Commit
·
d892022
1
Parent(s):
c385d98
add 108
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 108/paper.pdf +3 -0
- 108/replication_package/Code/Step1_MainAnalysisAndData.R +259 -0
- 108/replication_package/Code/Step2_AppendixAnalysis.R +320 -0
- 108/replication_package/Code/Step3_TablesAndFigures.R +630 -0
- 108/replication_package/Codebook.pdf +3 -0
- 108/replication_package/Data/CMPD_Employee_Demographics-2.csv +3 -0
- 108/replication_package/Data/FLInter_Contra.RData +3 -0
- 108/replication_package/Data/FLInter_Search.RData +3 -0
- 108/replication_package/Data/FLSearch_Exper_OLS.RData +3 -0
- 108/replication_package/Data/FLSearch_OLS.RData +3 -0
- 108/replication_package/Data/FLSearch_OLS_FE.RData +3 -0
- 108/replication_package/Data/FLSearch_Prop_OLS.RData +3 -0
- 108/replication_package/Data/FLSearch_Sm_OLS.RData +3 -0
- 108/replication_package/Data/FLSearch_StopType_OLS.RData +3 -0
- 108/replication_package/Data/FL_Aggregated-2.RData +3 -0
- 108/replication_package/Data/Fig1_Data-2.RData +3 -0
- 108/replication_package/Data/FlContra_Exper_OLS.RData +3 -0
- 108/replication_package/Data/FlContra_Logit.RData +3 -0
- 108/replication_package/Data/FlContra_OLS.RData +3 -0
- 108/replication_package/Data/FlContra_OLS_FE.RData +3 -0
- 108/replication_package/Data/FlContra_Prop_OLS.RData +3 -0
- 108/replication_package/Data/FlContra_Sm_OLS.RData +3 -0
- 108/replication_package/Data/FlContra_StopType_OLS.RData +3 -0
- 108/replication_package/Data/FlSearchRate_Exper_OLS.RData +3 -0
- 108/replication_package/Data/FlSearchRate_Inter_OLS.RData +3 -0
- 108/replication_package/Data/FlSearchRate_OLS.RData +3 -0
- 108/replication_package/Data/FlSearchRate_OLS_FE.RData +3 -0
- 108/replication_package/Data/FlSearchRate_StopType_OLS.RData +3 -0
- 108/replication_package/Data/FlStopRate_Exper_OLS.RData +3 -0
- 108/replication_package/Data/FlStopRate_Inter_OLS.RData +3 -0
- 108/replication_package/Data/FlStopRate_OLS.RData +3 -0
- 108/replication_package/Data/FlStopRate_OLS_FE.RData +3 -0
- 108/replication_package/Data/FlStopRate_StopType_OLS.RData +3 -0
- 108/replication_package/Data/FloridaLarge.RData +3 -0
- 108/replication_package/Data/FloridaSmall.RData +3 -0
- 108/replication_package/Data/NCInter_Search.RData +3 -0
- 108/replication_package/Data/NCSearch_Exper_OLS.RData +3 -0
- 108/replication_package/Data/NCSearch_Logit.RData +3 -0
- 108/replication_package/Data/NCSearch_OLS.RData +3 -0
- 108/replication_package/Data/NCSearch_Sm_OLS.RData +3 -0
- 108/replication_package/Data/NCSearch_StopType_OLS.RData +3 -0
- 108/replication_package/Data/NorthCarolina.RData +3 -0
- 108/replication_package/Data/Officer_Traffic_Stops_Original.csv +3 -0
- 108/replication_package/Data/Officer_Traffic_Stops_Update.csv +3 -0
- 108/replication_package/Data/fl_statewide_2019_08_13.csv +3 -0
- 108/replication_package/Figures/Fig1_PredProb.png +3 -0
- 108/replication_package/Figures/Fig2_PredProb.png +3 -0
- 108/replication_package/OutputFiles/Step1_MainAnalysisAndData.html +0 -0
- 108/replication_package/OutputFiles/Step2_AppendixAnalysis.html +0 -0
- 108/replication_package/OutputFiles/Step3_TablesAndFigures.html +0 -0
108/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b66be3b035bbc53e722346d2b7c0ee93865e87f98eb560a4303f2fca449eb93
|
3 |
+
size 1047731
|
108/replication_package/Code/Step1_MainAnalysisAndData.R
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#######
|
2 |
+
#######
|
3 |
+
####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
|
4 |
+
####### This file cleans the raw data and runs the analysis for the body of the paper.
|
5 |
+
####### Last Updated: Jan. 2021
|
6 |
+
#######
|
7 |
+
#######
|
8 |
+
|
9 |
+
|
10 |
+
###
|
11 |
+
### 1. Setting up the space.
|
12 |
+
###
|
13 |
+
|
14 |
+
# Setting the working directory:
|
15 |
+
setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
|
16 |
+
|
17 |
+
# Installing the needed libraries:
|
18 |
+
#install.packages("pscl",dependencies = T)
|
19 |
+
#install.packages("ggplot2",dependencies = T)
|
20 |
+
#install.packages("texreg",dependencies = T)
|
21 |
+
#install.packages("readr",dependencies = T)
|
22 |
+
#install.packages("arm",dependencies = T)
|
23 |
+
#install.packages("dplyr",dependencies = T)
|
24 |
+
|
25 |
+
# Opening up those libraries:
|
26 |
+
library(dplyr)
|
27 |
+
library(ggplot2)
|
28 |
+
library(texreg)
|
29 |
+
library(readr)
|
30 |
+
library(pscl)
|
31 |
+
library(arm)
|
32 |
+
|
33 |
+
# Loading the raw data:
|
34 |
+
nc_new = read_csv("Data/Officer_Traffic_Stops_Update.csv")
|
35 |
+
nc_old = read_csv("Data/Officer_Traffic_Stops_Original.csv")
|
36 |
+
nc = bind_rows(nc_new,nc_old)
|
37 |
+
fl = read_csv("Data/fl_statewide_2019_08_13.csv")
|
38 |
+
|
39 |
+
|
40 |
+
###
|
41 |
+
### 2. Producing the data sets for each table.
|
42 |
+
###
|
43 |
+
|
44 |
+
# Cleaning the NC Data
|
45 |
+
nc$driver_re = as.numeric(ifelse(nc$Driver_Race=="White"&
|
46 |
+
nc$Driver_Ethnicity=="Non-Hispanic","0",
|
47 |
+
ifelse(nc$Driver_Race=="Black"&
|
48 |
+
nc$Driver_Ethnicity=="Non-Hispanic","1",
|
49 |
+
ifelse(nc$Driver_Ethnicity=="Hispanic","2",NA))))
|
50 |
+
nc$of_rg = ifelse(nc$Officer_Race=="White",
|
51 |
+
ifelse(nc$Officer_Gender=="Male","0","1"),
|
52 |
+
ifelse(nc$Officer_Race=="Black/African American",
|
53 |
+
ifelse(nc$Officer_Gender=="Male","2","3"),NA))
|
54 |
+
nc$of_race = ifelse(nc$Officer_Race=="White",0,
|
55 |
+
ifelse(nc$Officer_Race=="Black/African American",1,NA))
|
56 |
+
nc$of_gender = ifelse(nc$Officer_Gender=="Male","0","1")
|
57 |
+
nc$investigatory = ifelse(grepl("Impaired|Speeding|Light|Movement",
|
58 |
+
as.character(nc$Reason_for_Stop)),0,1)
|
59 |
+
nc$investigatory = ifelse(grepl("Check",as.character(nc$Reason_for_Stop)),
|
60 |
+
NA,nc$investigatory)
|
61 |
+
nc$race_gender = ifelse(nc$driver_re=="0",
|
62 |
+
ifelse(nc$Driver_Gender=="Male","0","1"),
|
63 |
+
ifelse(nc$driver_re=="1",
|
64 |
+
ifelse(nc$Driver_Gender=="Male","2","3"),NA))
|
65 |
+
nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0)
|
66 |
+
|
67 |
+
nc$subject_sex = tolower(nc$Driver_Gender)
|
68 |
+
nc$subject_age = nc$Driver_Age
|
69 |
+
nc$officer_sex = tolower(nc$Officer_Gender)
|
70 |
+
nc$month = apply(as.matrix(as.character(nc$Month_of_Stop)),1,
|
71 |
+
function(x){strsplit(x,"/",fixed=T)[[1]][2]})
|
72 |
+
nc$year = apply(as.matrix(as.character(nc$Month_of_Stop)),1,
|
73 |
+
function(x){strsplit(x,"/",fixed=T)[[1]][1]})
|
74 |
+
|
75 |
+
nc$arrest = ifelse(nc$Result_of_Stop=="Arrest",1,0)
|
76 |
+
save(nc,file="Data/NorthCarolina.RData")
|
77 |
+
|
78 |
+
# Cleaning the FL data.
|
79 |
+
violations_list = strsplit(paste(fl$reason_for_stop,collapse = "|"),"|",fixed = T)
|
80 |
+
violations_list_small = unique(violations_list[[1]])[2:71]
|
81 |
+
violations_indicator = violations_list_small[c(1,2,5,6,7,9,10,14,19,
|
82 |
+
20,23,40,45)]
|
83 |
+
fl$investigatory = ifelse(is.na(fl$violation),NA,
|
84 |
+
ifelse(fl$violation %in% violations_indicator, 0, 1))
|
85 |
+
fl$contraband_found = ifelse(grepl("contraband",
|
86 |
+
tolower(fl$violation)),1,0)
|
87 |
+
fl$race_gender = ifelse(fl$subject_race=="white",
|
88 |
+
ifelse(fl$subject_sex=="male",0,1),
|
89 |
+
ifelse(fl$subject_race=="black",
|
90 |
+
ifelse(fl$subject_sex=="male",2,3),
|
91 |
+
ifelse(fl$subject_race=="hispanic",
|
92 |
+
ifelse(fl$subject_sex=="male",4,5),NA)))
|
93 |
+
fl$of_rg = ifelse(fl$officer_race=="white",
|
94 |
+
ifelse(fl$officer_sex=="male",0,1),
|
95 |
+
ifelse(fl$officer_race=="black",
|
96 |
+
ifelse(fl$officer_sex=="male",2,3),
|
97 |
+
ifelse(fl$officer_race=="hispanic",
|
98 |
+
ifelse(fl$officer_sex=="male",4,5),NA)))
|
99 |
+
fl$of_race = ifelse(fl$officer_race=="white",0,
|
100 |
+
ifelse(fl$officer_race=="black",1,
|
101 |
+
ifelse(fl$officer_race=="hispanic",2,
|
102 |
+
ifelse(fl$officer_race=="asian/pacific islander",3,
|
103 |
+
ifelse(fl$officer_race=="other",4,NA)))))
|
104 |
+
fl$of_gender = ifelse(fl$officer_sex=="male",0,1)
|
105 |
+
fl$out_of_state = ifelse(fl$vehicle_registration_state=="FL",0,1)
|
106 |
+
fl$hour_of_day = apply(as.matrix(as.character(fl$time)),1,
|
107 |
+
function(x)(strsplit(x,":",fixed = T)[[1]][1]))
|
108 |
+
fl$month = apply(as.matrix(as.character(fl$date)),1,
|
109 |
+
function(x)(paste(strsplit(x,"-",fixed = T)[[1]][2],
|
110 |
+
collapse = "_")))
|
111 |
+
fl$year = apply(as.matrix(as.character(fl$date)),1,
|
112 |
+
function(x)(paste(strsplit(x,"-",fixed = T)[[1]][1],
|
113 |
+
collapse = "_")))
|
114 |
+
fl = subset(fl,fl$year!="2016"&fl$year!="2017"&fl$year!="2018") #Narrows down to complete years that don't report extreme misingness on key outcome.
