File size: 1,088 Bytes
1eb7e61 7819867 1eb7e61 7819867 1eb7e61 7819867 1eb7e61 7819867 1eb7e61 7819867 6f13a50 1eb7e61 7819867 1eb7e61 b32bfec 1eb7e61 b32bfec 1eb7e61 fc3252e 1eb7e61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
tags:
- text-classification
language:
- pt
widget:
- text: "Gostei muito do serviço prestado"
datasets:
- ggrazzioli/cls_sentimento_sebrae
co2_eq_emissions:
emissions: 0.6308403394105772
---
# Model Trained
- Problem type: Classificação de sentimentos em dataset interno do Sebrae RS
- Model ID: 96390146647
- CO2 Emissions (in grams): 0.6308
- "id2label": {"0": "Negativo", "1": "Neutro", "2": "Positivo"}
## Validation Metrics
- Loss: 0.143
- Accuracy: 0.965
- Macro F1: 0.935
- Micro F1: 0.965
- Weighted F1: 0.964
- Macro Precision: 0.938
- Micro Precision: 0.965
- Weighted Precision: 0.964
- Macro Recall: 0.933
- Micro Recall: 0.965
- Weighted Recall: 0.965
## Usage
Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ggrazzioli/cls_sentimento_sebrae")
tokenizer = AutoTokenizer.from_pretrained("ggrazzioli/cls_sentimento_sebrae")
inputs = tokenizer("Gostei muito dos serviços gerados, recomendo a todos!", return_tensors="pt")
outputs = model(**inputs)
``` |