--- tags: - roberta library_name: peft datasets: - rotten_tomatoes pipeline_tag: text-classification --- # Adapter `solwol/roberta-sentiment-classifier-peft` for roberta-base ## Usage First, install `transformers` and `peft`: ``` pip install -U transformers peft ``` Now, the peft adapter can be loaded and activated like this: ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForSequenceClassification, RobertaConfig config = RobertaConfig.from_pretrained( "roberta-base", id2label={0: "👎", 1: "👍"} ) model = AutoModelForSequenceClassification.from_pretrained("roberta-base", config=config) model = PeftModel.from_pretrained(model, "solwol/roberta-sentiment-classifier-peft") ``` Next, to perform sentiment classification: ```python from transformers import AutoTokenizer, TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("roberta-base") classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) classifier("This is awesome!") [{'label': '👍', 'score': 0.9765560626983643}] ```