Reality123b commited on
Commit
ea5c447
·
verified ·
1 Parent(s): 0e714cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -1
app.py CHANGED
@@ -10,6 +10,16 @@ from sentence_transformers import SentenceTransformer, util
10
  import torch
11
  import numpy as np
12
  import networkx as nx
 
 
 
 
 
 
 
 
 
 
13
 
14
  @dataclass
15
  class ChatMessage:
@@ -75,6 +85,20 @@ class XylariaChat:
75
  ]
76
 
77
  self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
80
  # Update emotions with more nuanced changes
@@ -472,6 +496,53 @@ class XylariaChat:
472
  stream=True
473
  )
474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475
  return stream
476
 
477
  except Exception as e:
@@ -596,7 +667,6 @@ class XylariaChat:
596
  if len(self.conversation_history) > 10:
597
  self.conversation_history = self.conversation_history[-10:]
598
 
599
-
600
  custom_css = """
601
  @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
602
  body, .gradio-container {
 
10
  import torch
11
  import numpy as np
12
  import networkx as nx
13
+ from collections import Counter
14
+ import nltk
15
+
16
+ # Ensure NLTK resources are available
17
+ try:
18
+ nltk.data.find('tokenizers/punkt')
19
+ nltk.data.find('averaged_perceptron_tagger')
20
+ except LookupError:
21
+ nltk.download('punkt')
22
+ nltk.download('averaged_perceptron_tagger')
23
 
24
  @dataclass
25
  class ChatMessage:
 
85
  ]
86
 
87
  self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
88
+
89
+ # --- SCALED-DOWN AGI FEATURES ---
90
+
91
+ # 1. Advanced Knowledge Representation & Reasoning (Simplified)
92
+ self.causal_rules_db = { # Simple rule-based causal relationships
93
+ "rain": ["wet roads", "flooding"],
94
+ "study": ["good grades"],
95
+ "exercise": ["better health"]
96
+ }
97
+ self.concept_generalizations = { # Basic concept generalizations
98
+ "planet": "system with orbiting bodies",
99
+ "electron": "system with orbiting bodies",
100
+ "atom": "system with orbiting bodies"
101
+ }
102
 
103
  def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
104
  # Update emotions with more nuanced changes
 
496
  stream=True
497
  )
498
 
499
+ # --- SCALED-DOWN AGI FEATURE INTEGRATION INTO RESPONSE GENERATION ---
500
+
501
+ # 1.b. Abstract Reasoning (Simplified):
502
+ # Check if the current message involves a concept with a known generalization.
503
+ for concept, generalization in self.concept_generalizations.items():
504
+ if concept in user_input.lower():
505
+ inferred_knowledge = f"This reminds me of a general principle: {generalization}."
506
+ self.store_information("Inferred Knowledge", inferred_knowledge) # Store for later retrieval, if needed
507
+
508
+ # 1.c. Dynamic Updating of Beliefs (Simplified):
509
+ # Very basic example: increase belief if something is stated repeatedly.
510
+ belief_updates = Counter()
511
+ for msg in self.conversation_history:
512
+ if msg['role'] == 'user':
513
+ sentences = nltk.sent_tokenize(msg['content']) # Using nltk for sentence tokenization
514
+ for sentence in sentences:
515
+ belief_updates[sentence] += 1
516
+
517
+ for statement, count in belief_updates.items():
518
+ if count >= 2: # If a statement is repeated 2 or more times
519
+ current_belief_score = self.belief_system.get(statement, 0.5) # Default belief 0.5
520
+ updated_belief_score = min(current_belief_score + 0.2, 1.0) # Increase belief, max 1.0
521
+ self.update_belief_system(statement, updated_belief_score)
522
+
523
+ # 2.a. Lifelong Learning (Simplified):
524
+ # Store key information from user input in persistent memory.
525
+ if user_input:
526
+ self.store_information("User Input", user_input)
527
+
528
+ # 2.b. Autonomous Knowledge Discovery (Very Simplified):
529
+ # Simulate seeking information if curiosity is high and the user asks a question.
530
+ if self.internal_state["emotions"]["curiosity"] > 0.8 and "?" in user_input:
531
+ print("Simulating external knowledge seeking...")
532
+ # In a real implementation, you might query an API or database here.
533
+ simulated_external_info = "This is a placeholder for external information I would have found."
534
+ self.store_information("External Knowledge", simulated_external_info)
535
+ # The chatbot can then use this "External Knowledge" in its response.
536
+
537
+ # 1.a. Causal Reasoning (Simplified):
538
+ # Check for potential causal relationships in the user input and conversation history.
539
+ for cause, effects in self.causal_rules_db.items():
540
+ if cause in user_input.lower():
541
+ for effect in effects:
542
+ if effect in " ".join([msg['content'].lower() for msg in self.conversation_history]).lower():
543
+ causal_inference = f"It seems {cause} might be related to {effect}."
544
+ self.store_information("Causal Inference", causal_inference)
545
+
546
  return stream
547
 
548
  except Exception as e:
 
667
  if len(self.conversation_history) > 10:
668
  self.conversation_history = self.conversation_history[-10:]
669
 
 
670
  custom_css = """
671
  @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
672
  body, .gradio-container {