Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ from sentence_transformers import SentenceTransformer, util
|
|
10 |
import torch
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
13 |
-
import time
|
14 |
|
15 |
@dataclass
|
16 |
class ChatMessage:
|
@@ -48,61 +47,67 @@ class XylariaChat:
|
|
48 |
"strategy_adjustment": ""
|
49 |
}
|
50 |
|
|
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
-
"valence": 0.5,
|
54 |
-
"arousal": 0.5,
|
55 |
-
"dominance": 0.5,
|
56 |
-
"curiosity": 0.5,
|
57 |
-
"frustration": 0.0,
|
58 |
-
"confidence": 0.7
|
59 |
},
|
60 |
"cognitive_load": {
|
61 |
-
"memory_load": 0.0,
|
62 |
-
"processing_intensity": 0.0
|
63 |
},
|
64 |
"introspection_level": 0.0,
|
65 |
-
"engagement_level": 0.5
|
66 |
}
|
67 |
|
|
|
68 |
self.goals = [
|
69 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
70 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
71 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
72 |
-
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
73 |
-
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
74 |
]
|
75 |
|
76 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
77 |
|
78 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
|
|
79 |
for emotion, delta in emotion_deltas.items():
|
80 |
if emotion in self.internal_state["emotions"]:
|
81 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
82 |
|
|
|
83 |
for load_type, delta in cognitive_load_deltas.items():
|
84 |
if load_type in self.internal_state["cognitive_load"]:
|
85 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
86 |
|
|
|
87 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
88 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
89 |
|
|
|
90 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
91 |
-
self.goals[3]["status"] = "active"
|
92 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
93 |
-
self.goals[4]["status"] = "active"
|
94 |
|
95 |
def update_knowledge_graph(self, entities, relationships):
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
def update_belief_system(self, statement, belief_score):
|
101 |
-
# Optimize: Potentially use a more efficient data structure if this grows large
|
102 |
self.belief_system[statement] = belief_score
|
103 |
|
104 |
def run_metacognitive_layer(self):
|
105 |
-
# Optimize: Calculate these only when necessary, not every turn
|
106 |
coherence_score = self.calculate_coherence()
|
107 |
relevance_score = self.calculate_relevance()
|
108 |
bias_score = self.detect_bias()
|
@@ -116,6 +121,7 @@ class XylariaChat:
|
|
116 |
}
|
117 |
|
118 |
def calculate_coherence(self):
|
|
|
119 |
if not self.conversation_history:
|
120 |
return 0.95
|
121 |
|
@@ -123,24 +129,24 @@ class XylariaChat:
|
|
123 |
for i in range(1, len(self.conversation_history)):
|
124 |
current_message = self.conversation_history[i]['content']
|
125 |
previous_message = self.conversation_history[i-1]['content']
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
similarity_score = util.pytorch_cos_sim(current_embedding, previous_embedding).item()
|
132 |
coherence_scores.append(similarity_score)
|
133 |
|
134 |
average_coherence = np.mean(coherence_scores)
|
135 |
|
|
|
136 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
137 |
-
average_coherence -= 0.1
|
138 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
139 |
-
average_coherence -= 0.15
|
140 |
|
141 |
return np.clip(average_coherence, 0.0, 1.0)
|
142 |
|
143 |
def calculate_relevance(self):
|
|
|
144 |
if not self.conversation_history:
|
145 |
return 0.9
|
146 |
|
@@ -148,31 +154,34 @@ class XylariaChat:
|
|
148 |
relevant_entities = self.extract_entities(last_user_message)
|
149 |
relevance_score = 0
|
150 |
|
|
|
151 |
for entity in relevant_entities:
|
152 |
if entity in self.knowledge_graph:
|
153 |
relevance_score += 0.2
|
154 |
|
|
|
155 |
for goal in self.goals:
|
156 |
if goal["status"] == "active":
|
157 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
158 |
-
