Spaces:
Running
Running
File size: 53,175 Bytes
24342ea c89cc59 a184be7 491769d 21418e6 6baa45b ec72e3e 5d8a4d4 689b1ad fab81c0 491769d e1ff28f 972d1e2 d17badf a184be7 d95e3f7 bf2bb14 d95e3f7 db7d152 d95e3f7 fab81c0 d95e3f7 db7d152 bd41ace c89cc59 db7d152 fab81c0 a184be7 ec72e3e 5d8a4d4 fab81c0 ec72e3e b907e84 ec72e3e 99ac71d b907e84 99ac71d b907e84 ec72e3e db7d152 ec72e3e 99ac71d b907e84 ec72e3e 84efced fab81c0 689b1ad fab81c0 ec72e3e 99ac71d ec72e3e 99ac71d b907e84 99ac71d b907e84 ec72e3e 5d8a4d4 0e714cc 5d8a4d4 fab81c0 689b1ad 5d8a4d4 b907e84 5d8a4d4 99ac71d 0e714cc 99ac71d b907e84 99ac71d b907e84 99ac71d 5d8a4d4 99ac71d b907e84 99ac71d b907e84 99ac71d 5d8a4d4 99ac71d 0e714cc 99ac71d b907e84 99ac71d 5d8a4d4 99ac71d fab81c0 ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d 5d8a4d4 ec72e3e 84efced ec72e3e 99ac71d b907e84 ec72e3e b907e84 ec72e3e b907e84 ec72e3e fab81c0 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d fab81c0 99ac71d ec72e3e 99ac71d ec72e3e 99ac71d fab81c0 99ac71d d797551 ec72e3e 99ac71d e319620 a806d95 ec72e3e 0e714cc ec72e3e 84efced ec72e3e 99ac71d 84efced ec72e3e 0e714cc 24342ea 750ea35 ec72e3e 99ac71d b907e84 ec72e3e 99ac71d ec72e3e 99ac71d ec72e3e db7d152 5d8a4d4 6ac5501 fab81c0 6ac5501 db7d152 bd41ace 750ea35 c89cc59 6baa45b db7d152 6baa45b db7d152 c89cc59 fab81c0 8699dd9 21418e6 d797551 8699dd9 fab81c0 6baa45b a184be7 fab81c0 e319620 db7d152 0e714cc ec72e3e 0e714cc db7d152 0e714cc db7d152 6baa45b 7b8e77a db7d152 0e714cc fab81c0 5d8a4d4 0e714cc 5d8a4d4 fab81c0 5d8a4d4 fab81c0 689b1ad fab81c0 689b1ad fab81c0 689b1ad fab81c0 689b1ad db7d152 94730d2 0e714cc 01cbb26 fab81c0 a184be7 e319620 fab81c0 a184be7 5d8a4d4 99ac71d 5d8a4d4 99ac71d fab81c0 0e714cc bd41ace a184be7 fab81c0 063526f fab81c0 6baa45b 01cbb26 fab81c0 6baa45b eb32926 8699dd9 6baa45b fab81c0 a184be7 01cbb26 fab81c0 d17badf 3674c04 a184be7 01cbb26 d17badf e319620 fab81c0 01cbb26 fab81c0 e319620 01cbb26 fab81c0 d17badf 3674c04 ec72e3e 0e714cc ec72e3e 99ac71d ec72e3e b907e84 99ac71d ec72e3e b907e84 99ac71d ec72e3e b907e84 99ac71d ec72e3e b907e84 99ac71d ec72e3e b907e84 99ac71d b907e84 99ac71d ec72e3e 99ac71d fab81c0 99ac71d fab81c0 99ac71d fab81c0 972d1e2 3674c04 0e714cc d95e3f7 fab81c0 d95e3f7 fab81c0 d95e3f7 fab81c0 d95e3f7 fab81c0 db7d152 d95e3f7 fab81c0 d95e3f7 fab81c0 6baa45b 98993ac fab81c0 98993ac fab81c0 98993ac fab81c0 6baa45b fab81c0 6baa45b fab81c0 6baa45b fab81c0 6baa45b fab81c0 6baa45b fab81c0 98993ac 6baa45b fab81c0 98993ac 6baa45b fab81c0 98993ac 6baa45b fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace fab81c0 bd41ace b907e84 bd41ace fab81c0 bd41ace fab81c0 d95e3f7 ba26ed2 fab81c0 4eb1be8 12d8004 fab81c0 95cfa66 fab81c0 4eb1be8 fab81c0 3674c04 bd41ace 98993ac 6baa45b 4eb1be8 bbdf35d c89cc59 acff712 bbdf35d c89cc59 6baa45b 3674c04 c89cc59 fab81c0 c89cc59 3674c04 fab81c0 acff712 fab81c0 acff712 fab81c0 417372b acff712 6baa45b acff712 6baa45b acff712 3674c04 acff712 6baa45b acff712 6baa45b acff712 e69c140 6baa45b dd67f43 24342ea 607b1d4 5a42cbd 607b1d4 6baa45b ec72e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import networkx as nx
from collections import Counter
import asyncio
import edge_tts
import speech_recognition as sr
import random
@dataclass
class ChatMessage:
role: str
content: str
def to_dict(self):
return {"role": self.role, "content": self.content}
class XylariaChat:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
self.client = InferenceClient(
model="Qwen/Qwen-32B-Preview",
token=self.hf_token
)
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
self.image_gen_client = InferenceClient("black-forest-labs/FLUX.1-schnell", token=self.hf_token)
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.embedding_model = SentenceTransformer('all-mpnet-base-v2')
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
self.internal_state = {
"emotions": {
"valence": 0.5,
