Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -47,55 +47,51 @@ class XylariaChat:
|
|
47 |
"strategy_adjustment": ""
|
48 |
}
|
49 |
|
50 |
-
# Enhanced Internal State with more nuanced emotional and cognitive parameters
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
-
"valence": 0.5,
|
54 |
-
"arousal": 0.5,
|
55 |
-
"dominance": 0.5,
|
56 |
-
"curiosity": 0.5,
|
57 |
-
"frustration": 0.0,
|
58 |
-
"confidence": 0.7
|
|
|
|
|
59 |
},
|
60 |
"cognitive_load": {
|
61 |
-
"memory_load": 0.0,
|
62 |
-
"processing_intensity": 0.0
|
63 |
},
|
64 |
"introspection_level": 0.0,
|
65 |
-
"engagement_level": 0.5
|
66 |
}
|
67 |
|
68 |
-
# More dynamic and adaptive goals
|
69 |
self.goals = [
|
70 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
71 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
72 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
73 |
-
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
74 |
-
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
75 |
]
|
76 |
|
77 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
78 |
|
79 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
80 |
-
# Update emotions with more nuanced changes
|
81 |
for emotion, delta in emotion_deltas.items():
|
82 |
if emotion in self.internal_state["emotions"]:
|
83 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
84 |
|
85 |
-
# Update cognitive load
|
86 |
for load_type, delta in cognitive_load_deltas.items():
|
87 |
if load_type in self.internal_state["cognitive_load"]:
|
88 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
89 |
|
90 |
-
# Update introspection and engagement levels
|
91 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
92 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
93 |
|
94 |
-
# Activate dormant goals based on internal state
|
95 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
96 |
-
self.goals[3]["status"] = "active"
|
97 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
98 |
-
self.goals[4]["status"] = "active"
|
99 |
|
100 |
def update_knowledge_graph(self, entities, relationships):
|
101 |
for entity in entities:
|
@@ -119,9 +115,8 @@ class XylariaChat:
|
|
119 |
"bias_detection": bias_score,
|
120 |
"strategy_adjustment": strategy_adjustment
|
121 |
}
|
122 |
-
|
123 |
def calculate_coherence(self):
|
124 |
-
# Improved coherence calculation considering conversation history and internal state
|
125 |
if not self.conversation_history:
|
126 |
return 0.95
|
127 |
|
@@ -137,16 +132,14 @@ class XylariaChat:
|
|
137 |
|
138 |
average_coherence = np.mean(coherence_scores)
|
139 |
|
140 |
-
# Adjust coherence based on internal state
|
141 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
142 |
-
average_coherence -= 0.1
|
143 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
144 |
-
average_coherence -= 0.15
|
145 |
|
146 |
return np.clip(average_coherence, 0.0, 1.0)
|
147 |
|
148 |
def calculate_relevance(self):
|
149 |
-
# More sophisticated relevance calculation using knowledge graph and goal priorities
|
150 |
if not self.conversation_history:
|
151 |
return 0.9
|
152 |
|
@@ -154,34 +147,29 @@ class XylariaChat:
|
|
154 |
relevant_entities = self.extract_entities(last_user_message)
|
155 |
relevance_score = 0
|
156 |
|
157 |
-
# Check if entities are present in the knowledge graph
|
158 |
for entity in relevant_entities:
|
159 |
if entity in self.knowledge_graph:
|
160 |
relevance_score += 0.2
|
161 |
|
162 |
-
# Consider current goals and their priorities
|
163 |
for goal in self.goals:
|
164 |
if goal["status"] == "active":
|
165 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
166 |
-
relevance_score += goal["priority"] * 0.5
|
167 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
168 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
169 |
-
relevance_score += goal["priority"] * 0.3
|
170 |
|
171 |
return np.clip(relevance_score, 0.0, 1.0)
|
172 |
|
173 |
def detect_bias(self):
|
174 |
-
# Enhanced bias detection using sentiment analysis and internal state monitoring
|
175 |
bias_score = 0.0
|
176 |
|
177 |
-
# Analyze sentiment of recent conversation history
|
178 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
179 |
if recent_messages:
|
180 |
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
181 |
if average_valence < 0.4 or average_valence > 0.6:
|
182 |
-
bias_score += 0.2
|
183 |
|
184 |
-
