|
--- |
|
tags: |
|
- roberta |
|
library_name: peft |
|
datasets: |
|
- rotten_tomatoes |
|
pipeline_tag: text-classification |
|
|
|
--- |
|
|
|
# Adapter `solwol/roberta-sentiment-classifier-peft` for roberta-base |
|
|
|
<!-- PERT adapter for sentiment-classification. --> |
|
|
|
## Usage |
|
|
|
First, install `transformers` and `peft`: |
|
|
|
``` |
|
pip install -U transformers peft |
|
``` |
|
|
|
Now, the peft adapter can be loaded and activated like this: |
|
|
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForSequenceClassification, RobertaConfig |
|
|
|
config = RobertaConfig.from_pretrained( |
|
"roberta-base", |
|
id2label={0: "π", 1: "π"} |
|
) |
|
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", config=config) |
|
model = PeftModel.from_pretrained(model, "solwol/roberta-sentiment-classifier-peft") |
|
``` |
|
|
|
Next, to perform sentiment classification: |
|
|
|
```python |
|
from transformers import AutoTokenizer, TextClassificationPipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("roberta-base") |
|
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) |
|
classifier("This is awesome!") |
|
[{'label': 'π', 'score': 0.9765560626983643}] |
|
``` |
|
|