relevance_score += goal["priority"] * 0.5
|
159 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
160 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
161 |
-
relevance_score += goal["priority"] * 0.3
|
162 |
|
163 |
return np.clip(relevance_score, 0.0, 1.0)
|
164 |
|
165 |
def detect_bias(self):
|
|
|
166 |
bias_score = 0.0
|
167 |
|
|
|
168 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
169 |
if recent_messages:
|
170 |
-
|
171 |
-
recent_embeddings = self.embedding_model.encode(recent_messages, convert_to_tensor=True, show_progress_bar=False)
|
172 |
-
average_valence = recent_embeddings.mean(axis=0).mean().item()
|
173 |
if average_valence < 0.4 or average_valence > 0.6:
|
174 |
-
bias_score += 0.2
|
175 |
|
|
|
176 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
177 |
bias_score += 0.15
|
178 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
@@ -181,6 +190,7 @@ class XylariaChat:
|
|
181 |
return np.clip(bias_score, 0.0, 1.0)
|
182 |
|
183 |
def suggest_strategy_adjustment(self):
|
|
|
184 |
adjustments = []
|
185 |
|
186 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
@@ -190,6 +200,7 @@ class XylariaChat:
|
|
190 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
191 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
192 |
|
|
|
193 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
194 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
195 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
@@ -203,7 +214,6 @@ class XylariaChat:
|
|
203 |
return " ".join(adjustments)
|
204 |
|
205 |
def introspect(self):
|
206 |
-
# Optimize: Potentially reduce the frequency of detailed introspection
|
207 |
introspection_report = "Introspection Report:\n"
|
208 |
introspection_report += f" Current Emotional State:\n"
|
209 |
for emotion, value in self.internal_state['emotions'].items():
|
@@ -224,6 +234,7 @@ class XylariaChat:
|
|
224 |
return introspection_report
|
225 |
|
226 |
def adjust_response_based_on_state(self, response):
|
|
|
227 |
if self.internal_state["introspection_level"] > 0.7:
|
228 |
response = self.introspect() + "\n\n" + response
|
229 |
|
@@ -233,6 +244,7 @@ class XylariaChat:
|
|
233 |
frustration = self.internal_state["emotions"]["frustration"]
|
234 |
confidence = self.internal_state["emotions"]["confidence"]
|
235 |
|
|
|
236 |
if valence < 0.4:
|
237 |
if arousal > 0.6:
|
238 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
@@ -244,6 +256,7 @@ class XylariaChat:
|
|
244 |
else:
|
245 |
response = "I'm in a good mood and happy to help. " + response
|
246 |
|
|
|
247 |
if curiosity > 0.7:
|
248 |
response += " I'm very curious about this topic, could you tell me more?"
|
249 |
if frustration > 0.5:
|
@@ -251,14 +264,17 @@ class XylariaChat:
|
|
251 |
if confidence < 0.5:
|
252 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
253 |
|
|
|
254 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
255 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
256 |
|
257 |
return response
|
258 |
|
259 |
def update_goals(self, user_feedback):
|
|
|
260 |
feedback_lower = user_feedback.lower()
|
261 |
|
|
|
262 |
if "helpful" in feedback_lower:
|
263 |
for goal in self.goals:
|
264 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
@@ -270,6 +286,7 @@ class XylariaChat:
|
|
270 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
271 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
272 |
|
|
|
273 |
if "learn more" in feedback_lower:
|
274 |
for goal in self.goals:
|
275 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
@@ -281,6 +298,7 @@ class XylariaChat:
|
|
281 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
282 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
283 |
|
|
|
284 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
285 |
for goal in self.goals:
|
286 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
@@ -298,7 +316,7 @@ class XylariaChat:
|
|
298 |
if not self.persistent_memory:
|
299 |
return "No information found in memory."