# Check for emotional extremes in internal state
|
185 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
186 |
bias_score += 0.15
|
187 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
@@ -190,7 +178,6 @@ class XylariaChat:
|
|
190 |
return np.clip(bias_score, 0.0, 1.0)
|
191 |
|
192 |
def suggest_strategy_adjustment(self):
|
193 |
-
# More nuanced strategy adjustments based on metacognitive analysis and internal state
|
194 |
adjustments = []
|
195 |
|
196 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
@@ -200,7 +187,6 @@ class XylariaChat:
|
|
200 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
201 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
202 |
|
203 |
-
# Internal state-driven adjustments
|
204 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
205 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
206 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
@@ -234,7 +220,6 @@ class XylariaChat:
|
|
234 |
return introspection_report
|
235 |
|
236 |
def adjust_response_based_on_state(self, response):
|
237 |
-
# More sophisticated response adjustment based on internal state
|
238 |
if self.internal_state["introspection_level"] > 0.7:
|
239 |
response = self.introspect() + "\n\n" + response
|
240 |
|
@@ -243,20 +228,27 @@ class XylariaChat:
|
|
243 |
curiosity = self.internal_state["emotions"]["curiosity"]
|
244 |
frustration = self.internal_state["emotions"]["frustration"]
|
245 |
confidence = self.internal_state["emotions"]["confidence"]
|
|
|
|
|
246 |
|
247 |
-
# Adjust tone based on valence and arousal
|
248 |
if valence < 0.4:
|
249 |
if arousal > 0.6:
|
250 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
251 |
else:
|
252 |
-
|
|
|
|
|
|
|
|
|
253 |
elif valence > 0.6:
|
254 |
if arousal > 0.6:
|
255 |
-
|
|
|
|
|
|
|
256 |
else:
|
257 |
response = "I'm in a good mood and happy to help. " + response
|
258 |
-
|
259 |
-
# Adjust response based on other emotional states
|
260 |
if curiosity > 0.7:
|
261 |
response += " I'm very curious about this topic, could you tell me more?"
|
262 |
if frustration > 0.5:
|
@@ -264,17 +256,14 @@ class XylariaChat:
|
|
264 |
if confidence < 0.5:
|
265 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
266 |
|
267 |
-
# Adjust based on cognitive load
|
268 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
269 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
270 |
|
271 |
return response
|
272 |
|
273 |
def update_goals(self, user_feedback):
|
274 |
-
# More dynamic goal updates based on feedback and internal state
|
275 |
feedback_lower = user_feedback.lower()
|
276 |
|
277 |
-
# General feedback
|
278 |
if "helpful" in feedback_lower:
|
279 |
for goal in self.goals:
|
280 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
@@ -286,7 +275,6 @@ class XylariaChat:
|
|
286 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
287 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
288 |
|
289 |
-
# Goal-specific feedback
|
290 |
if "learn more" in feedback_lower:
|
291 |
for goal in self.goals:
|
292 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
@@ -298,7 +286,6 @@ class XylariaChat:
|
|
298 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
299 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
300 |
|
301 |
-
# Internal state influence on goal updates
|
302 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
303 |
for goal in self.goals:
|
304 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
@@ -345,7 +332,9 @@ class XylariaChat:
|
|
345 |
"dominance": 0.5,
|
346 |
"curiosity": 0.5,
|
347 |
"frustration": 0.0,
|
348 |
-
"confidence": 0.7
|
|
|
|
|
349 |
},
|
350 |
"cognitive_load": {
|
351 |
"memory_load": 0.0,
|
@@ -479,15 +468,11 @@ class XylariaChat:
|
|
479 |
return f"Error generating response: {str(e)}"
|
480 |
|
481 |
def extract_entities(self, text):
|
482 |
-
# Placeholder for a more advanced entity extraction using NLP techniques
|
483 |
-
# This is a very basic example and should be replaced with a proper NER model
|
484 |
words = text.split()
|
485 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
486 |
return entities
|
487 |
|
488 |
def extract_relationships(self, text):
|
489 |
-
# Placeholder for relationship extraction - this is a very basic example
|
490 |
-
# Consider using dependency parsing or other NLP techniques for better results
|
491 |
sentences = text.split('.')
