
 
5d8a4d4
 
0e714cc
 
99ac71d
 
 
 
 
 
 
 
 
0e714cc
 
 
 
 
 
 
 
 
 
 
bd41ace
a184be7
21418e6
0e714cc
6baa45b
 
 
 
01cbb26
0e714cc
6baa45b
 
eb32926
8699dd9
6baa45b
 
 
 
0e714cc
d17badf
a184be7
01cbb26
0e714cc
d17badf
3674c04
a184be7
01cbb26
d17badf
e319620
 
 
 
 
01cbb26
 
0e714cc
e319620
 
01cbb26
0e714cc
d17badf
3674c04
ec72e3e
0e714cc
ec72e3e
 
0e714cc
99ac71d
 
 
 
ec72e3e
99ac71d
 
ec72e3e
99ac71d
 
ec72e3e
99ac71d
 
ec72e3e
99ac71d
 
ec72e3e
99ac71d
 
 
 
 
 
ec72e3e
99ac71d
 
 
 
 
 
 
 
 
84efced
0e714cc
972d1e2
 
3674c04
0e714cc
 
 
d95e3f7
 
 
 
 
 
 
 
db7d152
 
d95e3f7
 
 
01cbb26
6baa45b
98993ac
 
 
 
 
6baa45b
 
 
 
 
 
 
 
 
 
01cbb26
98993ac
 
6baa45b
01cbb26
98993ac
 
 
6baa45b
98993ac
 
 
 
 
 
 
 
 
6baa45b
bd41ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95e3f7
caf6b1d
bbdf35d
4eb1be8
 
12d8004
4eb1be8
95cfa66
4eb1be8
3674c04
bd41ace
 
98993ac
 
 
 
 
 
 
 
 
 
 
 
 
 
6baa45b
4eb1be8
bbdf35d
c89cc59
acff712
bbdf35d
c89cc59
 
6baa45b
3674c04
c89cc59
bbdf35d
c89cc59
3674c04
acff712
 
21418e6
 
acff712
 
 
21418e6
 
417372b
 
acff712
6baa45b
acff712
6baa45b
 
acff712
3674c04
acff712
6baa45b
acff712
6baa45b
 
acff712
e69c140
6baa45b
 
dd67f43
24342ea
607b1d4
 
 
 
 
5a42cbd
607b1d4
6baa45b
 
ec72e3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import networkx as nx
from collections import Counter
import nltk

# Ensure NLTK resources are available
try:
    nltk.data.find('tokenizers/punkt')
    nltk.data.find('averaged_perceptron_tagger')
except LookupError:
    nltk.download('punkt')
    nltk.download('averaged_perceptron_tagger')

@dataclass
class ChatMessage:
    role: str
    content: str

    def to_dict(self):
        return {"role": self.role, "content": self.content}

class XylariaChat:
    def __init__(self):
        self.hf_token = os.getenv("HF_TOKEN")
        if not self.hf_token:
            raise ValueError("HuggingFace token not found in environment variables")

        self.client = InferenceClient(
            model="Qwen/QwQ-32B-Preview",
            api_key=self.hf_token
        )

        self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
        self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}

        self.conversation_history = []
        self.persistent_memory = []
        self.memory_embeddings = None
        self.embedding_model = SentenceTransformer('all-mpnet-base-v2')

        self.knowledge_graph = nx.DiGraph()
        self.belief_system = {}
        self.metacognitive_layer = {
            "coherence_score": 0.0,
            "relevance_score": 0.0,
            "bias_detection": 0.0,
            "strategy_adjustment": ""
        }
        
        # Enhanced Internal State with more nuanced emotional and cognitive parameters
        self.internal_state = {
            "emotions": {
                "valence": 0.5,  # Overall positivity or negativity
                "arousal": 0.5,  # Level of excitement or calmness
                "dominance": 0.5, # Feeling of control in the interaction
                "curiosity": 0.5, # Drive to learn and explore new information
                "frustration": 0.0, # Level of frustration or impatience
                "confidence": 0.7 # Confidence in providing accurate and relevant responses
            },
            "cognitive_load": {
                "memory_load": 0.0, # How much of the current memory capacity is being used
                "processing_intensity": 0.0 # How hard the model is working to process information
            },
            "introspection_level": 0.0,
            "engagement_level": 0.5 # How engaged the model is with the current conversation
        }