|
300 |
|
301 |
-
query_embedding = self.embedding_model.encode(query, convert_to_tensor=True
|
302 |
|
303 |
if self.memory_embeddings is None:
|
304 |
self.update_memory_embeddings()
|
@@ -306,7 +324,6 @@ class XylariaChat:
|
|
306 |
if self.memory_embeddings.device != query_embedding.device:
|
307 |
self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)
|
308 |
|
309 |
-
# Optimize: Use faster similarity calculation if possible
|
310 |
cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
|
311 |
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
|
312 |
|
@@ -315,8 +332,7 @@ class XylariaChat:
|
|
315 |
return "\n".join(relevant_memories)
|
316 |
|
317 |
def update_memory_embeddings(self):
|
318 |
-
|
319 |
-
self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True, show_progress_bar=False)
|
320 |
|
321 |
def reset_conversation(self):
|
322 |
self.conversation_history = []
|
@@ -377,7 +393,6 @@ class XylariaChat:
|
|
377 |
else:
|
378 |
data = image.read()
|
379 |
|
380 |
-
# Optimize: Consider caching or reusing requests session
|
381 |
response = requests.post(
|
382 |
self.image_api_url,
|
383 |
headers=self.image_api_headers,
|
@@ -396,7 +411,6 @@ class XylariaChat:
|
|
396 |
def perform_math_ocr(self, image_path):
|
397 |
try:
|
398 |
img = Image.open(image_path)
|
399 |
-
# Optimize: Consider resizing or preprocessing the image for faster OCR
|
400 |
text = pytesseract.image_to_string(img)
|
401 |
return text.strip()
|
402 |
except Exception as e:
|
@@ -405,39 +419,49 @@ class XylariaChat:
|
|
405 |
def get_response(self, user_input, image=None):
|
406 |
try:
|
407 |
messages = []
|
408 |
-
messages.append(ChatMessage(role="system", content=self.system_prompt).to_dict())
|
409 |
|
410 |
-
|
|
|
|
|
|
|
|
|
411 |
relevant_memory = self.retrieve_information(user_input)
|
412 |
if relevant_memory and relevant_memory != "No information found in memory.":
|
413 |
memory_context = "Remembered Information:\n" + relevant_memory
|
414 |
-
messages.append(ChatMessage(
|
|
|
|
|
|
|
415 |
|
416 |
-
|
|
|
417 |
|
418 |
if image:
|
419 |
image_caption = self.caption_image(image)
|
420 |
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
|
421 |
|
422 |
-
messages.append(ChatMessage(
|
423 |
-
|
424 |
-
|
|
|
|
|
425 |
entities = []
|
426 |
relationships = []
|
|
|
427 |
for message in messages:
|
428 |
if message['role'] == 'user':
|
429 |
extracted_entities = self.extract_entities(message['content'])
|
430 |
extracted_relationships = self.extract_relationships(message['content'])
|
431 |
entities.extend(extracted_entities)
|
432 |
relationships.extend(extracted_relationships)
|
433 |
-
|
434 |
self.update_knowledge_graph(entities, relationships)
|
435 |
self.run_metacognitive_layer()
|
436 |
|
437 |
-
# Optimize: Dynamically adjust max_new_tokens based on context length
|
438 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
439 |
-
max_new_tokens =
|
440 |
-
|
|
|
441 |
|
442 |
stream = self.client.chat_completion(
|
443 |
messages=messages,
|
@@ -455,13 +479,15 @@ class XylariaChat:
|
|
455 |
return f"Error generating response: {str(e)}"
|
456 |
|
457 |
def extract_entities(self, text):
|
458 |
-
#
|
|
|
459 |
words = text.split()
|
460 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
461 |
return entities
|
462 |
|
463 |
def extract_relationships(self, text):
|
464 |
-
#
|
|
|
465 |
sentences = text.split('.')
|
466 |
relationships = []
|
467 |
for sentence in sentences:
|
@@ -471,17 +497,27 @@ class XylariaChat:
|
|
471 |
if words[i].istitle() and words[i+2].istitle():
|
472 |
relationships.append((words[i], words[i+1], words[i+2]))
|
473 |
return relationships
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
def create_interface(self):
|
476 |
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
|
477 |
-
|
478 |
-
|
479 |
ocr_text = ""
|
480 |
if math_ocr_image_path:
|
481 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
482 |
if ocr_text.startswith("Error"):
|
483 |
updated_history = chat_history + [[message, ocr_text]]
|
484 |
-
yield "", updated_history, None, None
|
485 |
return
|
486 |
else:
|
487 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
@@ -490,10 +526,11 @@ class XylariaChat:
|
|
490 |
response_stream = self.get_response(message, image_filepath)
|
491 |
else:
|
492 |
response_stream = self.get_response(message)
|
|
|
493 |
|
494 |
if isinstance(response_stream, str):
|
495 |
updated_history = chat_history + [[message, response_stream]]
|
496 |
-
yield "", updated_history, None, None
|
497 |
return
|
498 |
|
499 |
full_response = ""
|
@@ -506,24 +543,18 @@ class XylariaChat:
|
|
506 |
full_response += chunk_content
|
507 |
|
508 |
updated_history[-1][1] = full_response
|
509 |
-
yield "", updated_history, None, None
|
510 |
-
|
511 |
-
# Check for timeout (e.g., 3 seconds)
|
512 |
-
if time.time() - start_time > 3:
|
513 |
-
print("Response generation timed out.")
