File size: 1,088 Bytes
1eb7e61
 
 
 
 
 
7819867
1eb7e61
7819867
1eb7e61
 
 
 
7819867
1eb7e61
7819867
1eb7e61
 
7819867
6f13a50
1eb7e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7819867
1eb7e61
 
 
 
b32bfec
1eb7e61
b32bfec
1eb7e61
fc3252e
1eb7e61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
tags:
- text-classification
language:
- pt
widget:
- text: "Gostei muito do serviço prestado"
datasets:
- ggrazzioli/cls_sentimento_sebrae
co2_eq_emissions:
  emissions: 0.6308403394105772
---

# Model Trained

- Problem type: Classificação de sentimentos em dataset interno do Sebrae RS
- Model ID: 96390146647
- CO2 Emissions (in grams): 0.6308
- "id2label": {"0": "Negativo", "1": "Neutro", "2": "Positivo"}
  
## Validation Metrics

- Loss: 0.143
- Accuracy: 0.965
- Macro F1: 0.935
- Micro F1: 0.965
- Weighted F1: 0.964
- Macro Precision: 0.938
- Micro Precision: 0.965
- Weighted Precision: 0.964
- Macro Recall: 0.933
- Micro Recall: 0.965
- Weighted Recall: 0.965


## Usage

Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("ggrazzioli/cls_sentimento_sebrae")

tokenizer = AutoTokenizer.from_pretrained("ggrazzioli/cls_sentimento_sebrae")

inputs = tokenizer("Gostei muito dos serviços gerados, recomendo a todos!", return_tensors="pt")

outputs = model(**inputs)
```