|
115 |
+
fl.officers = names(table(fl$officer_id_hash))[table(fl$officer_id_hash)>1000]
|
116 |
+
fl$officers_include = ifelse(fl$officer_id_hash%in%fl.officers,1,0)
|
117 |
+
fl.counties = names(table(fl$county_name))[table(fl$county_name)>1000]
|
118 |
+
fl$county_include = ifelse(fl$county_name%in%fl.counties,1,0)
|
119 |
+
fl.ag.id = aggregate(fl$of_gender,
|
120 |
+
list(fl$officer_id_hash,fl$year,fl$county_name),
|
121 |
+
mean)
|
122 |
+
fl.ag.id$officer = ifelse(!is.na(fl.ag.id$x),1,0)
|
123 |
+
fl.ag.gender = aggregate(fl.ag.id[,c("x","officer")],
|
124 |
+
list(fl.ag.id$Group.2,fl.ag.id$Group.3),
|
125 |
+
sum,na.rm=T)
|
126 |
+
fl.ag.gender$prop.female = fl.ag.gender$x/fl.ag.gender$officer
|
127 |
+
colnames(fl.ag.gender) = c("year","county_name","count.female","tot.officer","prop.female")
|
128 |
+
fl = merge(fl,fl.ag.gender,by=c("year","county_name"),all.x=T)
|
129 |
+
fl$officer_exclude = ifelse(fl$officer_years_of_service<0|fl$officer_years_of_service>40,1,0)
|
130 |
+
fl.ag.id2 = aggregate(fl$of_gender,
|
131 |
+
list(fl$officer_id_hash),
|
132 |
+
mean)
|
133 |
+
fl$search_occur = ifelse(fl$search_conducted == 0, 0,
|
134 |
+
ifelse(fl$search_basis != "other",1,NA))
|
135 |
+
fl$contra = ifelse(is.na(fl$search_occur),0,
|
136 |
+
ifelse(fl$search_occur==1,fl$contraband_found,0))
|
137 |
+
|
138 |
+
complete = complete.cases(fl[,c("search_occur","race_gender","subject_age",
|
139 |
+
"out_of_state","investigatory","of_gender",
|
140 |
+
"of_race","officer_years_of_service","officer_age",
|
141 |
+
"hour_of_day","month","year","county_name")])
|
142 |
+
fl.sm = fl[complete,]
|
143 |
+
complete2 = complete.cases(fl[,c("search_occur","of_gender")])
|
144 |
+
table(complete)
|
145 |
+
table(complete2)
|
146 |
+
|
147 |
+
fl.missingness = apply(fl[,c("search_occur","race_gender","subject_age",
|
148 |
+
"out_of_state","investigatory","of_gender",
|
149 |
+
"of_race","officer_years_of_service","officer_age",
|
150 |
+
"county_name")],
|
151 |
+
2,
|
152 |
+
FUN = function(x){table(is.na(x))})
|
153 |
+
save(fl,file="Data/FloridaLarge.RData")
|
154 |
+
save(fl.sm,file="Data/FloridaSmall.RData")
|
155 |
+
|
156 |
+
fl$stops = ifelse(!is.na(fl$search_occur),1,0)
|
157 |
+
fl$contra.ttest = ifelse(fl$search_occur==1,fl$contra,NA)
|
158 |
+
prop.test(table(fl$of_gender,fl$contra.ttest))
|
159 |
+
fl$of_exper = ifelse(fl$officer_years_of_service>=
|
160 |
+
mean(fl$officer_years_of_service,na.rm=T),1,0)
|
161 |
+
fl$of_age = ifelse(fl$officer_age<30,1,
|
162 |
+
ifelse(fl$officer_age>64,3,2))
|
163 |
+
fl$driver_age = ifelse(fl$subject_age<30,1,
|
164 |
+
ifelse(fl$subject_age>64,3,2))
|
165 |
+
fl$hour_of_day2 = as.numeric(fl$hour_of_day)
|
166 |
+
fl$tod = ifelse(fl$hour_of_day2<3,1,
|
167 |
+
ifelse(fl$hour_of_day2<6,2,
|
168 |
+
ifelse(fl$hour_of_day2<9,3,
|
169 |
+
ifelse(fl$hour_of_day2<12,4,
|
170 |
+
ifelse(fl$hour_of_day2<15,5,
|
171 |
+
ifelse(fl$hour_of_day2<18,6,
|
172 |
+
ifelse(fl$hour_of_day2<21,7,8)))))))
|
173 |
+
|
174 |
+
fl.ag.officers = aggregate(fl[,c("stops","search_occur","contra")],
|
175 |
+
by=list(fl$officer_id_hash,
|
176 |
+
fl$of_race,fl$of_gender,
|
177 |
+
fl$of_exper,fl$of_age,
|
178 |
+
fl$race_gender,fl$driver_age,
|
179 |
+
fl$out_of_state,fl$investigatory,
|
180 |
+
fl$year,fl$tod),
|
181 |
+
sum,na.rm=T)
|
182 |
+
colnames(fl.ag.officers) = c("officer_id","of_race","of_gender","of_exper",
|
183 |
+
"of_age","race_gender","driver_age",
|
184 |
+
"out_of_state","investigatory","year",
|
185 |
+
"tod","stops","search_occur","contra")
|
186 |
+
fl.ag.officers$contra.search.rate = (fl.ag.officers$contra/fl.ag.officers$search_occur)*10
|
187 |
+
fl.ag.officers$contra.stop.rate = (fl.ag.officers$contra/fl.ag.officers$stops)*100
|
188 |
+
save(fl.ag.officers,file="Data/FL_Aggregated.RData")
|
189 |
+
|
190 |
+
# Data for Figure 1
|
191 |
+
search.df = data.frame("Department" = c("CPD","CPD","FHP","FHP"),
|
192 |
+
"Gender" = c("Male","Female","Male","Female"),
|
193 |
+
"Rate" = c(prop.table(table(nc$of_gender,nc$search),1)[,2],
|
194 |
+
prop.table(table(fl$of_gender[fl.sm$county_include==1&
|
195 |
+
fl.sm$officer_exclude==0],
|
196 |
+
fl$search_occur[fl.sm$county_include==1&
|
197 |
+
fl.sm$officer_exclude==0]),1)[,2]))
|
198 |
+
save(search.df,file="Data/Fig1_Data.RData")
|
199 |
+
|
200 |
+
###
|
201 |
+
### 3. Regressions
|
202 |
+
###
|
203 |
+
|
204 |
+
#
|
205 |
+
# For the Main Text:
|
206 |
+
#
|
207 |
+
|
208 |
+
# Search Regressions
|
209 |
+
fl.search.sm = lm(search_occur~factor(of_gender),data=fl)
|
210 |
+
save(fl.search.sm, file="Data/FLSearch_Sm_OLS.RData")
|
211 |
+
fl.search = lm(search_occur~factor(race_gender)+
|
212 |
+
subject_age+out_of_state+
|
213 |
+
investigatory+
|
214 |
+
factor(of_gender)+factor(of_race)+
|
215 |
+
officer_years_of_service+officer_age+
|
216 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
217 |
+
factor(county_name),
|
218 |
+
data=fl.sm,
|
219 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
|
220 |
+
save(fl.search,file="Data/FLSearch_OLS.RData")
|
221 |
+
nc.search.sm = lm(search~factor(of_gender),data = nc)
|
222 |
+
save(nc.search.sm,file="Data/NCSearch_Sm_OLS.RData")
|
223 |
+
nc.search = lm(search~factor(race_gender)+subject_age+
|
224 |
+
investigatory+
|
225 |
+
factor(of_race)+
|
226 |
+
factor(of_gender)+Officer_Years_of_Service+
|
227 |
+
factor(month)+factor(year)+
|
228 |
+
factor(CMPD_Division),
|
229 |
+
data=nc)
|
230 |
+
save(nc.search,file="Data/NCSearch_OLS.RData")
|
231 |
+
|
232 |
+
# Contraband Regressions
|
233 |
+
fl.contra = lm(contra~factor(race_gender)+
|
234 |
+
subject_age+out_of_state+
|
235 |
+
investigatory+
|
236 |
+
factor(of_gender)+factor(of_race)+
|
237 |
+
officer_years_of_service+officer_age+
|
238 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
239 |
+
factor(county_name),
|
240 |
+
data=fl.sm,
|
241 |
+
subset=fl.sm$county_include==1&
|
242 |
+
fl.sm$search_occur==1&
|
243 |
+
fl.sm$officer_exclude==0)
|
244 |
+
save(fl.contra,file="Data/FlContra_OLS.RData")
|
245 |
+
contra.search.rate.reg = lm(contra.search.rate ~ factor(of_gender) + factor(of_exper) +
|
246 |
+
factor(of_age) +factor(of_race) +
|
247 |
+
factor(race_gender) + factor(driver_age)+
|
248 |
+
investigatory + out_of_state +
|
249 |
+
factor(year)+factor(tod),
|
250 |
+
data=fl.ag.officers,
|
251 |
+
subset=fl.ag.officers$search_occur>0)
|
252 |
+
save(contra.search.rate.reg,file="Data/FlSearchRate_OLS.RData")
|
253 |
+
contra.stop.rate.reg = lm(contra.stop.rate ~ factor(of_gender) + factor(of_exper) +
|
254 |
+
factor(of_age) + factor(of_race) +
|
255 |
+
factor(race_gender) + factor(driver_age)+
|
256 |
+
investigatory + out_of_state +
|
257 |
+
factor(year)+factor(tod),
|
258 |
+
data=fl.ag.officers)
|
259 |
+
save(contra.stop.rate.reg,file="Data/FlStopRate_OLS.RData")
|
108/replication_package/Code/Step2_AppendixAnalysis.R
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#######
|
2 |
+
#######
|
3 |
+
####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
|
4 |
+
####### This file runs most of the supplemental regressions shown in the appendix.