|
514 |
-
updated_history[-1][1] += " (Response timed out)"
|
515 |
-
yield "", updated_history, None, None, gr.Textbox(f"Time taken: {time.time() - start_time:.2f} seconds", visible=True)
|
516 |
-
return
|
517 |
-
|
518 |
except Exception as e:
|
519 |
print(f"Streaming error: {e}")
|
520 |
updated_history[-1][1] = f"Error during response: {e}"
|
521 |
-
yield "", updated_history, None, None
|
522 |
return
|
523 |
|
524 |
full_response = self.adjust_response_based_on_state(full_response)
|
|
|
525 |
self.update_goals(message)
|
526 |
|
|
|
527 |
emotion_deltas = {}
|
528 |
cognitive_load_deltas = {}
|
529 |
engagement_delta = 0
|
@@ -558,12 +589,13 @@ class XylariaChat:
|
|
558 |
|
559 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
560 |
|
|
|
561 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
562 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
|
568 |
custom_css = """
|
569 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
|
|
10 |
import torch
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
|
|
13 |
|
14 |
@dataclass
|
15 |
class ChatMessage:
|
|
|
47 |
"strategy_adjustment": ""
|
48 |
}
|
49 |
|
50 |
+
# Enhanced Internal State with more nuanced emotional and cognitive parameters
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
+
"valence": 0.5, # Overall positivity or negativity
|
54 |
+
"arousal": 0.5, # Level of excitement or calmness
|
55 |
+
"dominance": 0.5, # Feeling of control in the interaction
|
56 |
+
"curiosity": 0.5, # Drive to learn and explore new information
|
57 |
+
"frustration": 0.0, # Level of frustration or impatience
|
58 |
+
"confidence": 0.7 # Confidence in providing accurate and relevant responses
|
59 |
},
|
60 |
"cognitive_load": {
|
61 |
+
"memory_load": 0.0, # How much of the current memory capacity is being used
|
62 |
+
"processing_intensity": 0.0 # How hard the model is working to process information
|
63 |
},
|
64 |
"introspection_level": 0.0,
|
65 |
+
"engagement_level": 0.5 # How engaged the model is with the current conversation
|
66 |
}
|
67 |
|
68 |
+
# More dynamic and adaptive goals
|
69 |
self.goals = [
|
70 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
71 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
72 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
73 |
+
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0}, # New goal for proactive learning
|
74 |
+
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0} # New goal for emotional intelligence
|
75 |
]
|
76 |
|
77 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
78 |
|
79 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
80 |
+
# Update emotions with more nuanced changes
|
81 |
for emotion, delta in emotion_deltas.items():
|
82 |
if emotion in self.internal_state["emotions"]:
|
83 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
84 |
|
85 |
+
# Update cognitive load
|
86 |
for load_type, delta in cognitive_load_deltas.items():
|
87 |
if load_type in self.internal_state["cognitive_load"]:
|
88 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
89 |
|
90 |
+
# Update introspection and engagement levels
|
91 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
92 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
93 |
|
94 |
+
# Activate dormant goals based on internal state
|
95 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
96 |
+
self.goals[3]["status"] = "active" # Activate knowledge gap filling
|
97 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
98 |
+
self.goals[4]["status"] = "active" # Activate emotional adaptation
|
99 |
|
100 |
def update_knowledge_graph(self, entities, relationships):
|
101 |
+
for entity in entities:
|
102 |
+
self.knowledge_graph.add_node(entity)
|
103 |
+
for relationship in relationships:
|
104 |
+
subject, predicate, object_ = relationship
|
105 |
+
self.knowledge_graph.add_edge(subject, object_, relation=predicate)
|
106 |
|
107 |
def update_belief_system(self, statement, belief_score):
|
|
|
108 |
self.belief_system[statement] = belief_score
|
109 |
|
110 |
def run_metacognitive_layer(self):
|
|
|
111 |
coherence_score = self.calculate_coherence()
|
112 |
relevance_score = self.calculate_relevance()
|
113 |
bias_score = self.detect_bias()
|
|
|
121 |
}
|
122 |
|
123 |
def calculate_coherence(self):
|
124 |
+
# Improved coherence calculation considering conversation history and internal state
|
125 |
if not self.conversation_history:
|
126 |
return 0.95
|
127 |
|
|
|
129 |
for i in range(1, len(self.conversation_history)):