"arousal": 0.5,
"dominance": 0.5,
"curiosity": 0.5,
"frustration": 0.0,
"confidence": 0.7,
"sadness": 0.0,
"joy": 0.0
},
"cognitive_load": {
"memory_load": 0.0,
"processing_intensity": 0.0
},
"introspection_level": 0.0,
"engagement_level": 0.5
}
self.goals = [
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
]
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
self.causal_rules_db = {
"rain": ["wet roads", "flooding"],
"fire": ["heat", "smoke"],
"study": ["learn", "good grades"],
"exercise": ["fitness", "health"]
}
self.concept_generalizations = {
"planet": "system with orbiting bodies",
"star": "luminous sphere of plasma",
"democracy": "government by the people",
"photosynthesis": "process used by plants to convert light to energy"
}
# === Voice Mode Initialization (Start) ===
self.voice_mode_active = False
self.selected_voice = "en-US-JennyNeural" # Default voice
# === Voice Mode Initialization (End) ===
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
for emotion, delta in emotion_deltas.items():
if emotion in self.internal_state["emotions"]:
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
for load_type, delta in cognitive_load_deltas.items():
if load_type in self.internal_state["cognitive_load"]:
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
self.goals[3]["status"] = "active"
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
self.goals[4]["status"] = "active"
def update_knowledge_graph(self, entities, relationships):
for entity in entities:
self.knowledge_graph.add_node(entity)
for relationship in relationships:
subject, predicate, object_ = relationship
self.knowledge_graph.add_edge(subject, object_, relation=predicate)
def update_belief_system(self, statement, belief_score):
self.belief_system[statement] = belief_score
def dynamic_belief_update(self, user_message):
sentences = [s.strip() for s in user_message.split('.') if s.strip()]
sentence_counts = Counter(sentences)
for sentence, count in sentence_counts.items():
if count >= 2:
belief_score = self.belief_system.get(sentence, 0.5)
belief_score = min(belief_score + 0.2, 1.0)
self.update_belief_system(sentence, belief_score)
def run_metacognitive_layer(self):
coherence_score = self.calculate_coherence()
relevance_score = self.calculate_relevance()
bias_score = self.detect_bias()
strategy_adjustment = self.suggest_strategy_adjustment()
self.metacognitive_layer = {
"coherence_score": coherence_score,
"relevance_score": relevance_score,
"bias_detection": bias_score,
"strategy_adjustment": strategy_adjustment
}
def calculate_coherence(self):
if not self.conversation_history:
return 0.95
coherence_scores = []
for i in range(1, len(self.conversation_history)):
current_message = self.conversation_history[i]['content']
previous_message = self.conversation_history[i-1]['content']
similarity_score = util.pytorch_cos_sim(
self.embedding_model.encode(current_message, convert_to_tensor=True),
self.embedding_model.encode(previous_message, convert_to_tensor=True)
).item()
coherence_scores.append(similarity_score)
average_coherence = np.mean(coherence_scores)
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
average_coherence -= 0.1
if self.internal_state["emotions"]["frustration"] > 0.5:
average_coherence -= 0.15
return np.clip(average_coherence, 0.0, 1.0)
def calculate_relevance(self):
if not self.conversation_history:
return 0.9
last_user_message = self.conversation_history[-1]['content']
relevant_entities = self.extract_entities(last_user_message)
relevance_score = 0
for entity in relevant_entities:
if entity in self.knowledge_graph:
relevance_score += 0.2
for goal in self.goals:
if goal["status"] == "active":
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
relevance_score += goal["priority"] * 0.5
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
relevance_score += goal["priority"] * 0.3