|
5 |
+
####### Last Updated: Jan. 2021
|
6 |
+
#######
|
7 |
+
#######
|
8 |
+
|
9 |
+
# Opening up those libraries:
|
10 |
+
library(dplyr)
|
11 |
+
library(ggplot2)
|
12 |
+
library(texreg)
|
13 |
+
library(readr)
|
14 |
+
library(pscl)
|
15 |
+
library(arm)
|
16 |
+
|
17 |
+
# Setting the working directory:
|
18 |
+
setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
|
19 |
+
|
20 |
+
#
|
21 |
+
# Appendix: Alternative Specifications
|
22 |
+
#
|
23 |
+
|
24 |
+
# Clearing the workspace.
|
25 |
+
rm(list = ls())
|
26 |
+
|
27 |
+
# Loading in the Data
|
28 |
+
load("Data/FloridaSmall.RData")
|
29 |
+
load("Data/FL_Aggregated.RData")
|
30 |
+
|
31 |
+
# FE for Officer
|
32 |
+
fl.search = lmer(search_occur~factor(race_gender)+
|
33 |
+
subject_age+out_of_state+
|
34 |
+
investigatory+
|
35 |
+
factor(of_gender)+factor(of_race)+
|
36 |
+
officer_years_of_service+officer_age+
|
37 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
38 |
+
factor(county_name)+(1|officer_id_hash),
|
39 |
+
data=fl.sm,
|
40 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
|
41 |
+
save(fl.search,file="Data/FLSearch_OLS_FE.RData")
|
42 |
+
fl.contra = lmer(contra~factor(race_gender)+
|
43 |
+
subject_age+out_of_state+
|
44 |
+
investigatory+
|
45 |
+
factor(of_gender)+factor(of_race)+
|
46 |
+
officer_years_of_service+officer_age+
|
47 |
+
factor(hour_of_day)+factor(month)+factor(year)+factor(county_name)+
|
48 |
+
(1|officer_id_hash),
|
49 |
+
data=fl.sm,
|
50 |
+
subset=fl.sm$county_include==1&
|
51 |
+
fl.sm$search_occur==1&
|
52 |
+
fl.sm$officer_exclude==0)
|
53 |
+
save(fl.contra,file="Data/FlContra_OLS_FE.RData")
|
54 |
+
contra.search.rate.reg = lmer(contra.search.rate ~ factor(of_gender) + factor(of_exper) +
|
55 |
+
factor(of_age) +factor(of_race) +
|
56 |
+
factor(race_gender) + factor(driver_age)+
|
57 |
+
investigatory + out_of_state +
|
58 |
+
factor(year)+factor(tod)+
|
59 |
+
(1|officer_id),
|
60 |
+
data=fl.ag.officers,
|
61 |
+
subset=fl.ag.officers$search_occur>0)
|
62 |
+
save(contra.search.rate.reg,file="Data/FlSearchRate_OLS_FE.RData")
|
63 |
+
contra.stop.rate.reg = lmer(contra.stop.rate ~ factor(of_gender) + factor(of_exper) +
|
64 |
+
factor(of_age) + factor(of_race) +
|
65 |
+
factor(race_gender) + factor(driver_age)+
|
66 |
+
investigatory + out_of_state +
|
67 |
+
factor(year)+factor(tod)+(1|officer_id),
|
68 |
+
data=fl.ag.officers)
|
69 |
+
save(contra.stop.rate.reg,file="Data/FlStopRate_OLS_FE.RData")
|
70 |
+
|
71 |
+
# Logistc Regressions
|
72 |
+
rm(list = ls())
|
73 |
+
|
74 |
+
load("Data/NorthCarolina.RData")
|
75 |
+
load("Data/FloridaSmall.RData")
|
76 |
+
|
77 |
+
fl.search = glm(search_occur~factor(race_gender)+
|
78 |
+
subject_age+out_of_state+
|
79 |
+
investigatory+
|
80 |
+
factor(of_gender)+factor(of_race)+
|
81 |
+
officer_years_of_service+officer_age+
|
82 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
83 |
+
factor(county_name),
|
84 |
+
data=fl.sm,family="binomial",
|
85 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
|
86 |
+
save(fl.search,file="Data/FLSearch_Logit.RData")
|
87 |
+
nc.search = glm(search~factor(race_gender)+subject_age+
|
88 |
+
investigatory+
|
89 |
+
factor(of_race)+
|
90 |
+
factor(of_gender)+Officer_Years_of_Service+
|
91 |
+
factor(month)+factor(year)+
|
92 |
+
factor(CMPD_Division),
|
93 |
+
family="binomial",
|
94 |
+
data=nc)
|
95 |
+
save(nc.search,file="Data/NCSearch_Logit.RData")
|
96 |
+
fl.contra = glm(contra~factor(race_gender)+
|
97 |
+
subject_age+out_of_state+
|
98 |
+
investigatory+
|
99 |
+
factor(of_gender)+factor(of_race)+
|
100 |
+
officer_years_of_service+officer_age+
|
101 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
102 |
+
factor(county_name),
|
103 |
+
data=fl.sm, family = "binomial",
|
104 |
+
subset=fl.sm$county_include==1&
|
105 |
+
fl.sm$search_occur==1&
|
106 |
+
fl.sm$officer_exclude==0)
|
107 |
+
save(fl.contra,file="Data/FlContra_Logit.RData")
|
108 |
+
|
109 |
+
|
110 |
+
#
|
111 |
+
# Appendix: Interaction Models
|
112 |
+
#
|
113 |
+
|
114 |
+
rm(list = ls())
|
115 |
+
|
116 |
+
load("Data/NorthCarolina.RData")
|
117 |
+
load("Data/FloridaSmall.RData")
|
118 |
+
load("Data/FloridaLarge.RData")
|
119 |
+
load("Data/FL_Aggregated.RData")
|
120 |
+
|
121 |
+
|
122 |
+
# Experience
|
123 |
+
fl.search.exper = lm(search_occur~factor(race_gender)+
|
124 |
+
subject_age+out_of_state+
|
125 |
+
investigatory+factor(of_race)+
|
126 |
+
factor(of_gender)*officer_years_of_service+officer_age+
|
127 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
128 |
+
factor(county_name),
|
129 |
+
data=fl.sm,
|
130 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
|
131 |
+
save(fl.search.exper,file="Data/FLSearch_Exper_OLS.RData")
|
132 |
+
nc.search.exper = lm(search~factor(race_gender)+subject_age+
|
133 |
+
investigatory+factor(of_race)+
|
134 |
+
factor(of_gender)*Officer_Years_of_Service+
|
135 |
+
factor(month)+factor(year)+
|
136 |
+
factor(CMPD_Division),
|
137 |
+
data=nc)
|
138 |
+
save(nc.search.exper,file="Data/NCSearch_Exper_OLS.RData")
|
139 |
+
fl.contra.exper = lm(contra~factor(race_gender)+
|
140 |
+
subject_age+out_of_state+
|
141 |
+
investigatory+factor(of_gender)*officer_years_of_service+
|
142 |
+
factor(of_race)+officer_age+
|
143 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
144 |
+
factor(county_name),
|
145 |
+
data=fl.sm,
|
146 |
+
subset=fl.sm$county_include==1&
|
147 |
+
fl.sm$search_occur==1&
|
148 |
+
fl.sm$officer_exclude==0)
|
149 |
+
save(fl.contra.exper,file="Data/FlContra_Exper_OLS.RData")
|
150 |
+
contra.search.rate.exper = lm(contra.search.rate ~ factor(of_gender)*factor(of_exper) +
|
151 |
+
investigatory+factor(of_age) +factor(of_race) +
|
152 |
+
factor(race_gender) + factor(driver_age)+
|
153 |
+
out_of_state +
|
154 |
+
factor(year),
|
155 |
+
data=fl.ag.officers,
|
156 |
+
subset=fl.ag.officers$search_occur>0)
|
157 |
+
save(contra.search.rate.exper,file="Data/FlSearchRate_Exper_OLS.RData")
|
158 |
+
contra.stop.rate.exper = lm(contra.stop.rate ~ factor(of_gender)*factor(of_exper) +
|
159 |
+
investigatory+
|
160 |
+
factor(of_age) +factor(of_race) +
|
161 |
+
factor(race_gender) + factor(driver_age)+
|
162 |
+
out_of_state +
|
163 |
+
factor(year),
|
164 |
+
data=fl.ag.officers)
|
165 |
+
save(contra.stop.rate.exper,file="Data/FlStopRate_Exper_OLS.RData")
|
166 |
+
|
167 |
+
# Prop Female
|
168 |
+
fl$male.officer = ifelse(fl$of_gender==1,0,1)
|
169 |
+
fl.ag = aggregate(fl$officer_id_hash,
|
170 |
+
by=list(fl$of_gender,fl$county_name,fl$year),
|
171 |
+
function(x){length(unique(x))})
|
172 |
+
fl.ag.m = fl.ag[fl.ag$Group.1==0,]
|
173 |
+
fl.ag.f = fl.ag[fl.ag$Group.1==1,]
|
174 |
+
colnames(fl.ag.m)=c("male","county_name","year","male.count")
|
175 |
+
colnames(fl.ag.f)=c("female","county_name","year","female.count")
|
176 |
+
fl.ag = merge(fl.ag.m,fl.ag.f,all=T)
|
177 |
+
fl.ag$male.count[is.na(fl.ag$male.count)] = 0
|
178 |
+
fl.ag$female.count[is.na(fl.ag$female.count)] = 0
|
179 |
+
fl.ag$female.prop = fl.ag$female.count/(fl.ag$female.count+fl.ag$male.count)
|
180 |
+
summary(fl.ag$female.prop)
|
181 |
+
fl.sm = merge(fl.sm,fl.ag)
|
182 |
+
fl.search.prop = lm(search_occur~factor(race_gender)+
|
183 |
+
subject_age+out_of_state+
|
184 |
+
investigatory+factor(of_race)+
|
185 |
+
factor(of_gender)*female.prop+officer_years_of_service+officer_age+
|