|
130 |
current_message = self.conversation_history[i]['content']
|
131 |
previous_message = self.conversation_history[i-1]['content']
|
132 |
+
similarity_score = util.pytorch_cos_sim(
|
133 |
+
self.embedding_model.encode(current_message, convert_to_tensor=True),
|
134 |
+
self.embedding_model.encode(previous_message, convert_to_tensor=True)
|
135 |
+
).item()
|
|
|
|
|
136 |
coherence_scores.append(similarity_score)
|
137 |
|
138 |
average_coherence = np.mean(coherence_scores)
|
139 |
|
140 |
+
# Adjust coherence based on internal state
|
141 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
142 |
+
average_coherence -= 0.1 # Reduce coherence if under heavy processing load
|
143 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
144 |
+
average_coherence -= 0.15 # Reduce coherence if frustrated
|
145 |
|
146 |
return np.clip(average_coherence, 0.0, 1.0)
|
147 |
|
148 |
def calculate_relevance(self):
|
149 |
+
# More sophisticated relevance calculation using knowledge graph and goal priorities
|
150 |
if not self.conversation_history:
|
151 |
return 0.9
|
152 |
|
|
|
154 |
relevant_entities = self.extract_entities(last_user_message)
|
155 |
relevance_score = 0
|
156 |
|
157 |
+
# Check if entities are present in the knowledge graph
|
158 |
for entity in relevant_entities:
|
159 |
if entity in self.knowledge_graph:
|
160 |
relevance_score += 0.2
|
161 |
|
162 |
+
# Consider current goals and their priorities
|
163 |
for goal in self.goals:
|
164 |
if goal["status"] == "active":
|
165 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
166 |
+
relevance_score += goal["priority"] * 0.5 # Boost relevance if aligned with primary goal
|
167 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
168 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
169 |
+
relevance_score += goal["priority"] * 0.3 # Boost relevance if triggering knowledge gap filling
|
170 |
|
171 |
return np.clip(relevance_score, 0.0, 1.0)
|
172 |
|
173 |
def detect_bias(self):
|
174 |
+
# Enhanced bias detection using sentiment analysis and internal state monitoring
|
175 |
bias_score = 0.0
|
176 |
|
177 |
+
# Analyze sentiment of recent conversation history
|
178 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
179 |
if recent_messages:
|
180 |
+
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
|
|
|
|
181 |
if average_valence < 0.4 or average_valence > 0.6:
|
182 |
+
bias_score += 0.2 # Potential bias if sentiment is strongly positive or negative
|
183 |
|
184 |
+
# Check for emotional extremes in internal state
|
185 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
186 |
bias_score += 0.15
|
187 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
|
|
190 |
return np.clip(bias_score, 0.0, 1.0)
|
191 |
|
192 |
def suggest_strategy_adjustment(self):
|
193 |
+
# More nuanced strategy adjustments based on metacognitive analysis and internal state
|
194 |
adjustments = []
|
195 |
|
196 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
|
|
200 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
201 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
202 |
|
203 |
+
# Internal state-driven adjustments
|
204 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
205 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
206 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
|
|
214 |
return " ".join(adjustments)
|
215 |
|
216 |
def introspect(self):
|
|
|
217 |
introspection_report = "Introspection Report:\n"
|
218 |
introspection_report += f" Current Emotional State:\n"
|
219 |
for emotion, value in self.internal_state['emotions'].items():
|
|
|
234 |
return introspection_report
|
235 |
|
236 |
def adjust_response_based_on_state(self, response):
|
237 |
+
# More sophisticated response adjustment based on internal state
|
238 |
if self.internal_state["introspection_level"] > 0.7:
|
239 |
response = self.introspect() + "\n\n" + response
|
240 |
|
|
|
244 |
frustration = self.internal_state["emotions"]["frustration"]
|
245 |
confidence = self.internal_state["emotions"]["confidence"]
|
246 |
|
247 |
+
# Adjust tone based on valence and arousal
|
248 |
if valence < 0.4:
|
249 |
if arousal > 0.6:
|
250 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
|
|
256 |
else:
|
257 |
response = "I'm in a good mood and happy to help. " + response
|
258 |
|
259 |
+
# Adjust response based on other emotional states
|
260 |
if curiosity > 0.7:
|
261 |
response += " I'm very curious about this topic, could you tell me more?"