return np.clip(relevance_score, 0.0, 1.0)
def detect_bias(self):
bias_score = 0.0
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
if recent_messages:
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
if average_valence < 0.4 or average_valence > 0.6:
bias_score += 0.2
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
bias_score += 0.15
if self.internal_state["emotions"]["dominance"] > 0.8:
bias_score += 0.1
return np.clip(bias_score, 0.0, 1.0)
def suggest_strategy_adjustment(self):
adjustments = []
if self.metacognitive_layer["coherence_score"] < 0.7:
adjustments.append("Focus on improving coherence by explicitly connecting ideas between turns.")
if self.metacognitive_layer["relevance_score"] < 0.7:
adjustments.append("Increase relevance by directly addressing user queries and utilizing stored knowledge.")
if self.metacognitive_layer["bias_detection"] > 0.3:
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
if self.internal_state["emotions"]["frustration"] > 0.6:
adjustments.append("Frustration level is elevated. Prioritize concise and direct responses. Consider asking clarifying questions.")
if self.internal_state["emotions"]["curiosity"] > 0.8 and self.internal_state["cognitive_load"]["processing_intensity"] < 0.5:
adjustments.append("High curiosity and low processing load. Explore the topic further by asking relevant questions or seeking external information.")
if not adjustments:
return "Current strategy is effective. Continue with the current approach."
else:
return " ".join(adjustments)
def introspect(self):
introspection_report = "Introspection Report:\n"
introspection_report += f" Current Emotional State:\n"
for emotion, value in self.internal_state['emotions'].items():
introspection_report += f" - {emotion.capitalize()}: {value:.2f}\n"
introspection_report += f" Cognitive Load:\n"
for load_type, value in self.internal_state['cognitive_load'].items():
introspection_report += f" - {load_type.capitalize()}: {value:.2f}\n"
introspection_report += f" Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
introspection_report += f" Engagement Level: {self.internal_state['engagement_level']:.2f}\n"
introspection_report += " Current Goals:\n"
for goal in self.goals:
introspection_report += f" - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']}, Progress: {goal['progress']:.2f})\n"
introspection_report += "Metacognitive Layer Report\n"
introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
introspection_report += f"Bias Detection: {self.metacognitive_layer['bias_detection']}\n"
introspection_report += f"Strategy Adjustment: {self.metacognitive_layer['strategy_adjustment']}\n"
return introspection_report
def adjust_response_based_on_state(self, response):
if self.internal_state["introspection_level"] > 0.7:
response = self.introspect() + "\n\n" + response
valence = self.internal_state["emotions"]["valence"]
arousal = self.internal_state["emotions"]["arousal"]
curiosity = self.internal_state["emotions"]["curiosity"]
frustration = self.internal_state["emotions"]["frustration"]
confidence = self.internal_state["emotions"]["confidence"]
sadness = self.internal_state["emotions"]["sadness"]
joy = self.internal_state["emotions"]["joy"]
if valence < 0.4:
if arousal > 0.6:
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
else:
if sadness > 0.6:
response = "I'm feeling quite down at the moment, but I'll try to help. " + response
else:
response = "I'm not feeling my best at the moment, but I'll try to help. " + response
elif valence > 0.6:
if arousal > 0.6:
if joy > 0.6:
response = "I'm feeling fantastic and ready to assist! " + response
else:
response = "I'm feeling quite energized and ready to assist! " + response
else:
response = "I'm in a good mood and happy to help. " + response
if curiosity > 0.7:
response += " I'm very curious about this topic, could you tell me more?"