186 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
187 |
+
factor(county_name),
|
188 |
+
data=fl.sm,
|
189 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
|
190 |
+
save(fl.search.prop,file="Data/FLSearch_Prop_OLS.RData")
|
191 |
+
fl.contra.prop = lm(contra~factor(race_gender)+
|
192 |
+
subject_age+out_of_state+
|
193 |
+
investigatory+factor(of_gender)*female.prop+
|
194 |
+
officer_years_of_service+
|
195 |
+
factor(of_race)+officer_age+
|
196 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
197 |
+
factor(county_name),
|
198 |
+
data=fl.sm,
|
199 |
+
subset=fl.sm$county_include==1&
|
200 |
+
fl.sm$search_occur==1&
|
201 |
+
fl.sm$officer_exclude==0)
|
202 |
+
save(fl.contra.prop,file="Data/FlContra_Prop_OLS.RData")
|
203 |
+
|
204 |
+
# Stop Type
|
205 |
+
fl.search.st = lm(search_occur~factor(race_gender)+
|
206 |
+
subject_age+out_of_state+
|
207 |
+
factor(of_gender)+factor(of_race)+
|
208 |
+
officer_years_of_service+officer_age+
|
209 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
210 |
+
factor(county_name),
|
211 |
+
data=fl.sm,
|
212 |
+
subset=fl.sm$county_include==1&fl.sm$officer_exclude==0&
|
213 |
+
fl.sm$investigatory==1)
|
214 |
+
save(fl.search.st,file="Data/FLSearch_StopType_OLS.RData")
|
215 |
+
nc.search.st = lm(search~factor(race_gender)+subject_age+
|
216 |
+
factor(of_gender)+
|
217 |
+
factor(of_race)+Officer_Years_of_Service+
|
218 |
+
factor(month)+factor(year)+
|
219 |
+
factor(CMPD_Division),
|
220 |
+
data=nc,
|
221 |
+
subset = nc$investigatory==1)
|
222 |
+
save(nc.search.st,file="Data/NCSearch_StopType_OLS.RData")
|
223 |
+
fl.contra.st = lm(contra~factor(race_gender)+
|
224 |
+
subject_age+out_of_state+
|
225 |
+
factor(of_gender)+
|
226 |
+
factor(of_race)+
|
227 |
+
officer_years_of_service+officer_age+
|
228 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
229 |
+
factor(county_name),
|
230 |
+
data=fl.sm,
|
231 |
+
subset=fl.sm$county_include==1&
|
232 |
+
fl.sm$search_occur==1&
|
233 |
+
fl.sm$officer_exclude==0&
|
234 |
+
fl.sm$investigatory==1)
|
235 |
+
save(fl.contra.st,file="Data/FlContra_StopType_OLS.RData")
|
236 |
+
contra.search.rate.st = lm(contra.search.rate ~ factor(of_gender)+
|
237 |
+
factor(of_exper) +
|
238 |
+
factor(of_age) +factor(of_race) +
|
239 |
+
factor(race_gender) + factor(driver_age)+
|
240 |
+
out_of_state +
|
241 |
+
factor(year),
|
242 |
+
data=fl.ag.officers,
|
243 |
+
subset=fl.ag.officers$search_occur>0&
|
244 |
+
fl.ag.officers$investigatory==1)
|
245 |
+
save(contra.search.rate.st,file="Data/FlSearchRate_StopType_OLS.RData")
|
246 |
+
contra.stop.rate.st = lm(contra.stop.rate ~ factor(of_gender)+
|
247 |
+
factor(of_exper) +
|
248 |
+
factor(of_age) +factor(of_race) +
|
249 |
+
factor(race_gender) + factor(driver_age)+
|
250 |
+
out_of_state +
|
251 |
+
factor(year),
|
252 |
+
data=fl.ag.officers,
|
253 |
+
subset=fl.ag.officers$investigatory==1)
|
254 |
+
save(contra.stop.rate.st,file="Data/FlStopRate_StopType_OLS.RData")
|
255 |
+
|
256 |
+
# Driver Characteristics
|
257 |
+
fl.sm$subject_female = ifelse(fl.sm$subject_sex=="female",1,0)
|
258 |
+
fl.sm$subject_race2 = ifelse(fl.sm$subject_race=="white",0,
|
259 |
+
ifelse(fl.sm$subject_race=="black",1,2))
|
260 |
+
fl.search.inter = lm(search_occur~factor(of_gender)*factor(subject_female)+
|
261 |
+
factor(of_race)*factor(subject_race2)+
|
262 |
+
subject_age+out_of_state+investigatory+
|
263 |
+
officer_years_of_service+officer_age+
|
264 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
265 |
+
factor(county_name),
|
266 |
+
data=fl.sm,
|
267 |
+
subset=fl.sm$county_include==1&
|
268 |
+
fl.sm$officer_exclude==0&
|
269 |
+
as.numeric(fl.sm$of_race)<3)
|
270 |
+
save(fl.search.inter,file="Data/FLInter_Search.RData")
|
271 |
+
fl.contra.inter = lm(contra~factor(of_gender)*factor(subject_female)+
|
272 |
+
factor(of_race)*factor(subject_race2)+
|
273 |
+
subject_age+out_of_state+investigatory+
|
274 |
+
officer_years_of_service+officer_age+
|
275 |
+
factor(hour_of_day)+factor(month)+factor(year)+
|
276 |
+
factor(county_name),
|
277 |
+
data=fl.sm,
|
278 |
+
subset=fl.sm$search_occur==1&
|
279 |
+
fl.sm$county_include==1&
|
280 |
+
fl.sm$officer_exclude==0&
|
281 |
+
as.numeric(fl.sm$of_race)<3)
|
282 |
+
save(fl.contra.inter,file="Data/FLInter_Contra.RData")
|
283 |
+
fl.ag.officers$subject_female = ifelse(fl.ag.officers$race_gender%in%c(1,3,5),1,0)
|
284 |
+
fl.ag.officers$subject_race2 = ifelse(fl.ag.officers$race_gender%in%c(0,1),0,
|
285 |
+
ifelse(fl.ag.officers$race_gender%in%c(2,3),1,2))
|
286 |
+
contra.search.rate.inter = lm(contra.search.rate ~ factor(of_gender)*factor(subject_female) +
|
287 |
+
factor(of_race) * factor(subject_race2)+
|
288 |
+
factor(of_exper) + factor(of_age) +
|
289 |
+
factor(race_gender) + factor(driver_age)+
|
290 |
+
investigatory + out_of_state +
|
291 |
+
factor(year),
|
292 |
+
data=fl.ag.officers,
|
293 |
+
subset=fl.ag.officers$search_occur>0)
|
294 |
+
save(contra.search.rate.inter,file="Data/FlSearchRate_Inter_OLS.RData")
|
295 |
+
contra.stop.rate.inter = lm(contra.stop.rate ~ factor(of_gender)*factor(subject_female) +
|
296 |
+
factor(of_race) * factor(subject_race2)+
|
297 |
+
factor(of_exper) + factor(of_age) +
|
298 |
+
factor(race_gender) + factor(driver_age)+
|
299 |
+
investigatory + out_of_state +
|
300 |
+
factor(year),
|
301 |
+
data=fl.ag.officers)
|
302 |
+
save(contra.stop.rate.inter,file="Data/FlStopRate_Inter_OLS.RData")
|
303 |
+
|
304 |
+
nc$of_race = ifelse(nc$Officer_Race=="White",0,
|
305 |
+
ifelse(nc$Officer_Race=="Black/African American",1,
|
306 |
+
ifelse(nc$Officer_Race=="Hispanic/Latino",2,NA)))
|
307 |
+
nc$subject_female = ifelse(nc$Driver_Gender=="Female",1,0)
|
308 |
+
nc$subject_race2 = ifelse(nc$Driver_Race=="White"&
|
309 |
+
nc$Driver_Ethnicity=="Non-Hispanic",0,
|
310 |
+
ifelse(nc$Driver_Race=="Black"&
|
311 |
+
nc$Driver_Ethnicity=="Non-Hispanic",1,
|
312 |
+
ifelse(nc$Driver_Ethnicity=="Hispanic",2,NA)))
|
313 |
+
nc.search.inter = lm(search~factor(of_gender)*factor(subject_female)+
|
314 |
+
factor(of_race)*factor(subject_race2)+
|
315 |
+
subject_age+investigatory+
|
316 |
+
Officer_Years_of_Service+
|
317 |
+
factor(month)+factor(year)+
|
318 |
+
factor(CMPD_Division),
|
319 |
+
data=nc)
|
320 |
+
save(nc.search.inter,file = "Data/NCInter_Search.RData")
|
108/replication_package/Code/Step3_TablesAndFigures.R
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#######
|
2 |
+
#######
|
3 |
+
####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
|
4 |
+
####### This file produces the tables and figures seen in the paper and appendix.
|
5 |
+
####### Last Updated: Jan. 2021
|
6 |
+
#######
|
7 |
+
#######
|
8 |
+
|
9 |
+
###
|
10 |
+
### 1. Setting up the space.
|
11 |
+
###
|
12 |
+
|
13 |
+
# Setting the working directory:
|
14 |
+
setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
|
15 |
+
|
16 |
+
# Installing the needed libraries:
|
17 |
+
#install.packages("pscl",dependencies = T)
|
18 |
+
#install.packages("ggplot2",dependencies = T)
|
19 |
+
#install.packages("texreg",dependencies = T)
|
20 |
+
#install.packages("readr",dependencies = T)
|
21 |
+
#install.packages("arm",dependencies = T)
|
22 |
+
|
23 |
+
# Opening up those libraries:
|
24 |
+
library(ggplot2)
|
25 |
+
library(texreg)
|
26 |
+
library(readr)
|
27 |
+
library(pscl)
|
28 |
+
library(arm)