        # More dynamic and adaptive goals
        self.goals = [
            {"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
            {"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
            {"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
            {"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0}, # New goal for proactive learning
            {"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0} # New goal for emotional intelligence
        ]

        self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
        
        # --- SCALED-DOWN AGI FEATURES ---

        # 1. Advanced Knowledge Representation & Reasoning (Simplified)
        self.causal_rules_db = {  # Simple rule-based causal relationships
            "rain": ["wet roads", "flooding"],
            "study": ["good grades"],
            "exercise": ["better health"]
        }
        self.concept_generalizations = {  # Basic concept generalizations
            "planet": "system with orbiting bodies",
            "electron": "system with orbiting bodies",
            "atom": "system with orbiting bodies"
        }

    def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
        # Update emotions with more nuanced changes
        for emotion, delta in emotion_deltas.items():
            if emotion in self.internal_state["emotions"]:
                self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)

        # Update cognitive load
        for load_type, delta in cognitive_load_deltas.items():
            if load_type in self.internal_state["cognitive_load"]:
                self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)

        # Update introspection and engagement levels
        self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
        self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
        
        # Activate dormant goals based on internal state
        if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
            self.goals[3]["status"] = "active" # Activate knowledge gap filling
        if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
            self.goals[4]["status"] = "active" # Activate emotional adaptation

    def update_knowledge_graph(self, entities, relationships):
        for entity in entities:
            self.knowledge_graph.add_node(entity)
        for relationship in relationships:
            subject, predicate, object_ = relationship
            self.knowledge_graph.add_edge(subject, object_, relation=predicate)

    def update_belief_system(self, statement, belief_score):
        self.belief_system[statement] = belief_score

    def run_metacognitive_layer(self):
        coherence_score = self.calculate_coherence()
        relevance_score = self.calculate_relevance()
        bias_score = self.detect_bias()
        strategy_adjustment = self.suggest_strategy_adjustment()

        self.metacognitive_layer = {
            "coherence_score": coherence_score,
            "relevance_score": relevance_score,
            "bias_detection": bias_score,
            "strategy_adjustment": strategy_adjustment
        }
    
    def calculate_coherence(self):
        # Improved coherence calculation considering conversation history and internal state
        if not self.conversation_history:
            return 0.95

        coherence_scores = []
        for i in range(1, len(self.conversation_history)):
            current_message = self.conversation_history[i]['content']
            previous_message = self.conversation_history[i-1]['content']
            similarity_score = util.pytorch_cos_sim(
                self.embedding_model.encode(current_message, convert_to_tensor=True),
                self.embedding_model.encode(previous_message, convert_to_tensor=True)
            ).item()
            coherence_scores.append(similarity_score)

        average_coherence = np.mean(coherence_scores)

        # Adjust coherence based on internal state
        if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
            average_coherence -= 0.1  # Reduce coherence if under heavy processing load
        if self.internal_state["emotions"]["frustration"] > 0.5:
            average_coherence -= 0.15 # Reduce coherence if frustrated

        return np.clip(average_coherence, 0.0, 1.0)

    def calculate_relevance(self):
        # More sophisticated relevance calculation using knowledge graph and goal priorities
        if not self.conversation_history:
            return 0.9

        last_user_message = self.conversation_history[-1]['content']
        relevant_entities = self.extract_entities(last_user_message)
        relevance_score = 0

        # Check if entities are present in the knowledge graph
        for entity in relevant_entities:
            if entity in self.knowledge_graph:
                relevance_score += 0.2