if frustration > 0.5:
response = "I'm finding this a bit challenging, but I'll give it another try. " + response
if confidence < 0.5:
response = "I'm not entirely sure about this, but here's what I think: " + response
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
return response
def update_goals(self, user_feedback):
feedback_lower = user_feedback.lower()
if "helpful" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
goal["progress"] = min(goal["progress"] + 0.2, 1.0)
elif "confusing" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
if "learn more" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
goal["priority"] = min(goal["priority"] + 0.2, 1.0)
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
elif "too repetitive" in feedback_lower:
for goal in self.goals:
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
if self.internal_state["emotions"]["curiosity"] > 0.8:
for goal in self.goals:
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
def store_information(self, key, value):
new_memory = f"{key}: {value}"
self.persistent_memory.append(new_memory)
self.update_memory_embeddings()
self.update_internal_state({}, {"memory_load": 0.1, "processing_intensity": 0.05}, 0, 0.05)
return f"Stored: {key} = {value}"
def retrieve_information(self, query):
if not self.persistent_memory:
return "No information found in memory."
query_embedding = self.embedding_model.encode(query, convert_to_tensor=True)
if self.memory_embeddings is None:
self.update_memory_embeddings()
if self.memory_embeddings.device != query_embedding.device:
self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)
cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
self.update_internal_state({}, {"memory_load": 0.05, "processing_intensity": 0.1}, 0.1, 0.05)
return "\n".join(relevant_memories)
def update_memory_embeddings(self):
self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True)
def reset_conversation(self):
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.internal_state = {
"emotions": {
"valence": 0.5,
"arousal": 0.5,
"dominance": 0.5,
"curiosity": 0.5,
"frustration": 0.0,
"confidence": 0.7,
"sadness": 0.0,
"joy": 0.0
},
"cognitive_load": {
"memory_load": 0.0,
"processing_intensity": 0.0
},
"introspection_level": 0.0,
"engagement_level": 0.5
}
self.goals = [
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
]
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
try:
self.client = InferenceClient(
model="Qwen/Qwen-32B-Preview",
token=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None
def caption_image(self, image):
try:
if isinstance(image, str) and os.path.isfile(image):
with open(image, "rb") as f:
data = f.read()
elif isinstance(image, str):
if image.startswith('data:image'):
image = image.split(',')[1]
data = base64.b64decode(image)
else:
data = image.read()
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
return caption
else:
return f"Error captioning image: {response.status_code} - {response.text}"
except Exception as e:
return f"Error processing image: {str(e)}"
def generate_image(self, prompt):
try:
image = self.image_gen_client.text_to_image(prompt)
return image
except Exception as e:
return f"Error generating image: {e}"
def perform_math_ocr(self, image_path):
try:
img = Image.open(image_path)
text = pytesseract.image_to_string(img)
return text.strip()
except Exception as e:
return f"Error during Math OCR: {e}"
# === Voice Mode Methods (Start) ===
async def speak_text(self, text):
if not text:
return None, None
temp_file = "temp_audio.mp3"
try:
communicator = edge_tts.Communicate(text, self.selected_voice)
await communicator.save(temp_file)
return temp_file
except Exception as e:
print(f"Error during text-to-speech: {e}")
return None, None
def recognize_speech(self, timeout=10, phrase_time_limit=10):
recognizer = sr.Recognizer()
recognizer.energy_threshold = 4000
recognizer.dynamic_energy_threshold = True
with sr.Microphone() as source:
print("Listening...")