|
29 |
+
|
30 |
+
###
|
31 |
+
### 2. Body of the Paper
|
32 |
+
###
|
33 |
+
|
34 |
+
# Clearing the workspace + reading in data bit by bit to produce each table and figure.
|
35 |
+
rm(list = ls())
|
36 |
+
|
37 |
+
# Loading in the Data
|
38 |
+
load("Data/NorthCarolina.RData")
|
39 |
+
load("Data/FloridaLarge.RData")
|
40 |
+
load("Data/FloridaSmall.RData")
|
41 |
+
cmpd.employee = read_csv("Data/CMPD_Employee_Demographics.csv")
|
42 |
+
|
43 |
+
# Number of stops and searches by sex:
|
44 |
+
dim(fl)
|
45 |
+
dim(nc)
|
46 |
+
|
47 |
+
table(fl$search_occur)
|
48 |
+
table(nc$search)
|
49 |
+
|
50 |
+
prop.table(table(fl$search_occur))
|
51 |
+
prop.table(table(nc$search))
|
52 |
+
|
53 |
+
table(fl$of_gender)
|
54 |
+
table(nc$of_gender)
|
55 |
+
|
56 |
+
table(fl$of_gender,fl$search_occur)
|
57 |
+
table(nc$of_gender,nc$search)
|
58 |
+
|
59 |
+
prop.table(table(fl$of_gender,fl$search_occur),1)
|
60 |
+
prop.table(table(nc$of_gender,nc$search),1)
|
61 |
+
|
62 |
+
table(fl$of_gender,fl$contra)
|
63 |
+
|
64 |
+
# Number of officers by sex in FL
|
65 |
+
length(unique(fl$officer_id_hash))
|
66 |
+
length(unique(fl$officer_id_hash[fl$of_gender==0]))
|
67 |
+
length(unique(fl$officer_id_hash[fl$of_gender==1]))
|
68 |
+
|
69 |
+
length(unique(fl$officer_id_hash[fl$officer_exclude==0]))
|
70 |
+
length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0]))
|
71 |
+
length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0]))
|
72 |
+
|
73 |
+
table(cmpd.employee$JOB_TITLE[cmpd.employee$JOB_TITLE=="Police Officer"])
|
74 |
+
sum(table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"]))
|
75 |
+
|
76 |
+
table(fl$year)
|
77 |
+
(table(fl$of_gender)/c(length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0])),length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0]))))/6
|
78 |
+
|
79 |
+
avg.stops = aggregate(fl$year,by=list(fl$officer_id_hash,fl$year,fl$of_gender),length)
|
80 |
+
summary(avg.stops)
|
81 |
+
mean(avg.stops$x)
|
82 |
+
median(avg.stops$x[avg.stops$Group.3==0])
|
83 |
+
median(avg.stops$x[avg.stops$Group.3==1])
|
84 |
+
|
85 |
+
prop.table(table(fl$investigatory[fl$of_gender==0]))
|
86 |
+
prop.table(table(fl$investigatory[fl$of_gender==1]))
|
87 |
+
|
88 |
+
table(nc$of_gender[nc$year==2019])[2:1]/table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"])
|
89 |
+
|
90 |
+
# Excluding Cases:
|
91 |
+
dim(nc)
|
92 |
+
dim(nc)-dim(nc[!is.na(nc$search),])
|
93 |
+
dim(fl)
|
94 |
+
dim(fl)-dim(fl[!is.na(fl$search_occur),])
|
95 |
+
(dim(fl[!is.na(fl$search_occur),])-dim(fl.sm))+table(fl.sm$officer_exclude)[2]
|
96 |
+
table(fl.sm$county_include)
|
97 |
+
|
98 |
+
# Table 1
|
99 |
+
tab1 = data.frame("Department"=c("Charlotte PD (NC)",
|
100 |
+
"Male Officers","Female Officers",
|
101 |
+
"Florida Highwar Patrol",
|
102 |
+
"Male Officers","Female Officers"),
|
103 |
+
"Type"=c("Municipal","","","Statewide","",""),
|
104 |
+
"Years"=c("2016-2017","","",
|
105 |
+
"2010-2015","",""),
|
106 |
+
"Stops"=c(dim(nc)[1],table(nc$of_gender),
|
107 |
+
dim(fl[!is.na(fl$search_occur),])[1],
|
108 |
+
table(fl$of_gender[!is.na(fl$search_occur)])),
|
109 |
+
"Searches"=c(table(nc$search)[2],table(nc$of_gender,nc$search)[,2],
|
110 |
+
table(fl$search_occur)[2],
|
111 |
+
table(fl$of_gender,fl$search_occur)[,2]),
|
112 |
+
"Search Rate"=c(table(nc$search)[2]/dim(nc)[1],
|
113 |
+
table(nc$of_gender,nc$search)[,2]/table(nc$of_gender),
|
114 |
+
table(fl$search_occur)[2]/dim(fl[!is.na(fl$search_occur),])[1],
|
115 |
+
table(fl$of_gender,fl$search_occur)[,2]/
|
116 |
+
table(fl$of_gender[!is.na(fl$search_occur)])))
|
117 |
+
tab1 = rbind(tab1,
|
118 |
+
c("Total","","",
|
119 |
+
sum(tab1[c(1,4),4]),sum(tab1[c(1,4),5]),
|
120 |
+
sum(tab1[c(1,4),5])/sum(tab1[c(1,4),4])))
|
121 |
+
tab1
|
122 |
+
|
123 |
+
# Figure 1
|
124 |
+
load("Data/Fig1_Data.RData")
|
125 |
+
png("Figures/Fig1_PredProb.png",
|
126 |
+
750,519)
|
127 |
+
ggplot(data = search.df, aes(x=Department,y=Rate,fill=Gender)) +
|
128 |
+
geom_bar(stat="identity", position=position_dodge()) +
|
129 |
+
ylab("Search Rate") +
|
130 |
+
theme_bw(base_size=15)+
|
131 |
+
theme(legend.position = "bottom") +
|
132 |
+
labs(fill="Officer Sex")+
|
133 |
+
scale_fill_grey(start = 0.25, end = .75)
|
134 |
+
dev.off()
|
135 |
+
|
136 |
+
prop.test(table(fl$of_gender,fl$search_occur))
|
137 |
+
prop.test(table(nc$of_gender,nc$search))
|
138 |
+
|
139 |
+
# Table 2
|
140 |
+
load("Data/FLSearch_Sm_OLS.RData")
|
141 |
+
load("Data/FLSearch_OLS.RData")
|
142 |
+
load("Data/NCSearch_Sm_OLS.RData")
|
143 |
+
load("Data/NCSearch_OLS.RData")
|
144 |
+
screenreg(list(nc.search,fl.search),
|
145 |
+
stars=c(0.01,0.05),
|
146 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
147 |
+
"factor(of_gender)1"="Female Officer",
|
148 |
+
"factor(of_race)1"="Black Officer",
|
149 |
+
"factor(race_gender)1"="White Female",
|
150 |
+
"factor(race_gender)2"="Black Male",
|
151 |
+
"factor(race_gender)3"="Black Female",
|
152 |
+
"factor(race_gender)4"="Latino Male",
|
153 |
+
"factor(race_gender)5"="Latina Female",
|
154 |
+
"investigatory" = "Investigatory Stop Purpose"),
|
155 |
+
custom.model.names = c("(1) NC Search",
|
156 |
+
"(2) FL Search"),
|
157 |
+
digits=4)
|
158 |
+
|
159 |
+
# Figure 2
|
160 |
+
fl.of.pred = predict(fl.search,
|
161 |
+
newdata = data.frame("of_gender"=c(0,1),"race_gender"=0,
|
162 |
+
"subject_age"=35,"out_of_state"=0,
|
163 |
+
"investigatory"=1,
|
164 |
+
"officer_years_of_service"=6,
|
165 |
+
"of_race"=0,"officer_age"=39,
|
166 |
+
"hour_of_day"=15,
|
167 |
+
"month"="05","year"=2013,
|
168 |
+
"county_name"="Orange County"),
|
169 |
+
type="response",se.fit=T)
|
170 |
+
nc.of.pred = predict(nc.search,
|
171 |
+
newdata = data.frame("of_gender"=c(0,1),
|
172 |
+
"race_gender"=0,
|
173 |
+
"subject_age"=36,
|
174 |
+
"investigatory"=1,
|
175 |
+
"Officer_Years_of_Service"=10.25,
|
176 |
+
"of_race"=0,"month"="01",
|
177 |
+
"year"=2019,"CMPD_Division"="South Division"),
|
178 |
+
type="response",se.fit=T)
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
pred.df = data.frame("Department" = c("Charlotte Police Department",
|
183 |
+
"Charlotte Police Department",
|
184 |
+
"Florida Highway Patrol",
|
185 |
+
"Florida Highway Patrol"),
|
186 |
+
"Gender" = c("Male","Female","Male","Female"),
|
187 |
+
"Predict" = c(nc.of.pred$fit,
|
188 |
+
fl.of.pred$fit),
|
189 |
+
"Lower"=c(nc.of.pred$fit-1.96*nc.of.pred$se.fit,
|
190 |
+
fl.of.pred$fit-1.96*fl.of.pred$se.fit),
|
191 |
+
"Upper"=c(nc.of.pred$fit+1.96*nc.of.pred$se.fit,
|
192 |
+
fl.of.pred$fit+1.96*fl.of.pred$se.fit))
|
193 |
+
|
194 |
+
png("Figures/Fig2_PredProb.png",
|
195 |
+
900,514)
|
196 |
+
ggplot(data = pred.df, aes(x=Gender,y=Predict)) +
|
197 |
+
geom_point(size=4) +
|
198 |
+
geom_errorbar(aes(ymin = Lower, ymax = Upper),
|
199 |
+
width=.2,size = 0.75,
|
200 |
+
position=position_dodge(.9)) +
|
201 |
+
ylab("Expected Probbility of a Search") +
|
202 |
+
xlab("Officer Sex") +
|
203 |
+
theme_bw(base_size=15) +facet_wrap(~Department)
|
204 |
+
dev.off()
|
205 |
+
|
206 |
+
pred.df$Predict[1]/pred.df$Predict[2]
|
207 |
+
pred.df$Predict[3]/pred.df$Predict[4]
|
208 |
+
|
209 |
+
# Table 3
|
210 |
+
tab3 = data.frame("Officer Gender"=c("Male","Female"),
|
211 |
+
"Searches"=table(fl$of_gender[!is.na(fl$search_occur)],
|
212 |
+
fl$search_occur[!is.na(fl$search_occur)])[,2],
|
213 |
+
"Contraband"=table(fl$of_gender[!is.na(fl$search_occur)],
|
214 |
+
fl$contra[!is.na(fl$search_occur)])[,2],
|
215 |
+
"Contraband Hit Rate"=table(fl$of_gender[!is.na(fl$search_occur)],
|
216 |
+
fl$contra[!is.na(fl$search_occur)])[,2]/
|
217 |
+
table(fl$of_gender[!is.na(fl$search_occur)],
|
218 |
+
fl$search_occur[!is.na(fl$search_occur)])[,2],
|
219 |
+
"Difference"=c((table(fl$of_gender[!is.na(fl$search_occur)],
|
220 |
+
fl$contra[!is.na(fl$search_occur)])[,2]/
|
221 |
+
table(fl$of_gender[!is.na(fl$search_occur)],
|
222 |
+
fl$search_occur[!is.na(fl$search_occur)])[,2])[1]-
|
223 |
+
(table(fl$of_gender[!is.na(fl$search_occur)],
|
224 |
+
fl$contra[!is.na(fl$search_occur)])[,2]/
|
225 |
+
table(fl$of_gender[!is.na(fl$search_occur)],
|
226 |
+
fl$search_occur[!is.na(fl$search_occur)])[,2])[2],NA))
|
227 |
+
tab3
|
228 |
+
prop.test(table(fl$of_gender[fl$search_occur==1],
|
229 |
+
fl$contra[fl$search_occur==1]))
|
230 |
+
|
231 |
+
# Table 4
|
232 |
+
load("Data/FlContra_OLS.RData")
|
233 |
+
load("Data/FlSearchRate_OLS.RData")