        # Consider current goals and their priorities
        for goal in self.goals:
            if goal["status"] == "active":
                if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
                    relevance_score += goal["priority"] * 0.5 # Boost relevance if aligned with primary goal
                elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
                    if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
                        relevance_score += goal["priority"] * 0.3 # Boost relevance if triggering knowledge gap filling

        return np.clip(relevance_score, 0.0, 1.0)

    def detect_bias(self):
        # Enhanced bias detection using sentiment analysis and internal state monitoring
        bias_score = 0.0

        # Analyze sentiment of recent conversation history
        recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
        if recent_messages:
            average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
            if average_valence < 0.4 or average_valence > 0.6:
                bias_score += 0.2 # Potential bias if sentiment is strongly positive or negative

        # Check for emotional extremes in internal state
        if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
            bias_score += 0.15
        if self.internal_state["emotions"]["dominance"] > 0.8:
            bias_score += 0.1

        return np.clip(bias_score, 0.0, 1.0)

    def suggest_strategy_adjustment(self):
        # More nuanced strategy adjustments based on metacognitive analysis and internal state
        adjustments = []

        if self.metacognitive_layer["coherence_score"] < 0.7:
            adjustments.append("Focus on improving coherence by explicitly connecting ideas between turns.")
        if self.metacognitive_layer["relevance_score"] < 0.7:
            adjustments.append("Increase relevance by directly addressing user queries and utilizing stored knowledge.")
        if self.metacognitive_layer["bias_detection"] > 0.3:
            adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")

        # Internal state-driven adjustments
        if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
            adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
        if self.internal_state["emotions"]["frustration"] > 0.6:
            adjustments.append("Frustration level is elevated. Prioritize concise and direct responses. Consider asking clarifying questions.")
        if self.internal_state["emotions"]["curiosity"] > 0.8 and self.internal_state["cognitive_load"]["processing_intensity"] < 0.5:
            adjustments.append("High curiosity and low processing load. Explore the topic further by asking relevant questions or seeking external information.")

        if not adjustments:
            return "Current strategy is effective. Continue with the current approach."
        else:
            return " ".join(adjustments)
            
    def introspect(self):
        introspection_report = "Introspection Report:\n"
        introspection_report += f"  Current Emotional State:\n"
        for emotion, value in self.internal_state['emotions'].items():
            introspection_report += f"    - {emotion.capitalize()}: {value:.2f}\n"
        introspection_report += f"  Cognitive Load:\n"
        for load_type, value in self.internal_state['cognitive_load'].items():
            introspection_report += f"    - {load_type.capitalize()}: {value:.2f}\n"
        introspection_report += f"  Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
        introspection_report += f"  Engagement Level: {self.internal_state['engagement_level']:.2f}\n"
        introspection_report += "  Current Goals:\n"
        for goal in self.goals:
            introspection_report += f"    - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']}, Progress: {goal['progress']:.2f})\n"
        introspection_report += "Metacognitive Layer Report\n"
        introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
        introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
        introspection_report += f"Bias Detection: {self.metacognitive_layer['bias_detection']}\n"
        introspection_report += f"Strategy Adjustment: {self.metacognitive_layer['strategy_adjustment']}\n"
        return introspection_report

    def adjust_response_based_on_state(self, response):
        # More sophisticated response adjustment based on internal state
        if self.internal_state["introspection_level"] > 0.7:
            response = self.introspect() + "\n\n" + response

        valence = self.internal_state["emotions"]["valence"]
        arousal = self.internal_state["emotions"]["arousal"]
        curiosity = self.internal_state["emotions"]["curiosity"]
        frustration = self.internal_state["emotions"]["frustration"]
        confidence = self.internal_state["emotions"]["confidence"]

        # Adjust tone based on valence and arousal
        if valence < 0.4:
            if arousal > 0.6:
                response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
            else:
                response = "I'm not feeling my best at the moment, but I'll try to help. " + response
        elif valence > 0.6:
            if arousal > 0.6:
                response = "I'm feeling quite energized and ready to assist! " + response
            else:
                response = "I'm in a good mood and happy to help. " + response