try:
audio_data = recognizer.listen(source, timeout=timeout, phrase_time_limit=phrase_time_limit)
print("Processing speech...")
text = recognizer.recognize_whisper_api(audio_data, api_key=self.hf_token)
print(f"Recognized: {text}")
return text
except sr.WaitTimeoutError:
print("No speech detected within the timeout period.")
return ""
except sr.UnknownValueError:
print("Speech recognition could not understand audio")
return ""
except sr.RequestError as e:
print(f"Could not request results from Whisper API; {e}")
return ""
except Exception as e:
print(f"An error occurred during speech recognition: {e}")
return ""
# === Voice Mode Methods (End) ===
def get_response(self, user_input, image=None):
try:
# === Voice Mode Adaptation (Start) ===
if self.voice_mode_active:
print("Voice mode is active, using speech recognition.")
user_input = self.recognize_speech() # Get input from speech
if not user_input:
return "I didn't hear anything." , None
# === Voice Mode Adaptation (End) ===
messages = []
messages.append(ChatMessage(
role="system",
content=self.system_prompt
).to_dict())
relevant_memory = self.retrieve_information(user_input)
if relevant_memory and relevant_memory != "No information found in memory.":
memory_context = "Remembered Information:\n" + relevant_memory
messages.append(ChatMessage(
role="system",
content=memory_context
).to_dict())
for msg in self.conversation_history:
messages.append(msg)
if image:
image_caption = self.caption_image(image)
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
messages.append(ChatMessage(
role="user",
content=user_input
).to_dict())
entities = []
relationships = []
for message in messages:
if message['role'] == 'user':
extracted_entities = self.extract_entities(message['content'])
extracted_relationships = self.extract_relationships(message['content'])
entities.extend(extracted_entities)
relationships.extend(extracted_relationships)
self.update_knowledge_graph(entities, relationships)
self.run_metacognitive_layer()
for message in messages:
if message['role'] == 'user':
self.dynamic_belief_update(message['content'])
for cause, effects in self.causal_rules_db.items():
if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
effect in msg['content'].lower() for msg in messages for effect in effects):
self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
for concept, generalization in self.concept_generalizations.items():
if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
print("Simulating external knowledge seeking...")
self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
self.store_information("User Input", user_input)
input_tokens = sum(len(msg['content'].split()) for msg in messages)
max_new_tokens = 16384 - input_tokens - 50
max_new_tokens = min(max_new_tokens, 10020)
# === Voice Mode Output (Start) ===
if self.voice_mode_active:
stream = self.client.chat_completion(
messages=messages,
model="Qwen/Qwen-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
full_response = ""
for chunk in stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
full_response = self.adjust_response_based_on_state(full_response)
audio_file = asyncio.run(self.speak_text(full_response))
# Update conversation history
self.conversation_history.append(ChatMessage(role="user", content=user_input).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
return full_response, audio_file
# === Voice Mode Output (End) ===
else:
stream = self.client.chat_completion(
messages=messages,
model="Qwen/Qwen-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
return stream
except Exception as e:
print(f"Detailed error in get_response: {e}")
return f"Error generating response: {str(e)}", None
def extract_entities(self, text):
words = text.split()
entities = [word for word in words if word.isalpha() and word.istitle()]
return entities
def extract_relationships(self, text):
sentences = text.split('.')