|
234 |
+
load("Data/FlStopRate_OLS.RData")
|
235 |
+
screenreg(list(fl.contra,contra.search.rate.reg,contra.stop.rate.reg),
|
236 |
+
stars=c(0.01,0.05),
|
237 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
238 |
+
"factor(of_gender)1"="Female Officer",
|
239 |
+
"factor(of_race)1"="Black Officer",
|
240 |
+
"factor(race_gender)1"="White Female",
|
241 |
+
"factor(race_gender)2"="Black Male",
|
242 |
+
"factor(race_gender)3"="Black Female",
|
243 |
+
"factor(race_gender)4"="Latino Male",
|
244 |
+
"factor(race_gender)5"="Latina Female",
|
245 |
+
"investigatory" = "Investigatory Stop Purpose"),
|
246 |
+
custom.model.names = c("(1) Contra|Search",
|
247 |
+
"(2) Hit Rate, per 10 Searches",
|
248 |
+
"(3) Hit Rate, per 100 Stops"),
|
249 |
+
digits=4)
|
250 |
+
|
251 |
+
###
|
252 |
+
### 3. Appendix A: Full Regression Results
|
253 |
+
###
|
254 |
+
|
255 |
+
screenreg(list(nc.search,fl.search,
|
256 |
+
fl.contra,contra.search.rate.reg,contra.stop.rate.reg),
|
257 |
+
stars=c(0.01,0.05),
|
258 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
259 |
+
"factor(of_gender)1"="Female Officer",
|
260 |
+
"factor(of_race)1"="Black Officer",
|
261 |
+
"officer_age"="Officer Age",
|
262 |
+
"factor(of_age)2"="Officer Age: 30-64",
|
263 |
+
"factor(of_age)3"="Officer Age: 65+",
|
264 |
+
"officer_years_of_service"="Officer Years of Service",
|
265 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
266 |
+
"factor(of_exper)1"="Experienced Officer",
|
267 |
+
"factor(race_gender)1"="White Female",
|
268 |
+
"factor(race_gender)2"="Black Male",
|
269 |
+
"factor(race_gender)3"="Black Female",
|
270 |
+
"factor(race_gender)4"="Latino Male",
|
271 |
+
"factor(race_gender)5"="Latina Female",
|
272 |
+
"subject_age"="Driver Age",
|
273 |
+
"factor(driver_age)2"="Driver Age: 30-64",
|
274 |
+
"factor(driver_age)3"="Driver Age: 65+",
|
275 |
+
"investigatory" = "Investigatory Stop Purpose",
|
276 |
+
"out_of_state"="Out of State"),
|
277 |
+
custom.model.names = c("(1)","(2)",
|
278 |
+
"(3)","(4)","(5)"),
|
279 |
+
digits=3)
|
280 |
+
|
281 |
+
###
|
282 |
+
### 4. Appendix B: Alternative Test of Differences in Search and Contraband Hit Rates
|
283 |
+
###
|
284 |
+
|
285 |
+
# Florida
|
286 |
+
fl$stop = 1
|
287 |
+
fl$of_exper = ifelse(fl$officer_years_of_service>=
|
288 |
+
mean(fl$officer_years_of_service,na.rm=T),1,0)
|
289 |
+
fl$of_age = ifelse(fl$officer_age<30,1,
|
290 |
+
ifelse(fl$officer_age>64,3,2))
|
291 |
+
fl$driver_age = ifelse(fl$subject_age<30,1,
|
292 |
+
ifelse(fl$subject_age>64,3,2))
|
293 |
+
fl$hour_of_day=as.numeric(fl$hour_of_day)
|
294 |
+
fl$tod = ifelse(fl$hour_of_day<3,1,
|
295 |
+
ifelse(fl$hour_of_day<6,2,
|
296 |
+
ifelse(fl$hour_of_day<9,3,
|
297 |
+
ifelse(fl$hour_of_day<12,4,
|
298 |
+
ifelse(fl$hour_of_day<15,5,
|
299 |
+
ifelse(fl$hour_of_day<18,6,
|
300 |
+
ifelse(fl$hour_of_day<21,7,8)))))))
|
301 |
+
|
302 |
+
fl.ag = aggregate(fl[!is.na(fl$search_occur),c("stop","search_occur","contra")],
|
303 |
+
by = list(fl$tod[!is.na(fl$search_occur)],
|
304 |
+
fl$officer_race[!is.na(fl$search_occur)],
|
305 |
+
fl$officer_sex[!is.na(fl$search_occur)],
|
306 |
+
fl$of_exper[!is.na(fl$search_occur)],
|
307 |
+
fl$race_gender[!is.na(fl$search_occur)],
|
308 |
+
fl$driver_age[!is.na(fl$search_occur)],
|
309 |
+
fl$out_of_state[!is.na(fl$search_occur)],
|
310 |
+
fl$investigatory[!is.na(fl$search_occur)]),
|
311 |
+
sum,na.rm=T)
|
312 |
+
colnames(fl.ag) = c("tod",
|
313 |
+
"of_race","of_sex","of_exper","driver_rg",
|
314 |
+
"driver_age","out_of_state","invest",
|
315 |
+
"stop","search","contraband")
|
316 |
+
fl.ag.female = fl.ag[fl.ag$of_sex=="female",]
|
317 |
+
colnames(fl.ag.female)[c(3,9:11)] = c("female","stop.f",
|
318 |
+
"search.f","contra.f")
|
319 |
+
fl.ag.male = fl.ag[fl.ag$of_sex=="male",]
|
320 |
+
colnames(fl.ag.male)[c(3,9:11)] = c("male","stop.m",
|
321 |
+
"search.m","contra.m")
|
322 |
+
|
323 |
+
fl.matches = merge(fl.ag.female,fl.ag.male)
|
324 |
+
min.stops = 9
|
325 |
+
table(fl.matches$stop.f>min.stops&
|
326 |
+
fl.matches$stop.m>min.stops)
|
327 |
+
min.searches = 0
|
328 |
+
table(fl.matches$search.f>min.searches&
|
329 |
+
fl.matches$search.m>min.searches)
|
330 |
+
table(fl.matches$search.f>min.searches&
|
331 |
+
fl.matches$search.m>min.searches&
|
332 |
+
fl.matches$stop.f>min.stops&
|
333 |
+
fl.matches$stop.m>min.stops)
|
334 |
+
|
335 |
+
# North Carolina
|
336 |
+
nc$stop = 1
|
337 |
+
nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0)
|
338 |
+
nc$driver_age = ifelse(nc$Driver_Age<30,1,
|
339 |
+
ifelse(nc$Driver_Age>65,3,2))
|
340 |
+
nc$of_exper = ifelse(nc$Officer_Years_of_Service>=mean(nc$Officer_Years_of_Service),
|
341 |
+
1,0)
|
342 |
+
nc.ag = aggregate(nc[,c("search","stop")],
|
343 |
+
by = list(nc$CMPD_Division,
|
344 |
+
nc$Officer_Gender,nc$Officer_Race,
|
345 |
+
nc$of_exper,
|
346 |
+
nc$race_gender,nc$driver_age,
|
347 |
+
nc$investigatory,
|
348 |
+
nc$year),
|
349 |
+
sum)
|
350 |
+
nc.ag.female = nc.ag[nc.ag$Group.2=="Female",]
|
351 |
+
colnames(nc.ag.female) = c("division","female","race","of_exper",
|
352 |
+
"driver.rg","driver_age","investigatory",
|
353 |
+
"year",
|
354 |
+
"searches.f","stops.f")
|
355 |
+
nc.ag.male = nc.ag[nc.ag$Group.2=="Male",]
|
356 |
+
colnames(nc.ag.male) = c("division","male","race","of_exper",
|
357 |
+
"driver.rg","driver_age","investigatory",
|
358 |
+
"year",
|
359 |
+
"searches.m","stops.m")
|
360 |
+
|
361 |
+
|
362 |
+
# Searches
|
363 |
+
fl.matches$sr.f = fl.matches$search.f/fl.matches$stop.f
|
364 |
+
fl.matches$sr.m = fl.matches$search.m/fl.matches$stop.m
|
365 |
+
fl.matches$cr.f = fl.matches$contra.f/fl.matches$search.f
|
366 |
+
fl.matches$cr.m = fl.matches$contra.m/fl.matches$search.m
|
367 |
+
t.test(fl.matches$sr.f[fl.matches$stop.f>min.stops&
|
368 |
+
fl.matches$stop.m>min.stops],
|
369 |
+
fl.matches$sr.m[fl.matches$stop.f>min.stops&
|
370 |
+
fl.matches$stop.m>min.stops],
|
371 |
+
paired = T)
|
372 |
+
length(fl.matches$sr.f[fl.matches$stop.f>min.stops&
|
373 |
+
fl.matches$stop.m>min.stops])
|
374 |
+
mean(fl.matches$sr.f[fl.matches$stop.f>min.stops&
|
375 |
+
fl.matches$stop.m>min.stops])
|
376 |
+
mean(fl.matches$sr.m[fl.matches$stop.f>min.stops&
|
377 |
+
fl.matches$stop.m>min.stops])
|
378 |
+
|
379 |
+
nc.matches = merge(nc.ag.female,nc.ag.male)
|
380 |
+
min.stops = 9
|
381 |
+
nc.matches$sr.f = nc.matches$searches.f/nc.matches$stops.f
|
382 |
+
nc.matches$sr.m = nc.matches$searches.m/nc.matches$stops.m
|
383 |
+
t.test(nc.matches$sr.f[nc.matches$stops.f>min.stops&
|
384 |
+
nc.matches$stops.m>min.stops],
|
385 |
+
nc.matches$sr.m[nc.matches$stops.f>min.stops&
|
386 |
+
nc.matches$stops.m>min.stops],
|
387 |
+
paired = T)
|
388 |
+
|
389 |
+
length(nc.matches$sr.f[nc.matches$stops.f>min.stops&
|
390 |
+
nc.matches$stops.m>min.stops])
|
391 |
+
mean(nc.matches$sr.f[nc.matches$stops.f>min.stops&
|
392 |
+
nc.matches$stops.m>min.stops])
|
393 |
+
mean(nc.matches$sr.m[nc.matches$stops.f>min.stops&
|
394 |
+
nc.matches$stops.m>min.stops],)
|
395 |
+
|
396 |
+
# Contraband
|
397 |
+
t.test(fl.matches$cr.f[fl.matches$search.f>min.searches&
|
398 |
+
fl.matches$search.m>min.searches&
|
399 |
+
fl.matches$stop.f>min.stops&
|
400 |
+
fl.matches$stop.m>min.stops],
|
401 |
+
fl.matches$cr.m[fl.matches$search.f>min.searches&
|
402 |
+
fl.matches$search.m>min.searches&
|
403 |
+
fl.matches$stop.f>min.stops&
|
404 |
+
fl.matches$stop.m>min.stops],
|
405 |
+
paired = T)
|
406 |
+
length(fl.matches$cr.f[fl.matches$search.f>min.searches&
|
407 |
+
fl.matches$search.m>min.searches&
|
408 |
+
fl.matches$stop.f>min.stops&
|
409 |
+
fl.matches$stop.m>min.stops])
|
410 |
+
mean(fl.matches$cr.f[fl.matches$search.f>min.searches&
|
411 |
+
fl.matches$search.m>min.searches&
|
412 |
+
fl.matches$stop.f>min.stops&
|
413 |
+
fl.matches$stop.m>min.stops])
|
414 |
+
mean(fl.matches$cr.m[fl.matches$search.f>min.searches&
|
415 |
+
fl.matches$search.m>min.searches&
|
416 |
+
fl.matches$stop.f>min.stops&
|
417 |
+
fl.matches$stop.m>min.stops])
|
418 |
+
|
419 |
+
###
|
420 |
+
### 5. Appendix C: Logistic Regrssion Models
|
421 |
+
###
|
422 |
+
|
423 |
+
rm(list = ls())
|
424 |
+
|
425 |
+
load("Data/FlContra_Logit.RData")
|
426 |
+
load("Data/FLSearch_Logit.RData")
|
427 |
+
load("Data/NCSearch_Logit.RData")
|
428 |
+
|
429 |
+
texreg(list(nc.search,fl.search,fl.contra),
|
430 |
+
stars=c(0.01,0.05),
|