|
492 |
relationships = []
|
493 |
for sentence in sentences:
|
@@ -497,6 +482,7 @@ class XylariaChat:
|
|
497 |
if words[i].istitle() and words[i+2].istitle():
|
498 |
relationships.append((words[i], words[i+1], words[i+2]))
|
499 |
return relationships
|
|
|
500 |
def messages_to_prompt(self, messages):
|
501 |
prompt = ""
|
502 |
for msg in messages:
|
@@ -527,7 +513,6 @@ class XylariaChat:
|
|
527 |
else:
|
528 |
response_stream = self.get_response(message)
|
529 |
|
530 |
-
|
531 |
if isinstance(response_stream, str):
|
532 |
updated_history = chat_history + [[message, response_stream]]
|
533 |
yield "", updated_history, None, None
|
@@ -554,29 +539,28 @@ class XylariaChat:
|
|
554 |
|
555 |
self.update_goals(message)
|
556 |
|
557 |
-
# Update internal state based on user input (more nuanced)
|
558 |
emotion_deltas = {}
|
559 |
cognitive_load_deltas = {}
|
560 |
engagement_delta = 0
|
561 |
|
562 |
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
563 |
-
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1})
|
564 |
engagement_delta = -0.1
|
565 |
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
566 |
-
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1})
|
567 |
engagement_delta = 0.2
|
568 |
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
569 |
-
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2})
|
570 |
engagement_delta = -0.2
|
571 |
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
572 |
-
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2})
|
573 |
engagement_delta = -0.1
|
574 |
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
575 |
-
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3})
|
576 |
engagement_delta = 0.3
|
577 |
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
|
578 |
cognitive_load_deltas.update({"processing_intensity": 0.2})
|
579 |
-
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1})
|
580 |
engagement_delta = 0.1
|
581 |
else:
|
582 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
@@ -589,14 +573,12 @@ class XylariaChat:
|
|
589 |
|
590 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
591 |
|
592 |
-
|
593 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
594 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
595 |
|
596 |
if len(self.conversation_history) > 10:
|
597 |
self.conversation_history = self.conversation_history[-10:]
|
598 |
|
599 |
-
|
600 |
custom_css = """
|
601 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
602 |
body, .gradio-container {
|
@@ -610,7 +592,6 @@ class XylariaChat:
|
|
610 |
.gradio-container button {
|
611 |
font-family: 'Inter', sans-serif !important;
|
612 |
}
|
613 |
-
/* Image Upload Styling */
|
614 |
.image-container {
|
615 |
display: flex;
|
616 |
gap: 10px;
|
@@ -627,11 +608,9 @@ class XylariaChat:
|
|
627 |
max-height: 200px;
|
628 |
border-radius: 8px;
|
629 |
}
|
630 |
-
/* Remove clear image buttons */
|
631 |
.clear-button {
|
632 |
display: none;
|
633 |
}
|
634 |
-
/* Animate chatbot messages */
|
635 |
.chatbot-container .message {
|
636 |
opacity: 0;
|
637 |
animation: fadeIn 0.5s ease-in-out forwards;
|
@@ -646,7 +625,6 @@ class XylariaChat:
|
|
646 |
transform: translateY(0);
|
647 |
}
|
648 |
}
|
649 |
-
/* Accordion Styling and Animation */
|
650 |
.gr-accordion-button {
|
651 |
background-color: #f0f0f0 !important;
|
652 |
border-radius: 8px !important;
|
@@ -669,9 +647,8 @@ class XylariaChat:
|
|
669 |
max-height: 0 !important;
|
670 |
}
|
671 |
.gr-accordion-active .gr-accordion-content {
|
672 |
-
max-height: 500px !important;
|
673 |
}
|
674 |
-
/* Accordion Animation - Upwards */
|
675 |
.gr-accordion {
|
676 |
display: flex;
|
677 |
flex-direction: column-reverse;
|
|
|
47 |
"strategy_adjustment": ""
|
48 |
}
|
49 |
|
|
|
50 |
self.internal_state = {
|
51 |
"emotions": {
|
52 |
+
"valence": 0.5,
|
53 |
+
"arousal": 0.5,
|
54 |
+
"dominance": 0.5,
|
55 |
+
"curiosity": 0.5,
|
56 |
+
"frustration": 0.0,
|
57 |
+
"confidence": 0.7,
|
58 |
+
"sadness": 0.0,
|
59 |
+
"joy": 0.0
|
60 |
},
|
61 |
"cognitive_load": {
|
62 |
+
"memory_load": 0.0,
|
63 |
+
"processing_intensity": 0.0
|
64 |
},
|
65 |
"introspection_level": 0.0,
|
66 |
+
"engagement_level": 0.5
|
67 |
}
|
68 |
|
|
|
69 |
self.goals = [
|
70 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
71 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
72 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
73 |
+
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
74 |
+
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
75 |
]
|
76 |
|
77 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