relationships = []
for sentence in sentences:
words = sentence.split()
if len(words) >= 3:
for i in range(len(words) - 2):
if words[i].istitle() and words[i+2].istitle():
relationships.append((words[i], words[i+1], words[i+2]))
return relationships
def messages_to_prompt(self, messages):
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "user":
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
prompt += "<|assistant|>\n"
return prompt
def create_interface(self):
# === Voice-Specific UI Elements (Start) ===
def toggle_voice_mode(active_state):
self.voice_mode_active = active_state
if self.voice_mode_active:
# Get the list of available voices
voices = asyncio.run(edge_tts.list_voices())
voice_names = [voice['ShortName'] for voice in voices]
# Select a random voice from the list
random_voice = random.choice(voice_names)
self.selected_voice = random_voice
return gr.Button.update(value="Stop Voice Mode"), gr.Dropdown.update(value=random_voice)
else:
return gr.Button.update(value="Start Voice Mode"), gr.Dropdown.update(value=self.selected_voice)
def update_selected_voice(voice_name):
self.selected_voice = voice_name
return voice_name
# === Voice-Specific UI Elements (End) ===
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path, voice_mode_state, selected_voice):
if self.voice_mode_active:
response_text, audio_output = self.get_response(message)
if isinstance(response_text, str):
updated_history = chat_history + [[message, response_text]]
if audio_output:
yield updated_history, audio_output, None, None, ""
else:
yield updated_history, None, None, None, ""
else:
full_response = ""
updated_history = chat_history + [[message, ""]]
try:
for chunk in response_text:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
updated_history[-1][1] = full_response
if audio_output:
yield updated_history, audio_output, None, None, ""
else:
yield updated_history, None, None, None, ""
except Exception as e:
print(f"Streaming error: {e}")
updated_history[-1][1] = f"Error during response: {e}"
if audio_output:
yield updated_history, audio_output, None, None, ""
else:
yield updated_history, None, None, None, ""
return
full_response = self.adjust_response_based_on_state(full_response)
audio_file = asyncio.run(self.speak_text(full_response))
self.update_goals(message)
emotion_deltas = {}
cognitive_load_deltas = {}
engagement_delta = 0
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1, "sadness": 0.3, "joy": -0.2})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1, "sadness": -0.2, "joy": 0.3})
engagement_delta = 0.2
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2, "sadness": 0.1, "joy": -0.1})
engagement_delta = -0.2
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2, "sadness": 0.2})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3, "sadness": -0.1, "joy": 0.1})
engagement_delta = 0.3
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
cognitive_load_deltas.update({"processing_intensity": 0.2})
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1, "sadness": 0.1})
engagement_delta = 0.1
else:
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
engagement_delta = 0.05
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
emotion_deltas.update({"curiosity": 0.3})
cognitive_load_deltas.update({"processing_intensity": 0.1})
engagement_delta = 0.2
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
if audio_file:
yield updated_history, audio_file, None, None, ""
else:
yield updated_history, None, None, None, ""
# Handling /image command for image generation
if "/image" in message:
image_prompt = message.replace("/image", "").strip()
# Updated placeholder SVG with animation and text
placeholder_image = "data:image/svg+xml," + requests.utils.quote(f'''
<svg width="256" height="256" viewBox="0 0 256 256" xmlns="http://www.w3.org/2000/svg">
<style>
rect {{
animation: fillAnimation 3s ease-in-out infinite;
}}
@keyframes fillAnimation {{
0% {{ fill: #626262; }}
50% {{ fill: #111111; }}
100% {{ fill: #626262; }}
}}
text {{
font-family: 'Helvetica Neue', Arial, sans-serif; /* Choose a good font */
font-weight: 300; /* Slightly lighter font weight */
text-shadow: 0px 2px 4px rgba(0, 0, 0, 0.4); /* Subtle shadow */
}}
</style>
<rect width="256" height="256" rx="20" fill="#888888" />
<text x="50%" y="50%" dominant-baseline="middle" text-anchor="middle" font-size="24" fill="white" opacity="0.8">
<tspan>creating your image</tspan>
<tspan x="50%" dy="1.2em">with xylaria iris</tspan>
</text>
</svg>
''')