431 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
432 |
+
"factor(of_gender)1"="Female Officer",
|
433 |
+
"factor(of_race)1"="Black Officer",
|
434 |
+
"factor(of_race)2"="Latinx Officer",
|
435 |
+
"factor(of_race)3"="Asain/Pacific Islander Officer",
|
436 |
+
"factor(of_race)4"="Other Race Officer",
|
437 |
+
"officer_age"="Officer Age",
|
438 |
+
"officer_years_of_service"="Officer Years of Service",
|
439 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
440 |
+
"factor(race_gender)1"="White Female",
|
441 |
+
"factor(race_gender)2"="Black Male",
|
442 |
+
"factor(race_gender)3"="Black Female",
|
443 |
+
"factor(race_gender)4"="Latino Male",
|
444 |
+
"factor(race_gender)5"="Latina Female",
|
445 |
+
"subject_age"="Driver Age",
|
446 |
+
"investigatory" = "Investigatory Stop Purpose",
|
447 |
+
"out_of_state"="Out of State"),
|
448 |
+
custom.model.names = c("(1) NC Search",
|
449 |
+
"(2) FL Search",
|
450 |
+
"(3) FL Contra|Search"),
|
451 |
+
digits=4)
|
452 |
+
|
453 |
+
###
|
454 |
+
### 6. Appendix C: Fixed Effects
|
455 |
+
###
|
456 |
+
|
457 |
+
rm(list = ls())
|
458 |
+
|
459 |
+
load("Data/FLSearch_OLS_FE.RData")
|
460 |
+
load("Data/FlContra_OLS_FE.RData")
|
461 |
+
load("Data/FlSearchRate_OLS_FE.RData")
|
462 |
+
load("Data/FlStopRate_OLS_FE.RData")
|
463 |
+
|
464 |
+
texreg(list(fl.search,
|
465 |
+
fl.contra,
|
466 |
+
contra.search.rate.reg,
|
467 |
+
contra.stop.rate.reg),
|
468 |
+
stars=c(0.01,0.05),
|
469 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
470 |
+
"factor(of_gender)1"="Female Officer",
|
471 |
+
"factor(of_race)1"="Black Officer",
|
472 |
+
"officer_age"="Officer Age",
|
473 |
+
"factor(of_age)2"="Officer Age: 30-64",
|
474 |
+
"factor(of_age)3"="Officer Age: 65+",
|
475 |
+
"officer_years_of_service"="Officer Years of Service",
|
476 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
477 |
+
"factor(of_exper)1"="Experienced Officer",
|
478 |
+
"factor(race_gender)1"="White Female",
|
479 |
+
"factor(race_gender)2"="Black Male",
|
480 |
+
"factor(race_gender)3"="Black Female",
|
481 |
+
"factor(race_gender)4"="Latino Male",
|
482 |
+
"factor(race_gender)5"="Latina Female",
|
483 |
+
"subject_age"="Driver Age",
|
484 |
+
"factor(driver_age)2"="Driver Age: 30-64",
|
485 |
+
"factor(driver_age)3"="Driver Age: 65+",
|
486 |
+
"investigatory" = "Investigatory Stop Purpose",
|
487 |
+
"out_of_state"="Out of State"),
|
488 |
+
custom.model.names = c("(1) Search",
|
489 |
+
"(2) Contra|Search",
|
490 |
+
"(3) Hit Rate, per 10 Searches",
|
491 |
+
"(4) Hit Rate, per 100 Stops"),
|
492 |
+
digits=4)
|
493 |
+
|
494 |
+
###
|
495 |
+
### 7. Appendix D: Interaction Models
|
496 |
+
###
|
497 |
+
|
498 |
+
rm(list = ls())
|
499 |
+
|
500 |
+
# Table 1. Officer Experience
|
501 |
+
load("Data/FLSearch_Exper_OLS.RData")
|
502 |
+
load("Data/NCSearch_Exper_OLS.RData")
|
503 |
+
load("Data/FlContra_Exper_OLS.RData")
|
504 |
+
load("Data/FlSearchRate_Exper_OLS.RData")
|
505 |
+
load("Data/FlStopRate_Exper_OLS.RData")
|
506 |
+
|
507 |
+
texreg(list(nc.search.exper,fl.search.exper,fl.contra.exper,
|
508 |
+
contra.search.rate.exper,contra.stop.rate.exper),
|
509 |
+
stars=c(0.05,0.01),
|
510 |
+
custom.coef.map = list("factor(of_gender)1"="Female Officer",
|
511 |
+
"officer_years_of_service"="Officer Years of Service",
|
512 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
513 |
+
"factor(of_exper)1"="Experienced Officer",
|
514 |
+
"factor(of_gender)1:officer_years_of_service"="Female Officer * Exper.",
|
515 |
+
"factor(of_gender)1:Officer_Years_of_Service"="Female Officer * Exper.",
|
516 |
+
"factor(of_gender)1:factor(of_exper)1"="Female Officer * Exper."),
|
517 |
+
digits = 3)
|
518 |
+
|
519 |
+
# Table 2. Prop Female
|
520 |
+
load("Data/FLSearch_Prop_OLS.RData")
|
521 |
+
load("Data/FlContra_Prop_OLS.RData")
|
522 |
+
|
523 |
+
texreg(list(fl.search.prop,fl.contra.prop),
|
524 |
+
stars=c(0.05,0.01),
|
525 |
+
custom.coef.map = list("factor(of_gender)1"="Female Officer",
|
526 |
+
"female.prop"="Female Proportion of Proximate Force",
|
527 |
+
"factor(of_gender)1:female.prop"="Female Officer * Female Prop."),
|
528 |
+
digits = 3)
|
529 |
+
|
530 |
+
# Table 3. Stop Type
|
531 |
+
load("Data/FLSearch_StopType_OLS.RData")
|
532 |
+
load("Data/NCSearch_StopType_OLS.RData")
|
533 |
+
load("Data/FlContra_StopType_OLS.RData")
|
534 |
+
load("Data/FlSearchRate_StopType_OLS.RData")
|
535 |
+
load("Data/FlStopRate_StopType_OLS.RData")
|
536 |
+
|
537 |
+
texreg(list(nc.search.st,fl.search.st,fl.contra.st,
|
538 |
+
contra.search.rate.st,contra.stop.rate.st),
|
539 |
+
stars=c(0.05,0.01),
|
540 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
541 |
+
"factor(of_gender)1"="Female Officer",
|
542 |
+
"factor(of_race)1"="Black Officer",
|
543 |
+
"officer_age"="Officer Age",
|
544 |
+
"factor(of_age)2"="Officer Age: 30-64",
|
545 |
+
"factor(of_age)3"="Officer Age: 65+",
|
546 |
+
"officer_years_of_service"="Officer Years of Service",
|
547 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
548 |
+
"factor(of_exper)1"="Experienced Officer",
|
549 |
+
"factor(race_gender)1"="White Female",
|
550 |
+
"factor(race_gender)2"="Black Male",
|
551 |
+
"factor(race_gender)3"="Black Female",
|
552 |
+
"factor(race_gender)4"="Latino Male",
|
553 |
+
"factor(race_gender)5"="Latina Female",
|
554 |
+
"subject_age"="Driver Age",
|
555 |
+
"factor(driver_age)2"="Driver Age: 30-64",
|
556 |
+
"factor(driver_age)3"="Driver Age: 65+",
|
557 |
+
"investigatory" = "Investigatory Stop Purpose",
|
558 |
+
"out_of_state"="Out of State"),
|
559 |
+
digits = 3)
|
560 |
+
|
561 |
+
# Table 4. Driver Characteristics
|
562 |
+
load("Data/FLInter_Search.RData")
|
563 |
+
load("Data/FLInter_Contra.RData")
|
564 |
+
load("Data/FLStopRate_Inter_OLS.RData")
|
565 |
+
load("Data/FLSearchRate_Inter_OLS.RData")
|
566 |
+
load("Data/NCInter_Search.RData")
|
567 |
+
|
568 |
+
texreg(list(nc.search.inter,fl.search.inter,fl.contra.inter,
|
569 |
+
contra.search.rate.inter,contra.stop.rate.inter),
|
570 |
+
stars=c(0.01,0.05),
|
571 |
+
custom.coef.map = list("factor(of_gender)1"="Female Officer",
|
572 |
+
"factor(subject_female)1"="Female Driver",
|
573 |
+
"factor(of_race)1"="Black Officer",
|
574 |
+
"factor(of_race)2"="Latinx Officer",
|
575 |
+
"factor(subject_race2)1"="Black Driver",
|
576 |
+
"factor(subject_race2)2"="Latinx Driver",
|
577 |
+
"factor(of_gender)1:factor(subject_female)1"="Female Officer*Driver",
|
578 |
+
"factor(of_race)1:factor(subject_race2)1"="Black Officer*Driver",
|
579 |
+
"factor(of_race)2:factor(subject_race2)1"="Latinx Officer*Black Driver",
|
580 |
+
"factor(of_race)1:factor(subject_race2)2"="Black Officer*Latinx Driver",
|
581 |
+
"factor(of_race)2:factor(subject_race2)2"="Latinx Officer* Driver"),digits=3)
|
582 |
+
|
583 |
+
###
|
584 |
+
### 8. Appendix E: A Conservative Test with the Charlotte Police Department
|
585 |
+
###
|
586 |
+
|
587 |
+
load("Data/NorthCarolina.RData")
|
588 |
+
|
589 |
+
table(nc$year)
|
590 |
+
|
591 |
+
nc.search16 = lm(search~factor(race_gender)+subject_age+
|
592 |
+
investigatory+
|
593 |
+
factor(of_race)+
|
594 |
+
factor(of_gender)+Officer_Years_of_Service+
|
595 |
+
factor(month)+
|
596 |
+
factor(CMPD_Division),
|
597 |
+
data=nc,subset=nc$year==2016)
|
598 |
+
nc.search17 = lm(search~factor(race_gender)+subject_age+
|
599 |
+
investigatory+
|
600 |
+
factor(of_race)+
|
601 |
+
factor(of_gender)+Officer_Years_of_Service+
|
602 |
+
factor(month)+
|
603 |
+
factor(CMPD_Division),
|
604 |
+
data=nc,subset=nc$year==2017)
|
605 |
+
nc.search19 = lm(search~factor(race_gender)+subject_age+
|
606 |
+
investigatory+
|
607 |
+
factor(of_race)+
|
608 |
+
factor(of_gender)+Officer_Years_of_Service+
|
609 |
+
factor(month)+
|
610 |
+
factor(CMPD_Division),
|
611 |
+
data=nc,subset=nc$year==2019)
|
612 |
+
nc.search20 = lm(search~factor(race_gender)+subject_age+
|
613 |
+
investigatory+
|
614 |
+
factor(of_race)+
|
615 |
+
factor(of_gender)+Officer_Years_of_Service+
|
616 |
+
factor(month)+
|
617 |
+
factor(CMPD_Division),
|
618 |
+
data=nc,subset=nc$year==2020)
|
619 |
+
texreg(list(nc.search16,nc.search17,nc.search19,nc.search20),
|
620 |
+
omit.coef = "Division*|month*",
|
621 |
+
custom.coef.map = list("(Intercept)"="(Intercept)",
|
622 |
+
"factor(of_gender)1"="Female Officer",
|
623 |
+
"factor(of_race)1"="Black Officer",
|
624 |
+
"Officer_Years_of_Service"="Officer Years of Service",
|
625 |
+