        # Adjust response based on other emotional states
        if curiosity > 0.7:
            response += " I'm very curious about this topic, could you tell me more?"
        if frustration > 0.5:
            response = "I'm finding this a bit challenging, but I'll give it another try. " + response
        if confidence < 0.5:
            response = "I'm not entirely sure about this, but here's what I think: " + response

        # Adjust based on cognitive load
        if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
            response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response

        return response

    def update_goals(self, user_feedback):
        # More dynamic goal updates based on feedback and internal state
        feedback_lower = user_feedback.lower()

        # General feedback
        if "helpful" in feedback_lower:
            for goal in self.goals:
                if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
                    goal["priority"] = min(goal["priority"] + 0.1, 1.0)
                    goal["progress"] = min(goal["progress"] + 0.2, 1.0)
        elif "confusing" in feedback_lower:
            for goal in self.goals:
                if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
                    goal["priority"] = max(goal["priority"] - 0.1, 0.0)
                    goal["progress"] = max(goal["progress"] - 0.2, 0.0)
        
        # Goal-specific feedback
        if "learn more" in feedback_lower:
            for goal in self.goals:
                if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
                    goal["priority"] = min(goal["priority"] + 0.2, 1.0)
                    goal["progress"] = min(goal["progress"] + 0.1, 1.0)
        elif "too repetitive" in feedback_lower:
            for goal in self.goals:
                if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
                    goal["priority"] = max(goal["priority"] - 0.1, 0.0)
                    goal["progress"] = max(goal["progress"] - 0.2, 0.0)
        
        # Internal state influence on goal updates
        if self.internal_state["emotions"]["curiosity"] > 0.8:
            for goal in self.goals:
                if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
                    goal["priority"] = min(goal["priority"] + 0.1, 1.0)
                    goal["progress"] = min(goal["progress"] + 0.1, 1.0)

    def store_information(self, key, value):
        new_memory = f"{key}: {value}"
        self.persistent_memory.append(new_memory)
        self.update_memory_embeddings()
        self.update_internal_state({}, {"memory_load": 0.1, "processing_intensity": 0.05}, 0, 0.05)
        return f"Stored: {key} = {value}"

    def retrieve_information(self, query):
        if not self.persistent_memory:
            return "No information found in memory."

        query_embedding = self.embedding_model.encode(query, convert_to_tensor=True)

        if self.memory_embeddings is None:
            self.update_memory_embeddings()

        if self.memory_embeddings.device != query_embedding.device:
            self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)

        cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
        top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))

        relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
        self.update_internal_state({}, {"memory_load": 0.05, "processing_intensity": 0.1}, 0.1, 0.05)
        return "\n".join(relevant_memories)

    def update_memory_embeddings(self):
        self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True)

    def reset_conversation(self):
        self.conversation_history = []
        self.persistent_memory = []
        self.memory_embeddings = None
        self.internal_state = {
            "emotions": {
                "valence": 0.5,
                "arousal": 0.5,
                "dominance": 0.5,
                "curiosity": 0.5,
                "frustration": 0.0,
                "confidence": 0.7
            },
            "cognitive_load": {
                "memory_load": 0.0,
                "processing_intensity": 0.0
            },
            "introspection_level": 0.0,
            "engagement_level": 0.5
        }
        self.goals = [
            {"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
            {"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
            {"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
            {"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
            {"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
        ]

        self.knowledge_graph = nx.DiGraph()
        self.belief_system = {}
        self.metacognitive_layer = {
            "coherence_score": 0.0,
            "relevance_score": 0.0,
            "bias_detection": 0.0,
            "strategy_adjustment": ""
        }

        try:
            self.client = InferenceClient(
                model="Qwen/QwQ-32B-Preview",
                api_key=self.hf_token
            )
        except Exception as e:
            print(f"Error resetting API client: {e}")

        return None

    def caption_image(self, image):
        try:
            if isinstance(image, str) and os.path.isfile(image):
                with open(image, "rb") as f:
                    data = f.read()
            elif isinstance(image, str):
                if image.startswith('data:image'):
                    image = image.split(',')[1]
                data = base64.b64decode(image)
            else:
                data = image.read()