|
262 |
if frustration > 0.5:
|
|
|
264 |
if confidence < 0.5:
|
265 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
266 |
|
267 |
+
# Adjust based on cognitive load
|
268 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
269 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
270 |
|
271 |
return response
|
272 |
|
273 |
def update_goals(self, user_feedback):
|
274 |
+
# More dynamic goal updates based on feedback and internal state
|
275 |
feedback_lower = user_feedback.lower()
|
276 |
|
277 |
+
# General feedback
|
278 |
if "helpful" in feedback_lower:
|
279 |
for goal in self.goals:
|
280 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
|
|
286 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
287 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
288 |
|
289 |
+
# Goal-specific feedback
|
290 |
if "learn more" in feedback_lower:
|
291 |
for goal in self.goals:
|
292 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
|
298 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
299 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
300 |
|
301 |
+
# Internal state influence on goal updates
|
302 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
303 |
for goal in self.goals:
|
304 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
|
316 |
if not self.persistent_memory:
|
317 |
return "No information found in memory."
|
318 |
|
319 |
+
query_embedding = self.embedding_model.encode(query, convert_to_tensor=True)
|
320 |
|
321 |
if self.memory_embeddings is None:
|
322 |
self.update_memory_embeddings()
|
|
|
324 |
if self.memory_embeddings.device != query_embedding.device:
|
325 |
self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)
|
326 |
|
|
|
327 |
cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
|
328 |
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
|
329 |
|
|
|
332 |
return "\n".join(relevant_memories)
|
333 |
|
334 |
def update_memory_embeddings(self):
|
335 |
+
self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True)
|
|
|
336 |
|
337 |
def reset_conversation(self):
|
338 |
self.conversation_history = []
|
|
|
393 |
else:
|
394 |
data = image.read()
|
395 |
|
|
|
396 |
response = requests.post(
|
397 |
self.image_api_url,
|
398 |
headers=self.image_api_headers,
|
|
|
411 |
def perform_math_ocr(self, image_path):
|
412 |
try:
|
413 |
img = Image.open(image_path)
|
|
|
414 |
text = pytesseract.image_to_string(img)
|
415 |
return text.strip()
|
416 |
except Exception as e:
|
|
|
419 |
def get_response(self, user_input, image=None):
|
420 |
try:
|
421 |
messages = []
|
|
|
422 |
|
423 |
+
messages.append(ChatMessage(
|
424 |
+
role="system",
|
425 |
+
content=self.system_prompt
|
426 |
+
).to_dict())
|
427 |
+
|
428 |
relevant_memory = self.retrieve_information(user_input)
|
429 |
if relevant_memory and relevant_memory != "No information found in memory.":
|
430 |
memory_context = "Remembered Information:\n" + relevant_memory
|
431 |
+
messages.append(ChatMessage(
|
432 |
+
role="system",
|
433 |
+
content=memory_context
|
434 |
+
).to_dict())
|
435 |
|
436 |
+
for msg in self.conversation_history:
|
437 |
+
messages.append(msg)
|
438 |
|
439 |
if image:
|
440 |
image_caption = self.caption_image(image)
|
441 |
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
|
442 |
|
443 |
+
messages.append(ChatMessage(
|
444 |
+
role="user",
|
445 |
+
content=user_input
|
446 |
+
).to_dict())
|
447 |
+
|
448 |
entities = []
|
449 |
relationships = []
|
450 |
+
|
451 |
for message in messages:
|
452 |
if message['role'] == 'user':
|
453 |
extracted_entities = self.extract_entities(message['content'])
|
454 |
extracted_relationships = self.extract_relationships(message['content'])
|
455 |
entities.extend(extracted_entities)