78 |
|
79 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
|
|
80 |
for emotion, delta in emotion_deltas.items():
|
81 |
if emotion in self.internal_state["emotions"]:
|
82 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
83 |
|
|
|
84 |
for load_type, delta in cognitive_load_deltas.items():
|
85 |
if load_type in self.internal_state["cognitive_load"]:
|
86 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
87 |
|
|
|
88 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
89 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
90 |
|
|
|
91 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
92 |
+
self.goals[3]["status"] = "active"
|
93 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
94 |
+
self.goals[4]["status"] = "active"
|
95 |
|
96 |
def update_knowledge_graph(self, entities, relationships):
|
97 |
for entity in entities:
|
|
|
115 |
"bias_detection": bias_score,
|
116 |
"strategy_adjustment": strategy_adjustment
|
117 |
}
|
118 |
+
|
119 |
def calculate_coherence(self):
|
|
|
120 |
if not self.conversation_history:
|
121 |
return 0.95
|
122 |
|
|
|
132 |
|
133 |
average_coherence = np.mean(coherence_scores)
|
134 |
|
|
|
135 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
136 |
+
average_coherence -= 0.1
|
137 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
138 |
+
average_coherence -= 0.15
|
139 |
|
140 |
return np.clip(average_coherence, 0.0, 1.0)
|
141 |
|
142 |
def calculate_relevance(self):
|
|
|
143 |
if not self.conversation_history:
|
144 |
return 0.9
|
145 |
|
|
|
147 |
relevant_entities = self.extract_entities(last_user_message)
|
148 |
relevance_score = 0
|
149 |
|
|
|
150 |
for entity in relevant_entities:
|
151 |
if entity in self.knowledge_graph:
|
152 |
relevance_score += 0.2
|
153 |
|
|
|
154 |
for goal in self.goals:
|
155 |
if goal["status"] == "active":
|
156 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
157 |
+
relevance_score += goal["priority"] * 0.5
|
158 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
159 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
160 |
+
relevance_score += goal["priority"] * 0.3
|
161 |
|
162 |
return np.clip(relevance_score, 0.0, 1.0)
|
163 |
|
164 |
def detect_bias(self):
|
|
|
165 |
bias_score = 0.0
|
166 |
|
|
|
167 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
168 |
if recent_messages:
|
169 |
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
170 |
if average_valence < 0.4 or average_valence > 0.6:
|
171 |
+
bias_score += 0.2
|
172 |
|
|
|
173 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
174 |
bias_score += 0.15
|
175 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
|
|
178 |
return np.clip(bias_score, 0.0, 1.0)
|
179 |
|
180 |
def suggest_strategy_adjustment(self):
|
|
|
181 |
adjustments = []
|
182 |
|
183 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
|
|
187 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
188 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
189 |
|
|
|
190 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
191 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
192 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
|
|
220 |
return introspection_report
|
221 |
|
222 |
def adjust_response_based_on_state(self, response):
|
|
|
223 |
if self.internal_state["introspection_level"] > 0.7:
|
224 |
response = self.introspect() + "\n\n" + response
|
225 |
|
|
|
228 |
curiosity = self.internal_state["emotions"]["curiosity"]
|
229 |
frustration = self.internal_state["emotions"]["frustration"]
|
230 |
confidence = self.internal_state["emotions"]["confidence"]
|
231 |
+
sadness = self.internal_state["emotions"]["sadness"]
|
232 |
+
joy = self.internal_state["emotions"]["joy"]
|
233 |
|
|
|
234 |
if valence < 0.4:
|
235 |
if arousal > 0.6:
|
236 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
237 |
else:
|
238 |
+
if sadness > 0.6:
|
239 |
+
response = "I'm feeling quite down at the moment, but I'll try to help. " + response
|
240 |
+
else:
|
241 |
+
response = "I'm not feeling my best at the moment, but I'll try to help. " + response
|
242 |
+
|
243 |
elif valence > 0.6:
|
244 |
if arousal > 0.6:
|
245 |
+
if joy > 0.6:
|
246 |
+
response = "I'm feeling fantastic and ready to assist! " + response
|
247 |
+
else:
|
248 |
+
response = "I'm feeling quite energized and ready to assist! " + response
|
249 |
else:
|
250 |
response = "I'm in a good mood and happy to help. " + response
|
251 |
+
|
|
|
252 |
if curiosity > 0.7:
|
253 |
response += " I'm very curious about this topic, could you tell me more?"