            response = requests.post(
                self.image_api_url,
                headers=self.image_api_headers,
                data=data
            )

            if response.status_code == 200:
                caption = response.json()[0].get('generated_text', 'No caption generated')
                return caption
            else:
                return f"Error captioning image: {response.status_code} - {response.text}"

        except Exception as e:
            return f"Error processing image: {str(e)}"

    def perform_math_ocr(self, image_path):
        try:
            img = Image.open(image_path)
            text = pytesseract.image_to_string(img)
            return text.strip()
        except Exception as e:
            return f"Error during Math OCR: {e}"
    
    def get_response(self, user_input, image=None):
        try:
            messages = []

            messages.append(ChatMessage(
                role="system",
                content=self.system_prompt
            ).to_dict())

            relevant_memory = self.retrieve_information(user_input)
            if relevant_memory and relevant_memory != "No information found in memory.":
                memory_context = "Remembered Information:\n" + relevant_memory
                messages.append(ChatMessage(
                    role="system",
                    content=memory_context
                ).to_dict())

            for msg in self.conversation_history:
                messages.append(msg)

            if image:
                image_caption = self.caption_image(image)
                user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"

            messages.append(ChatMessage(
                role="user",
                content=user_input
            ).to_dict())
            
            entities = []
            relationships = []

            for message in messages:
                if message['role'] == 'user':
                    extracted_entities = self.extract_entities(message['content'])
                    extracted_relationships = self.extract_relationships(message['content'])
                    entities.extend(extracted_entities)
                    relationships.extend(extracted_relationships)
            
            self.update_knowledge_graph(entities, relationships)
            self.run_metacognitive_layer()

            input_tokens = sum(len(msg['content'].split()) for msg in messages)
            max_new_tokens = 16384 - input_tokens - 50

            max_new_tokens = min(max_new_tokens, 10020)

            stream = self.client.chat_completion(
                messages=messages,
                model="Qwen/QwQ-32B-Preview",
                temperature=0.7,
                max_tokens=max_new_tokens,
                top_p=0.9,
                stream=True
            )
            
             # --- SCALED-DOWN AGI FEATURE INTEGRATION INTO RESPONSE GENERATION ---

            # 1.b. Abstract Reasoning (Simplified):
            # Check if the current message involves a concept with a known generalization.
            for concept, generalization in self.concept_generalizations.items():
                if concept in user_input.lower():
                    inferred_knowledge = f"This reminds me of a general principle: {generalization}."
                    self.store_information("Inferred Knowledge", inferred_knowledge)  # Store for later retrieval, if needed
            
             # 1.c. Dynamic Updating of Beliefs (Simplified):
            # Very basic example: increase belief if something is stated repeatedly.
            belief_updates = Counter()
            for msg in self.conversation_history:
                if msg['role'] == 'user':
                    sentences = nltk.sent_tokenize(msg['content']) # Using nltk for sentence tokenization
                    for sentence in sentences:
                        belief_updates[sentence] += 1

            for statement, count in belief_updates.items():
                if count >= 2:  # If a statement is repeated 2 or more times
                    current_belief_score = self.belief_system.get(statement, 0.5) # Default belief 0.5
                    updated_belief_score = min(current_belief_score + 0.2, 1.0) # Increase belief, max 1.0
                    self.update_belief_system(statement, updated_belief_score)
            
             # 2.a. Lifelong Learning (Simplified):
            # Store key information from user input in persistent memory.
            if user_input:
                self.store_information("User Input", user_input)

            # 2.b. Autonomous Knowledge Discovery (Very Simplified):
            # Simulate seeking information if curiosity is high and the user asks a question.
            if self.internal_state["emotions"]["curiosity"] > 0.8 and "?" in user_input:
                print("Simulating external knowledge seeking...")
                # In a real implementation, you might query an API or database here.
                simulated_external_info = "This is a placeholder for external information I would have found."
                self.store_information("External Knowledge", simulated_external_info)
                # The chatbot can then use this "External Knowledge" in its response.
            