|
456 |
relationships.extend(extracted_relationships)
|
457 |
+
|
458 |
self.update_knowledge_graph(entities, relationships)
|
459 |
self.run_metacognitive_layer()
|
460 |
|
|
|
461 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
462 |
+
max_new_tokens = 16384 - input_tokens - 50
|
463 |
+
|
464 |
+
max_new_tokens = min(max_new_tokens, 10020)
|
465 |
|
466 |
stream = self.client.chat_completion(
|
467 |
messages=messages,
|
|
|
479 |
return f"Error generating response: {str(e)}"
|
480 |
|
481 |
def extract_entities(self, text):
|
482 |
+
# Placeholder for a more advanced entity extraction using NLP techniques
|
483 |
+
# This is a very basic example and should be replaced with a proper NER model
|
484 |
words = text.split()
|
485 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
486 |
return entities
|
487 |
|
488 |
def extract_relationships(self, text):
|
489 |
+
# Placeholder for relationship extraction - this is a very basic example
|
490 |
+
# Consider using dependency parsing or other NLP techniques for better results
|
491 |
sentences = text.split('.')
|
492 |
relationships = []
|
493 |
for sentence in sentences:
|
|
|
497 |
if words[i].istitle() and words[i+2].istitle():
|
498 |
relationships.append((words[i], words[i+1], words[i+2]))
|
499 |
return relationships
|
500 |
+
def messages_to_prompt(self, messages):
|
501 |
+
prompt = ""
|
502 |
+
for msg in messages:
|
503 |
+
if msg["role"] == "system":
|
504 |
+
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
|
505 |
+
elif msg["role"] == "user":
|
506 |
+
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
|
507 |
+
elif msg["role"] == "assistant":
|
508 |
+
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
|
509 |
+
prompt += "<|assistant|>\n"
|
510 |
+
return prompt
|
511 |
|
512 |
def create_interface(self):
|
513 |
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
|
514 |
+
|
|
|
515 |
ocr_text = ""
|
516 |
if math_ocr_image_path:
|
517 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
518 |
if ocr_text.startswith("Error"):
|
519 |
updated_history = chat_history + [[message, ocr_text]]
|
520 |
+
yield "", updated_history, None, None
|
521 |
return
|
522 |
else:
|
523 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
|
|
526 |
response_stream = self.get_response(message, image_filepath)
|
527 |
else:
|
528 |
response_stream = self.get_response(message)
|
529 |
+
|
530 |
|
531 |
if isinstance(response_stream, str):
|
532 |
updated_history = chat_history + [[message, response_stream]]
|
533 |
+
yield "", updated_history, None, None
|
534 |
return
|
535 |
|
536 |
full_response = ""
|
|
|
543 |
full_response += chunk_content
|
544 |
|
545 |
updated_history[-1][1] = full_response
|
546 |
+
yield "", updated_history, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
except Exception as e:
|
548 |
print(f"Streaming error: {e}")
|
549 |
updated_history[-1][1] = f"Error during response: {e}"
|
550 |
+
yield "", updated_history, None, None
|
551 |
return
|
552 |
|
553 |
full_response = self.adjust_response_based_on_state(full_response)
|
554 |
+
|
555 |
self.update_goals(message)
|
556 |
|
557 |
+
# Update internal state based on user input (more nuanced)
|
558 |
emotion_deltas = {}
|
559 |
cognitive_load_deltas = {}
|
560 |
engagement_delta = 0
|
|
|
589 |
|
590 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
591 |
|
592 |
+
|
593 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
594 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
595 |
|
596 |
+
if len(self.conversation_history) > 10:
|
597 |
+
self.conversation_history = self.conversation_history[-10:]
|
598 |
+
|
599 |
|
600 |
custom_css = """
|
601 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|