|
254 |
if frustration > 0.5:
|
|
|
256 |
if confidence < 0.5:
|
257 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
258 |
|
|
|
259 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
260 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
261 |
|
262 |
return response
|
263 |
|
264 |
def update_goals(self, user_feedback):
|
|
|
265 |
feedback_lower = user_feedback.lower()
|
266 |
|
|
|
267 |
if "helpful" in feedback_lower:
|
268 |
for goal in self.goals:
|
269 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
|
|
275 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
276 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
277 |
|
|
|
278 |
if "learn more" in feedback_lower:
|
279 |
for goal in self.goals:
|
280 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
|
286 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
287 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
288 |
|
|
|
289 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
290 |
for goal in self.goals:
|
291 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
|
332 |
"dominance": 0.5,
|
333 |
"curiosity": 0.5,
|
334 |
"frustration": 0.0,
|
335 |
+
"confidence": 0.7,
|
336 |
+
"sadness": 0.0,
|
337 |
+
"joy": 0.0
|
338 |
},
|
339 |
"cognitive_load": {
|
340 |
"memory_load": 0.0,
|
|
|
468 |
return f"Error generating response: {str(e)}"
|
469 |
|
470 |
def extract_entities(self, text):
|
|
|
|
|
471 |
words = text.split()
|
472 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
473 |
return entities
|
474 |
|
475 |
def extract_relationships(self, text):
|
|
|
|
|
476 |
sentences = text.split('.')
|
477 |
relationships = []
|
478 |
for sentence in sentences:
|
|
|
482 |
if words[i].istitle() and words[i+2].istitle():
|
483 |
relationships.append((words[i], words[i+1], words[i+2]))
|
484 |
return relationships
|
485 |
+
|
486 |
def messages_to_prompt(self, messages):
|
487 |
prompt = ""
|
488 |
for msg in messages:
|
|
|
513 |
else:
|
514 |
response_stream = self.get_response(message)
|
515 |
|
|
|
516 |
if isinstance(response_stream, str):
|
517 |
updated_history = chat_history + [[message, response_stream]]
|
518 |
yield "", updated_history, None, None
|
|
|
539 |
|
540 |
self.update_goals(message)
|
541 |
|
|
|
542 |
emotion_deltas = {}
|
543 |
cognitive_load_deltas = {}
|
544 |
engagement_delta = 0
|
545 |
|
546 |
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
547 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1, "sadness": 0.3, "joy": -0.2})
|
548 |
engagement_delta = -0.1
|
549 |
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
550 |
+
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1, "sadness": -0.2, "joy": 0.3})
|
551 |
engagement_delta = 0.2
|
552 |
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
553 |
+
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2, "sadness": 0.1, "joy": -0.1})
|
554 |
engagement_delta = -0.2
|
555 |
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
556 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2, "sadness": 0.2})
|
557 |
engagement_delta = -0.1
|
558 |
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
559 |
+
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3, "sadness": -0.1, "joy": 0.1})
|
560 |
engagement_delta = 0.3
|
561 |
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
|
562 |
cognitive_load_deltas.update({"processing_intensity": 0.2})
|
563 |
+
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1, "sadness": 0.1})
|
564 |
engagement_delta = 0.1
|
565 |
else:
|
566 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
|
|
573 |
|
574 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
575 |
|
|
|
576 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
577 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
578 |
|
579 |
if len(self.conversation_history) > 10:
|
580 |
self.conversation_history = self.conversation_history[-10:]
|
581 |
|
|
|
582 |
custom_css = """
|
583 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
584 |
body, .gradio-container {
|
|
|
592 |
.gradio-container button {
|
593 |
font-family: 'Inter', sans-serif !important;
|
594 |
}
|
|
|
595 |
.image-container {
|
596 |
display: flex;
|
597 |
gap: 10px;
|
|
|
608 |
max-height: 200px;
|
609 |
border-radius: 8px;
|
610 |
}
|
|
|
611 |
.clear-button {
|
612 |
display: none;
|
613 |
}
|
|
|
614 |
.chatbot-container .message {
|
615 |
opacity: 0;
|
616 |
animation: fadeIn 0.5s ease-in-out forwards;
|
|
|
625 |
transform: translateY(0);
|
626 |
}
|
627 |
}
|
|
|
628 |
.gr-accordion-button {
|
629 |
background-color: #f0f0f0 !important;
|
630 |
border-radius: 8px !important;
|
|
|
647 |
max-height: 0 !important;
|
648 |
}
|
649 |
.gr-accordion-active .gr-accordion-content {
|
650 |
+
max-height: 500px !important;
|
651 |
}
|
|
|
652 |
.gr-accordion {
|
653 |
display: flex;
|
654 |
flex-direction: column-reverse;
|