"investigatory"="Investigatory Stop",
|
626 |
+
"factor(race_gender)1"="White Female",
|
627 |
+
"factor(race_gender)2"="Black Male",
|
628 |
+
"factor(race_gender)3"="Black Female",
|
629 |
+
"subject_age"="Driver Age"),
|
630 |
+
stars=c(0.01,0.05))
|
108/replication_package/Codebook.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13005b9b5345b06738031cbc739cd7d498e0a522225906eabc134f6524848295
|
3 |
+
size 100640
|
108/replication_package/Data/CMPD_Employee_Demographics-2.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85af7b553d7ac37b8a36be9f42f1a16b3dcb4b7b5b1e104d7e799a0162bf8717
|
3 |
+
size 102070
|
108/replication_package/Data/FLInter_Contra.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e51490c9a53f92a300708b5ca2095e71d9d941e8381192e743414ec146e516d6
|
3 |
+
size 11259261
|
108/replication_package/Data/FLInter_Search.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98eaf6c3979cdfc1d254e1bf93748477ed3bead57f7c197eb35557461007563a
|
3 |
+
size 2359133801
|
108/replication_package/Data/FLSearch_Exper_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd30c101c09a686ed202bee900a75ef7f7fb3feae40c5079433dac3907f3921b
|
3 |
+
size 2362469120
|
108/replication_package/Data/FLSearch_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1514156c43a7f692d134890d25b99bc985748700f54f540c0ba3ff26df68661
|
3 |
+
size 2342885016
|
108/replication_package/Data/FLSearch_OLS_FE.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbda980fede0640cec254d207f62567d61be8a194ef1b4abb59a6eed958c3f17
|
3 |
+
size 178632280
|
108/replication_package/Data/FLSearch_Prop_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd626b7947c497060e2ac5da415424c0851d990b1bbf8fd923b7f83bfd402f0d
|
3 |
+
size 2366944781
|
108/replication_package/Data/FLSearch_Sm_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2791ea705faa50c55af91d210f5bd2c40ba9ef1fb4f843f885be05cacdfa8723
|
3 |
+
size 46668689
|
108/replication_package/Data/FLSearch_StopType_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d510581a50fca4f503989fa258784e47d2dbcc6bcfaddce012947c381f6fb8e
|
3 |
+
size 1254399142
|
108/replication_package/Data/FL_Aggregated-2.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23f19f7224610075cc557a54c48efe0d22f8e05128d20e457aded8542ac3c269
|
3 |
+
size 2359133
|
108/replication_package/Data/Fig1_Data-2.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01489db42bc824d3c335d2992cc2928436c2a8295965d12f02a09842f6317232
|
3 |
+
size 227
|
108/replication_package/Data/FlContra_Exper_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a02d19de084d28d8fa52873eca1435a6a732f9e50c6a652758f2bfca9fbf3987
|
3 |
+
size 11198225
|
108/replication_package/Data/FlContra_Logit.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:409491c82c65d415ff8ef172232ca9a85a747f7b4fef9485830bd9e7bd1c29d4
|
3 |
+
size 106097885
|
108/replication_package/Data/FlContra_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c785e578736bbf092441b223d2a48aa961502f516c2345823ec3f435a646770
|
3 |
+
size 11001727
|
108/replication_package/Data/FlContra_OLS_FE.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adc0aba7bda58b3bb62478a4a98a3cb7a75829c46bf176577ab0cd49d05fbda7
|
3 |
+
size 1159630
|
108/replication_package/Data/FlContra_Prop_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b9a91cc6baffa3d93740d5912bf7bd07ee213d265e005b6b88799457bcc0605
|
3 |
+
size 11495685
|
108/replication_package/Data/FlContra_Sm_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:369f25d63c672d16149118b8cfed934599bcb9bd1e066ddb447496c188e9a6e4
|
3 |
+
size 156422
|
108/replication_package/Data/FlContra_StopType_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6d48289c9409301da705fd8dc8c6d924174e4af1a9b5706ca46556d3070c1ee
|
3 |
+
size 9424568
|
108/replication_package/Data/FlSearchRate_Exper_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79d926b7a6f669d70c89cc90fd8346959aabc2b6dfd9e5c470f0b663ce245b1c
|
3 |
+
size 430999
|
108/replication_package/Data/FlSearchRate_Inter_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:331839e877eb0a2bf8b6c607d08dd85f4aadab9e4c044cb4322d8547fdccd5b5
|
3 |
+
size 681337
|
108/replication_package/Data/FlSearchRate_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15fefc7c3a7e6472994b9afe5db12d8c59827abaf50cccad1d20f9c66e854de
|
3 |
+
size 664257
|
108/replication_package/Data/FlSearchRate_OLS_FE.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90c3648d7ac25842d2aaa1809a2427ab28d5558238fbbccf9d7c2f9427a1b60f
|
3 |
+
size 715255
|
108/replication_package/Data/FlSearchRate_StopType_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08093ceb38bc2d279479419d0670d772f906c998318f557352df08bb92302dac
|
3 |
+
size 301641
|
108/replication_package/Data/FlStopRate_Exper_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48b7b5bbf65240de3142009835bf0a3665ce97c3543d20609554e6365820aa4c
|
3 |
+
size 13569388
|
108/replication_package/Data/FlStopRate_Inter_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0d73e384cb9b7cc1e37e8e3672fea953045583ff5310394d74451a04f4dd67a
|
3 |
+
size 20515466
|
108/replication_package/Data/FlStopRate_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85bd75b8f6f9bf0144874d7dd572a1776a7ac4b3a604582899eccd2075aab288
|
3 |
+
size 16239663
|
108/replication_package/Data/FlStopRate_OLS_FE.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:590e1874612b47f5fb3cac2b0812b2f0546688f55276abcaa587ad35923fcd6f
|
3 |
+
size 31466666
|
108/replication_package/Data/FlStopRate_StopType_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:006a600056a5370ac28e5c6e06803f01d574354c51e4e95c3c7792ebc3200dc9
|
3 |
+
size 6480541
|
108/replication_package/Data/FloridaLarge.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcb05c938fd8f1c03d10c470fa7798c0b96fe1ba479feffcb5122bb88ffc91fc
|
3 |
+
size 162447547
|
108/replication_package/Data/FloridaSmall.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:348f5b056d7723726c70ee0bd06272d23c6aaa8d7a086e76b4f886c8a41bbaff
|
3 |
+
size 93337267
|
108/replication_package/Data/NCInter_Search.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ee3c85f8545c110d7141dc5993c9ca088c51feb16dfe7045e1f6d0a8e49c94
|
3 |
+
size 46453455
|
108/replication_package/Data/NCSearch_Exper_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c97944fa5c25668536b01df9667a86e8c61728724357667c3c9b3a51cb359697
|
3 |
+
size 35200154
|
108/replication_package/Data/NCSearch_Logit.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:195ae828e4eca39ffc3b12d04c45bb53461edfa5c1877804b77602d462b27f5b
|
3 |
+
size 50326018
|
108/replication_package/Data/NCSearch_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43cc344a20dc09fbb4afad6735fee82fb158c6340c133bf2936f3aa1c462bb8d
|
3 |
+
size 34108717
|
108/replication_package/Data/NCSearch_Sm_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1073b27ffcebae9427223fe79419f75bf62958e9566a73028f8050d3d0713fd
|
3 |
+
size 220878
|
108/replication_package/Data/NCSearch_StopType_OLS.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98d7812f9bb368364fefeb839b0b3f86019f2d56ffc3585a92e4fa71d58ba810
|
3 |
+
size 17400474
|
108/replication_package/Data/NorthCarolina.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a6642b5def9756e49bd99c4ce1610048fd27bf5617c78aec3d658a5ca431422
|
3 |
+
size 2821239
|
108/replication_package/Data/Officer_Traffic_Stops_Original.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:804a8c1ac803fcac70319b898e0a75dbbc705da548cb26cc0641b287aa184def
|
3 |
+
size 17327975
|
108/replication_package/Data/Officer_Traffic_Stops_Update.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d2e1b647ba0739d6ff13e28ba0378ef4af8b8cc41f584038e39761a48a574c8
|
3 |
+
size 20913993
|
108/replication_package/Data/fl_statewide_2019_08_13.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd8bd39618a6f670122723eeafa9d11ba7f19065eda4fadb38ffdacc838f16db
|
3 |
+
size 1974334914
|
108/replication_package/Figures/Fig1_PredProb.png
ADDED
![]() |
Git LFS Details
|
108/replication_package/Figures/Fig2_PredProb.png
ADDED
![]() |
Git LFS Details
|
108/replication_package/OutputFiles/Step1_MainAnalysisAndData.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
108/replication_package/OutputFiles/Step2_AppendixAnalysis.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
108/replication_package/OutputFiles/Step3_TablesAndFigures.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|