ggrazzioli's picture
Update README.md
6f13a50
metadata
tags:
  - text-classification
language:
  - pt
widget:
  - text: Gostei muito do serviço prestado
datasets:
  - ggrazzioli/cls_sentimento_sebrae
co2_eq_emissions:
  emissions: 0.6308403394105772

Model Trained

  • Problem type: Classificação de sentimentos em dataset interno do Sebrae RS
  • Model ID: 96390146647
  • CO2 Emissions (in grams): 0.6308
  • "id2label": {"0": "Negativo", "1": "Neutro", "2": "Positivo"}

Validation Metrics

  • Loss: 0.143
  • Accuracy: 0.965
  • Macro F1: 0.935
  • Micro F1: 0.965
  • Weighted F1: 0.964
  • Macro Precision: 0.938
  • Micro Precision: 0.965
  • Weighted Precision: 0.964
  • Macro Recall: 0.933
  • Micro Recall: 0.965
  • Weighted Recall: 0.965

Usage

Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("ggrazzioli/cls_sentimento_sebrae")

tokenizer = AutoTokenizer.from_pretrained("ggrazzioli/cls_sentimento_sebrae")

inputs = tokenizer("Gostei muito dos serviços gerados, recomendo a todos!", return_tensors="pt")

outputs = model(**inputs)