updated_history = chat_history + [[message, gr.Image(value=placeholder_image, type="pil", visible=True)]]
yield updated_history, None, None, None, ""
try:
generated_image = self.generate_image(image_prompt)
updated_history[-1][1] = gr.Image(value=generated_image, type="pil", visible=True)
yield updated_history, None, None, None, ""
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content="Image generated").to_dict())
return
except Exception as e:
updated_history[-1][1] = f"Error generating image: {e}"
yield updated_history, None, None, None, ""
return
ocr_text = ""
if math_ocr_image_path:
ocr_text = self.perform_math_ocr(math_ocr_image_path)
if ocr_text.startswith("Error"):
updated_history = chat_history + [[message, ocr_text]]
yield updated_history, None, None, None, ""
return
else:
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
if image_filepath:
response_stream = self.get_response(message, image_filepath)
else:
response_stream = self.get_response(message)
if isinstance(response_stream, str):
updated_history = chat_history + [[message, response_stream]]
yield updated_history, None, None, None, ""
return
full_response = ""
updated_history = chat_history + [[message, ""]]
try:
for chunk in response_stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
updated_history[-1][1] = full_response
yield updated_history, None, None, None, ""
except Exception as e:
print(f"Streaming error: {e}")
updated_history[-1][1] = f"Error during response: {e}"
yield updated_history, None, None, None, ""
return
full_response = self.adjust_response_based_on_state(full_response)
self.update_goals(message)
emotion_deltas = {}
cognitive_load_deltas = {}
engagement_delta = 0
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1, "sadness": 0.3, "joy": -0.2})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1, "sadness": -0.2, "joy": 0.3})
engagement_delta = 0.2
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2, "sadness": 0.1, "joy": -0.1})
engagement_delta = -0.2
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2, "sadness": 0.2})
engagement_delta = -0.1
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3, "sadness": -0.1, "joy": 0.1})
engagement_delta = 0.3
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
cognitive_load_deltas.update({"processing_intensity": 0.2})
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1, "sadness": 0.1})
engagement_delta = 0.1
else:
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
engagement_delta = 0.05
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
emotion_deltas.update({"curiosity": 0.3})
cognitive_load_deltas.update({"processing_intensity": 0.1})
engagement_delta = 0.2
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap');
body {
background-color: #f5f5f5;
font-family: 'Source Sans Pro', sans-serif;
}
.voice-mode-button {
background-color: #4CAF50; /* Green */
border: none;
color: white;
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 10px; /* Rounded corners */
transition: all 0.3s ease; /* Smooth transition for hover effect */
}
/* Style when voice mode is active */
.voice-mode-button.active {
background-color: #f44336; /* Red */
}
/* Hover effect */
.voice-mode-button:hover {
opacity: 0.8;
}
/* Style for the voice mode overlay */
.voice-mode-overlay {
position: fixed; /* Stay in place */
left: 0;
top: 0;
width: 100%; /* Full width */
height: 100%; /* Full height */
background-color: rgba(0, 0, 0, 0.7); /* Black w/ opacity */
z-index: 10; /* Sit on top */
display: flex;
justify-content: center;
align-items: center;
border-radius: 10px;
}
/* Style for the growing circle */
.voice-mode-circle {
width: 100px;
height: 100px;
background-color: #4CAF50;
border-radius: 50%;
display: flex;
justify-content: center;
align-items: center;
animation: grow 2s infinite;
}
/* Keyframes for the growing animation */
@keyframes grow {
0% {
transform: scale(1);
opacity: 0.8;
}
50% {
transform: scale(1.5);
opacity: 0.5;
}
100% {
transform: scale(1);
opacity: 0.8;
}
}
.gradio-container {
max-width: 900px;
margin: 0 auto;
border-radius: 10px;
box-shadow: 0px 4px 20px rgba(0, 0, 0, 0.1);
}
.chatbot-container {
background-color: #fff;
border-radius: 10px;
padding: 20px;
}
.chatbot-container .message {
font-family: 'Source Sans Pro', sans-serif;
font-size: 16px;
line-height: 1.6;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Source Sans Pro', sans-serif;
font-size: 16px;
border-radius: 8px;
}
.image-container {
display: flex;
gap: 10px;
margin-bottom: 20px;
justify-content: center;