            # 1.a. Causal Reasoning (Simplified):
            # Check for potential causal relationships in the user input and conversation history.
            for cause, effects in self.causal_rules_db.items():
                if cause in user_input.lower():
                    for effect in effects:
                        if effect in " ".join([msg['content'].lower() for msg in self.conversation_history]).lower():
                            causal_inference = f"It seems {cause} might be related to {effect}."
                            self.store_information("Causal Inference", causal_inference)
            
            return stream
        
        except Exception as e:
            print(f"Detailed error in get_response: {e}")
            return f"Error generating response: {str(e)}"

    def extract_entities(self, text):
        # Placeholder for a more advanced entity extraction using NLP techniques
        # This is a very basic example and should be replaced with a proper NER model
        words = text.split()
        entities = [word for word in words if word.isalpha() and word.istitle()]
        return entities

    def extract_relationships(self, text):
        # Placeholder for relationship extraction - this is a very basic example
        # Consider using dependency parsing or other NLP techniques for better results
        sentences = text.split('.')
        relationships = []
        for sentence in sentences:
            words = sentence.split()
            if len(words) >= 3:
                for i in range(len(words) - 2):
                    if words[i].istitle() and words[i+2].istitle():
                        relationships.append((words[i], words[i+1], words[i+2]))
        return relationships
    def messages_to_prompt(self, messages):
        prompt = ""
        for msg in messages:
            if msg["role"] == "system":
                prompt += f"<|system|>\n{msg['content']}<|end|>\n"
            elif msg["role"] == "user":
                prompt += f"<|user|>\n{msg['content']}<|end|>\n"
            elif msg["role"] == "assistant":
                prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
        prompt += "<|assistant|>\n"
        return prompt

    def create_interface(self):
        def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
            
            ocr_text = ""
            if math_ocr_image_path:
                ocr_text = self.perform_math_ocr(math_ocr_image_path)
                if ocr_text.startswith("Error"):
                    updated_history = chat_history + [[message, ocr_text]]
                    yield "", updated_history, None, None
                    return
                else:
                    message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"

            if image_filepath:
                response_stream = self.get_response(message, image_filepath)
            else:
                response_stream = self.get_response(message)
                

            if isinstance(response_stream, str):
                updated_history = chat_history + [[message, response_stream]]
                yield "", updated_history, None, None
                return

            full_response = ""
            updated_history = chat_history + [[message, ""]]

            try:
                for chunk in response_stream:
                    if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
                        chunk_content = chunk.choices[0].delta.content
                        full_response += chunk_content
                        
                        updated_history[-1][1] = full_response
                        yield "", updated_history, None, None
            except Exception as e:
                print(f"Streaming error: {e}")
                updated_history[-1][1] = f"Error during response: {e}"
                yield "", updated_history, None, None
                return

            full_response = self.adjust_response_based_on_state(full_response)

            self.update_goals(message)

            # Update internal state based on user input (more nuanced)
            emotion_deltas = {}
            cognitive_load_deltas = {}
            engagement_delta = 0

            if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
                emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1})
                engagement_delta = -0.1
            elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
                emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1})
                engagement_delta = 0.2
            elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
                emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2})
                engagement_delta = -0.2
            elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
                emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2})
                engagement_delta = -0.1
            elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
                emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3})
                engagement_delta = 0.3
            elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
                cognitive_load_deltas.update({"processing_intensity": 0.2})
                emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1})
                engagement_delta = 0.1
            else:
                emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
                engagement_delta = 0.05
            
            if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
                emotion_deltas.update({"curiosity": 0.3})
                cognitive_load_deltas.update({"processing_intensity": 0.1})
                engagement_delta = 0.2
                
            self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
            

            self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
            self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())

            if len(self.conversation_history) > 10:
                self.conversation_history = self.conversation_history[-10:]

        custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
        body, .gradio-container {
            font-family: 'Inter', sans-serif !important;
        }
        .chatbot-container .message {
            font-family: 'Inter', sans-serif !important;
        }
        .gradio-container input,
        .gradio-container textarea,
        .gradio-container button {
            font-family: 'Inter', sans-serif !important;
        }
        /* Image Upload Styling */
        .image-container {
            display: flex;
            gap: 10px;
            margin-bottom: 10px;
        }
        .image-upload {
            border: 1px solid #ccc;
            border-radius: 8px;
            padding: 10px;
            background-color: #f8f8f8;
        }
        .image-preview {
            max-width: 200px;
            max-height: 200px;
            border-radius: 8px;
        }
        /* Remove clear image buttons */
        .clear-button {
            display: none;
        }
        /* Animate chatbot messages */
        .chatbot-container .message {
            opacity: 0;
            animation: fadeIn 0.5s ease-in-out forwards;
        }
        @keyframes fadeIn {
            from {
                opacity: 0;
                transform: translateY(20px);
            }
            to {
                opacity: 1;
                transform: translateY(0);
            }
        }
        /* Accordion Styling and Animation */
        .gr-accordion-button {
            background-color: #f0f0f0 !important;
            border-radius: 8px !important;
            padding: 10px !important;
            margin-bottom: 10px !important;
            transition: all 0.3s ease !important;
            cursor: pointer !important;
        }
        .gr-accordion-button:hover {
            background-color: #e0e0e0 !important;
            box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.1) !important;
        }
        .gr-accordion-active .gr-accordion-button {
            background-color: #d0d0d0 !important;
            box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1) !important;
        }
        .gr-accordion-content {
            transition: max-height 0.3s ease-in-out !important;
            overflow: hidden !important;
            max-height: 0 !important;
        }
        .gr-accordion-active .gr-accordion-content {
            max-height: 500px !important; /* Adjust as needed */
        }
        /* Accordion Animation - Upwards */
        .gr-accordion {
            display: flex;
            flex-direction: column-reverse;
        }
        """

        with gr.Blocks(theme='soft', css=custom_css) as demo:
            with gr.Column():
                chatbot = gr.Chatbot(
                    label="Xylaria 1.5 Senoa",
                    height=500,
                    show_copy_button=True,
                )

                with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
                    with gr.Row(elem_classes="image-container"):
                        with gr.Column(elem_classes="image-upload"):
                            img = gr.Image(
                                sources=["upload", "webcam"],
                                type="filepath",
                                label="Upload Image",
                                elem_classes="image-preview"
                            )
                        with gr.Column(elem_classes="image-upload"):
                            math_ocr_img = gr.Image(
                                sources=["upload", "webcam"],
                                type="filepath",
                                label="Upload Image for Math OCR",
                                elem_classes="image-preview"
                            )

                with gr.Row():
                    with gr.Column(scale=4):
                        txt = gr.Textbox(
                            show_label=False,
                            placeholder="Type your message...",
                            container=False
                        )
                    btn = gr.Button("Send", scale=1)

                with gr.Row():
                    clear = gr.Button("Clear Conversation")
                    clear_memory = gr.Button("Clear Memory")

                btn.click(
                    fn=streaming_response,
                    inputs=[txt, chatbot, img, math_ocr_img],
                    outputs=[txt, chatbot, img, math_ocr_img]
                )
                txt.submit(
                    fn=streaming_response,
                    inputs=[txt, chatbot, img, math_ocr_img],
                    outputs=[txt, chatbot, img, math_ocr_img]
                )

                clear.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[chatbot],
                    queue=False
                )

                clear_memory.click(
                    fn=self.reset_conversation,
                    inputs=None,
                    outputs=[chatbot],
                    queue=False
                )

                demo.load(self.reset_conversation, None, None)

        return demo

def main():
    chat = XylariaChat()
    interface = chat.create_interface()
    interface.launch(
        share=True,
        debug=True
    )

if __name__ == "__main__":
    main()