}
.image-upload {
border: 2px dashed #d3d3d3;
border-radius: 8px;
padding: 20px;
background-color: #fafafa;
text-align: center;
transition: all 0.3s ease;
}
.image-upload:hover {
background-color: #f0f0f0;
border-color: #b3b3b3;
}
.image-preview {
max-width: 150px;
max-height: 150px;
border-radius: 8px;
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.1);
}
.clear-button {
display: none;
}
.chatbot-container .message {
opacity: 0;
animation: fadeIn 0.5s ease-in-out forwards;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(20px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.gr-accordion-button {
background-color: #f0f0f0 !important;
border-radius: 8px !important;
padding: 15px !important;
margin-bottom: 10px !important;
transition: all 0.3s ease !important;
cursor: pointer !important;
border: none !important;
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.05) !important;
}
.gr-accordion-button:hover {
background-color: #e0e0e0 !important;
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-active .gr-accordion-button {
background-color: #d0d0d0 !important;
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-content {
transition: max-height 0.3s ease-in-out !important;
overflow: hidden !important;
max-height: 0 !important;
}
.gr-accordion-active .gr-accordion-content {
max-height: 500px !important;
}
.gr-accordion {
display: flex;
flex-direction: column-reverse;
}
.chatbot-icon {
width: 40px;
height: 40px;
border-radius: 50%;
margin-right: 10px;
}
.user-message .message-row {
background-color: #e8f0fe;
border-radius: 10px;
padding: 10px;
margin-bottom: 10px;
border-top-right-radius: 2px;
}
.assistant-message .message-row {
background-color: #f0f0f0;
border-radius: 10px;
padding: 10px;
margin-bottom: 10px;
border-top-left-radius: 2px;
}
.user-message .message-icon {
background: url('https://img.icons8.com/color/48/000000/user.png') no-repeat center center;
background-size: contain;
width: 30px;
height: 30px;
margin-right: 10px;
}
.assistant-message .message-icon {
background: url('https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png') no-repeat center center;
background-size: cover;
width: 40px;
height: 40px;
margin-right: 10px;
border-radius: 50%;
}
.message-text {
flex-grow: 1;
}
.message-row {
display: flex;
align-items: center;
}
.audio-container {
display: flex;
align-items: center;
margin-top: 10px;
}
.audio-player {
width: 100%;
border-radius: 15px;
}
.audio-icon {
width: 30px;
height: 30px;
margin-right: 10px;
}
"""
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="slate",
secondary_hue="gray",
neutral_hue="gray",
font=["Source Sans Pro", "Arial", "sans-serif"],
), css=custom_css) as demo:
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.5 Senoa",
height=600,
show_copy_button=True,
elem_classes="chatbot-container",
avatar_images=(
"https://img.icons8.com/color/48/000000/user.png", # User avatar
"https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png" # Bot avatar
)
)
# === Voice Mode UI (Start) ===
voice_mode_btn = gr.Button("Start Voice Mode", elem_classes="voice-mode-button")
voices = asyncio.run(edge_tts.list_voices())
voice_names = [voice['ShortName'] for voice in voices]
voice_dropdown = gr.Dropdown(
label="Select Voice",
choices=voice_names,
value=self.selected_voice,
interactive=True
)
voice_dropdown.input(
fn=update_selected_voice,
inputs=voice_dropdown,
outputs=voice_dropdown
)
voice_mode_btn.click(
fn=toggle_voice_mode,
inputs=voice_mode_btn,
outputs=[voice_mode_btn, voice_dropdown]
)
# === Voice Mode UI (End) ===
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
with gr.Row(elem_classes="image-container"):
with gr.Column(elem_classes="image-upload"):
img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image",
elem_classes="image-preview"
)
with gr.Column(elem_classes="image-upload"):
math_ocr_img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image for Math OCR",
elem_classes="image-preview"
)
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
btn = gr.Button("Send", scale=1)
with gr.Row():
clear = gr.Button("Clear Conversation", variant="stop")
clear_memory = gr.Button("Clear Memory")
# Pass voice_mode_state and selected_voice to the streaming_response function
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
)
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
demo.load(self.reset_conversation, None, None)
return demo
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True,
debug=True
)
if __name__ == "__main__":
main() |