diff --git a/108/paper.pdf b/108/paper.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4b25265ee8d5f9aeb9f3f6c791acd4ebfb30cdbe --- /dev/null +++ b/108/paper.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b66be3b035bbc53e722346d2b7c0ee93865e87f98eb560a4303f2fca449eb93 +size 1047731 diff --git a/108/replication_package/Code/Step1_MainAnalysisAndData.R b/108/replication_package/Code/Step1_MainAnalysisAndData.R new file mode 100644 index 0000000000000000000000000000000000000000..72d4ae30006bfe1050910653136cc7fd0f43be53 --- /dev/null +++ b/108/replication_package/Code/Step1_MainAnalysisAndData.R @@ -0,0 +1,259 @@ +####### +####### +####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops +####### This file cleans the raw data and runs the analysis for the body of the paper. +####### Last Updated: Jan. 2021 +####### +####### + + +### +### 1. Setting up the space. +### + +# Setting the working directory: +setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles") + +# Installing the needed libraries: +#install.packages("pscl",dependencies = T) +#install.packages("ggplot2",dependencies = T) +#install.packages("texreg",dependencies = T) +#install.packages("readr",dependencies = T) +#install.packages("arm",dependencies = T) +#install.packages("dplyr",dependencies = T) + +# Opening up those libraries: +library(dplyr) +library(ggplot2) +library(texreg) +library(readr) +library(pscl) +library(arm) + +# Loading the raw data: +nc_new = read_csv("Data/Officer_Traffic_Stops_Update.csv") +nc_old = read_csv("Data/Officer_Traffic_Stops_Original.csv") +nc = bind_rows(nc_new,nc_old) +fl = read_csv("Data/fl_statewide_2019_08_13.csv") + + +### +### 2. Producing the data sets for each table. +### + +# Cleaning the NC Data +nc$driver_re = as.numeric(ifelse(nc$Driver_Race=="White"& + nc$Driver_Ethnicity=="Non-Hispanic","0", + ifelse(nc$Driver_Race=="Black"& + nc$Driver_Ethnicity=="Non-Hispanic","1", + ifelse(nc$Driver_Ethnicity=="Hispanic","2",NA)))) +nc$of_rg = ifelse(nc$Officer_Race=="White", + ifelse(nc$Officer_Gender=="Male","0","1"), + ifelse(nc$Officer_Race=="Black/African American", + ifelse(nc$Officer_Gender=="Male","2","3"),NA)) +nc$of_race = ifelse(nc$Officer_Race=="White",0, + ifelse(nc$Officer_Race=="Black/African American",1,NA)) +nc$of_gender = ifelse(nc$Officer_Gender=="Male","0","1") +nc$investigatory = ifelse(grepl("Impaired|Speeding|Light|Movement", + as.character(nc$Reason_for_Stop)),0,1) +nc$investigatory = ifelse(grepl("Check",as.character(nc$Reason_for_Stop)), + NA,nc$investigatory) +nc$race_gender = ifelse(nc$driver_re=="0", + ifelse(nc$Driver_Gender=="Male","0","1"), + ifelse(nc$driver_re=="1", + ifelse(nc$Driver_Gender=="Male","2","3"),NA)) +nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0) + +nc$subject_sex = tolower(nc$Driver_Gender) +nc$subject_age = nc$Driver_Age +nc$officer_sex = tolower(nc$Officer_Gender) +nc$month = apply(as.matrix(as.character(nc$Month_of_Stop)),1, + function(x){strsplit(x,"/",fixed=T)[[1]][2]}) +nc$year = apply(as.matrix(as.character(nc$Month_of_Stop)),1, + function(x){strsplit(x,"/",fixed=T)[[1]][1]}) + +nc$arrest = ifelse(nc$Result_of_Stop=="Arrest",1,0) +save(nc,file="Data/NorthCarolina.RData") + +# Cleaning the FL data. +violations_list = strsplit(paste(fl$reason_for_stop,collapse = "|"),"|",fixed = T) +violations_list_small = unique(violations_list[[1]])[2:71] +violations_indicator = violations_list_small[c(1,2,5,6,7,9,10,14,19, + 20,23,40,45)] +fl$investigatory = ifelse(is.na(fl$violation),NA, + ifelse(fl$violation %in% violations_indicator, 0, 1)) +fl$contraband_found = ifelse(grepl("contraband", + tolower(fl$violation)),1,0) +fl$race_gender = ifelse(fl$subject_race=="white", + ifelse(fl$subject_sex=="male",0,1), + ifelse(fl$subject_race=="black", + ifelse(fl$subject_sex=="male",2,3), + ifelse(fl$subject_race=="hispanic", + ifelse(fl$subject_sex=="male",4,5),NA))) +fl$of_rg = ifelse(fl$officer_race=="white", + ifelse(fl$officer_sex=="male",0,1), + ifelse(fl$officer_race=="black", + ifelse(fl$officer_sex=="male",2,3), + ifelse(fl$officer_race=="hispanic", + ifelse(fl$officer_sex=="male",4,5),NA))) +fl$of_race = ifelse(fl$officer_race=="white",0, + ifelse(fl$officer_race=="black",1, + ifelse(fl$officer_race=="hispanic",2, + ifelse(fl$officer_race=="asian/pacific islander",3, + ifelse(fl$officer_race=="other",4,NA))))) +fl$of_gender = ifelse(fl$officer_sex=="male",0,1) +fl$out_of_state = ifelse(fl$vehicle_registration_state=="FL",0,1) +fl$hour_of_day = apply(as.matrix(as.character(fl$time)),1, + function(x)(strsplit(x,":",fixed = T)[[1]][1])) +fl$month = apply(as.matrix(as.character(fl$date)),1, + function(x)(paste(strsplit(x,"-",fixed = T)[[1]][2], + collapse = "_"))) +fl$year = apply(as.matrix(as.character(fl$date)),1, + function(x)(paste(strsplit(x,"-",fixed = T)[[1]][1], + collapse = "_"))) +fl = subset(fl,fl$year!="2016"&fl$year!="2017"&fl$year!="2018") #Narrows down to complete years that don't report extreme misingness on key outcome. +fl.officers = names(table(fl$officer_id_hash))[table(fl$officer_id_hash)>1000] +fl$officers_include = ifelse(fl$officer_id_hash%in%fl.officers,1,0) +fl.counties = names(table(fl$county_name))[table(fl$county_name)>1000] +fl$county_include = ifelse(fl$county_name%in%fl.counties,1,0) +fl.ag.id = aggregate(fl$of_gender, + list(fl$officer_id_hash,fl$year,fl$county_name), + mean) +fl.ag.id$officer = ifelse(!is.na(fl.ag.id$x),1,0) +fl.ag.gender = aggregate(fl.ag.id[,c("x","officer")], + list(fl.ag.id$Group.2,fl.ag.id$Group.3), + sum,na.rm=T) +fl.ag.gender$prop.female = fl.ag.gender$x/fl.ag.gender$officer +colnames(fl.ag.gender) = c("year","county_name","count.female","tot.officer","prop.female") +fl = merge(fl,fl.ag.gender,by=c("year","county_name"),all.x=T) +fl$officer_exclude = ifelse(fl$officer_years_of_service<0|fl$officer_years_of_service>40,1,0) +fl.ag.id2 = aggregate(fl$of_gender, + list(fl$officer_id_hash), + mean) +fl$search_occur = ifelse(fl$search_conducted == 0, 0, + ifelse(fl$search_basis != "other",1,NA)) +fl$contra = ifelse(is.na(fl$search_occur),0, + ifelse(fl$search_occur==1,fl$contraband_found,0)) + +complete = complete.cases(fl[,c("search_occur","race_gender","subject_age", + "out_of_state","investigatory","of_gender", + "of_race","officer_years_of_service","officer_age", + "hour_of_day","month","year","county_name")]) +fl.sm = fl[complete,] +complete2 = complete.cases(fl[,c("search_occur","of_gender")]) +table(complete) +table(complete2) + +fl.missingness = apply(fl[,c("search_occur","race_gender","subject_age", + "out_of_state","investigatory","of_gender", + "of_race","officer_years_of_service","officer_age", + "county_name")], + 2, + FUN = function(x){table(is.na(x))}) +save(fl,file="Data/FloridaLarge.RData") +save(fl.sm,file="Data/FloridaSmall.RData") + +fl$stops = ifelse(!is.na(fl$search_occur),1,0) +fl$contra.ttest = ifelse(fl$search_occur==1,fl$contra,NA) +prop.test(table(fl$of_gender,fl$contra.ttest)) +fl$of_exper = ifelse(fl$officer_years_of_service>= + mean(fl$officer_years_of_service,na.rm=T),1,0) +fl$of_age = ifelse(fl$officer_age<30,1, + ifelse(fl$officer_age>64,3,2)) +fl$driver_age = ifelse(fl$subject_age<30,1, + ifelse(fl$subject_age>64,3,2)) +fl$hour_of_day2 = as.numeric(fl$hour_of_day) +fl$tod = ifelse(fl$hour_of_day2<3,1, + ifelse(fl$hour_of_day2<6,2, + ifelse(fl$hour_of_day2<9,3, + ifelse(fl$hour_of_day2<12,4, + ifelse(fl$hour_of_day2<15,5, + ifelse(fl$hour_of_day2<18,6, + ifelse(fl$hour_of_day2<21,7,8))))))) + +fl.ag.officers = aggregate(fl[,c("stops","search_occur","contra")], + by=list(fl$officer_id_hash, + fl$of_race,fl$of_gender, + fl$of_exper,fl$of_age, + fl$race_gender,fl$driver_age, + fl$out_of_state,fl$investigatory, + fl$year,fl$tod), + sum,na.rm=T) +colnames(fl.ag.officers) = c("officer_id","of_race","of_gender","of_exper", + "of_age","race_gender","driver_age", + "out_of_state","investigatory","year", + "tod","stops","search_occur","contra") +fl.ag.officers$contra.search.rate = (fl.ag.officers$contra/fl.ag.officers$search_occur)*10 +fl.ag.officers$contra.stop.rate = (fl.ag.officers$contra/fl.ag.officers$stops)*100 +save(fl.ag.officers,file="Data/FL_Aggregated.RData") + +# Data for Figure 1 +search.df = data.frame("Department" = c("CPD","CPD","FHP","FHP"), + "Gender" = c("Male","Female","Male","Female"), + "Rate" = c(prop.table(table(nc$of_gender,nc$search),1)[,2], + prop.table(table(fl$of_gender[fl.sm$county_include==1& + fl.sm$officer_exclude==0], + fl$search_occur[fl.sm$county_include==1& + fl.sm$officer_exclude==0]),1)[,2])) +save(search.df,file="Data/Fig1_Data.RData") + +### +### 3. Regressions +### + +# +# For the Main Text: +# + +# Search Regressions +fl.search.sm = lm(search_occur~factor(of_gender),data=fl) +save(fl.search.sm, file="Data/FLSearch_Sm_OLS.RData") +fl.search = lm(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0) +save(fl.search,file="Data/FLSearch_OLS.RData") +nc.search.sm = lm(search~factor(of_gender),data = nc) +save(nc.search.sm,file="Data/NCSearch_Sm_OLS.RData") +nc.search = lm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+factor(year)+ + factor(CMPD_Division), + data=nc) +save(nc.search,file="Data/NCSearch_OLS.RData") + +# Contraband Regressions +fl.contra = lm(contra~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0) +save(fl.contra,file="Data/FlContra_OLS.RData") +contra.search.rate.reg = lm(contra.search.rate ~ factor(of_gender) + factor(of_exper) + + factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year)+factor(tod), + data=fl.ag.officers, + subset=fl.ag.officers$search_occur>0) +save(contra.search.rate.reg,file="Data/FlSearchRate_OLS.RData") +contra.stop.rate.reg = lm(contra.stop.rate ~ factor(of_gender) + factor(of_exper) + + factor(of_age) + factor(of_race) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year)+factor(tod), + data=fl.ag.officers) +save(contra.stop.rate.reg,file="Data/FlStopRate_OLS.RData") \ No newline at end of file diff --git a/108/replication_package/Code/Step2_AppendixAnalysis.R b/108/replication_package/Code/Step2_AppendixAnalysis.R new file mode 100644 index 0000000000000000000000000000000000000000..fb3559e4a89e319a955954490de7506941978809 --- /dev/null +++ b/108/replication_package/Code/Step2_AppendixAnalysis.R @@ -0,0 +1,320 @@ +####### +####### +####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops +####### This file runs most of the supplemental regressions shown in the appendix. +####### Last Updated: Jan. 2021 +####### +####### + +# Opening up those libraries: +library(dplyr) +library(ggplot2) +library(texreg) +library(readr) +library(pscl) +library(arm) + +# Setting the working directory: +setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles") + +# +# Appendix: Alternative Specifications +# + +# Clearing the workspace. +rm(list = ls()) + +# Loading in the Data +load("Data/FloridaSmall.RData") +load("Data/FL_Aggregated.RData") + +# FE for Officer +fl.search = lmer(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name)+(1|officer_id_hash), + data=fl.sm, + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0) +save(fl.search,file="Data/FLSearch_OLS_FE.RData") +fl.contra = lmer(contra~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+factor(county_name)+ + (1|officer_id_hash), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0) +save(fl.contra,file="Data/FlContra_OLS_FE.RData") +contra.search.rate.reg = lmer(contra.search.rate ~ factor(of_gender) + factor(of_exper) + + factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year)+factor(tod)+ + (1|officer_id), + data=fl.ag.officers, + subset=fl.ag.officers$search_occur>0) +save(contra.search.rate.reg,file="Data/FlSearchRate_OLS_FE.RData") +contra.stop.rate.reg = lmer(contra.stop.rate ~ factor(of_gender) + factor(of_exper) + + factor(of_age) + factor(of_race) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year)+factor(tod)+(1|officer_id), + data=fl.ag.officers) +save(contra.stop.rate.reg,file="Data/FlStopRate_OLS_FE.RData") + +# Logistc Regressions +rm(list = ls()) + +load("Data/NorthCarolina.RData") +load("Data/FloridaSmall.RData") + +fl.search = glm(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm,family="binomial", + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0) +save(fl.search,file="Data/FLSearch_Logit.RData") +nc.search = glm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+factor(year)+ + factor(CMPD_Division), + family="binomial", + data=nc) +save(nc.search,file="Data/NCSearch_Logit.RData") +fl.contra = glm(contra~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, family = "binomial", + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0) +save(fl.contra,file="Data/FlContra_Logit.RData") + + +# +# Appendix: Interaction Models +# + +rm(list = ls()) + +load("Data/NorthCarolina.RData") +load("Data/FloridaSmall.RData") +load("Data/FloridaLarge.RData") +load("Data/FL_Aggregated.RData") + + +# Experience +fl.search.exper = lm(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+factor(of_race)+ + factor(of_gender)*officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0) +save(fl.search.exper,file="Data/FLSearch_Exper_OLS.RData") +nc.search.exper = lm(search~factor(race_gender)+subject_age+ + investigatory+factor(of_race)+ + factor(of_gender)*Officer_Years_of_Service+ + factor(month)+factor(year)+ + factor(CMPD_Division), + data=nc) +save(nc.search.exper,file="Data/NCSearch_Exper_OLS.RData") +fl.contra.exper = lm(contra~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+factor(of_gender)*officer_years_of_service+ + factor(of_race)+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0) +save(fl.contra.exper,file="Data/FlContra_Exper_OLS.RData") +contra.search.rate.exper = lm(contra.search.rate ~ factor(of_gender)*factor(of_exper) + + investigatory+factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + out_of_state + + factor(year), + data=fl.ag.officers, + subset=fl.ag.officers$search_occur>0) +save(contra.search.rate.exper,file="Data/FlSearchRate_Exper_OLS.RData") +contra.stop.rate.exper = lm(contra.stop.rate ~ factor(of_gender)*factor(of_exper) + + investigatory+ + factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + out_of_state + + factor(year), + data=fl.ag.officers) +save(contra.stop.rate.exper,file="Data/FlStopRate_Exper_OLS.RData") + +# Prop Female +fl$male.officer = ifelse(fl$of_gender==1,0,1) +fl.ag = aggregate(fl$officer_id_hash, + by=list(fl$of_gender,fl$county_name,fl$year), + function(x){length(unique(x))}) +fl.ag.m = fl.ag[fl.ag$Group.1==0,] +fl.ag.f = fl.ag[fl.ag$Group.1==1,] +colnames(fl.ag.m)=c("male","county_name","year","male.count") +colnames(fl.ag.f)=c("female","county_name","year","female.count") +fl.ag = merge(fl.ag.m,fl.ag.f,all=T) +fl.ag$male.count[is.na(fl.ag$male.count)] = 0 +fl.ag$female.count[is.na(fl.ag$female.count)] = 0 +fl.ag$female.prop = fl.ag$female.count/(fl.ag$female.count+fl.ag$male.count) +summary(fl.ag$female.prop) +fl.sm = merge(fl.sm,fl.ag) +fl.search.prop = lm(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+factor(of_race)+ + factor(of_gender)*female.prop+officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0) +save(fl.search.prop,file="Data/FLSearch_Prop_OLS.RData") +fl.contra.prop = lm(contra~factor(race_gender)+ + subject_age+out_of_state+ + investigatory+factor(of_gender)*female.prop+ + officer_years_of_service+ + factor(of_race)+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0) +save(fl.contra.prop,file="Data/FlContra_Prop_OLS.RData") + +# Stop Type +fl.search.st = lm(search_occur~factor(race_gender)+ + subject_age+out_of_state+ + factor(of_gender)+factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1&fl.sm$officer_exclude==0& + fl.sm$investigatory==1) +save(fl.search.st,file="Data/FLSearch_StopType_OLS.RData") +nc.search.st = lm(search~factor(race_gender)+subject_age+ + factor(of_gender)+ + factor(of_race)+Officer_Years_of_Service+ + factor(month)+factor(year)+ + factor(CMPD_Division), + data=nc, + subset = nc$investigatory==1) +save(nc.search.st,file="Data/NCSearch_StopType_OLS.RData") +fl.contra.st = lm(contra~factor(race_gender)+ + subject_age+out_of_state+ + factor(of_gender)+ + factor(of_race)+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$search_occur==1& + fl.sm$officer_exclude==0& + fl.sm$investigatory==1) +save(fl.contra.st,file="Data/FlContra_StopType_OLS.RData") +contra.search.rate.st = lm(contra.search.rate ~ factor(of_gender)+ + factor(of_exper) + + factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + out_of_state + + factor(year), + data=fl.ag.officers, + subset=fl.ag.officers$search_occur>0& + fl.ag.officers$investigatory==1) +save(contra.search.rate.st,file="Data/FlSearchRate_StopType_OLS.RData") +contra.stop.rate.st = lm(contra.stop.rate ~ factor(of_gender)+ + factor(of_exper) + + factor(of_age) +factor(of_race) + + factor(race_gender) + factor(driver_age)+ + out_of_state + + factor(year), + data=fl.ag.officers, + subset=fl.ag.officers$investigatory==1) +save(contra.stop.rate.st,file="Data/FlStopRate_StopType_OLS.RData") + +# Driver Characteristics +fl.sm$subject_female = ifelse(fl.sm$subject_sex=="female",1,0) +fl.sm$subject_race2 = ifelse(fl.sm$subject_race=="white",0, + ifelse(fl.sm$subject_race=="black",1,2)) +fl.search.inter = lm(search_occur~factor(of_gender)*factor(subject_female)+ + factor(of_race)*factor(subject_race2)+ + subject_age+out_of_state+investigatory+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$county_include==1& + fl.sm$officer_exclude==0& + as.numeric(fl.sm$of_race)<3) +save(fl.search.inter,file="Data/FLInter_Search.RData") +fl.contra.inter = lm(contra~factor(of_gender)*factor(subject_female)+ + factor(of_race)*factor(subject_race2)+ + subject_age+out_of_state+investigatory+ + officer_years_of_service+officer_age+ + factor(hour_of_day)+factor(month)+factor(year)+ + factor(county_name), + data=fl.sm, + subset=fl.sm$search_occur==1& + fl.sm$county_include==1& + fl.sm$officer_exclude==0& + as.numeric(fl.sm$of_race)<3) +save(fl.contra.inter,file="Data/FLInter_Contra.RData") +fl.ag.officers$subject_female = ifelse(fl.ag.officers$race_gender%in%c(1,3,5),1,0) +fl.ag.officers$subject_race2 = ifelse(fl.ag.officers$race_gender%in%c(0,1),0, + ifelse(fl.ag.officers$race_gender%in%c(2,3),1,2)) +contra.search.rate.inter = lm(contra.search.rate ~ factor(of_gender)*factor(subject_female) + + factor(of_race) * factor(subject_race2)+ + factor(of_exper) + factor(of_age) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year), + data=fl.ag.officers, + subset=fl.ag.officers$search_occur>0) +save(contra.search.rate.inter,file="Data/FlSearchRate_Inter_OLS.RData") +contra.stop.rate.inter = lm(contra.stop.rate ~ factor(of_gender)*factor(subject_female) + + factor(of_race) * factor(subject_race2)+ + factor(of_exper) + factor(of_age) + + factor(race_gender) + factor(driver_age)+ + investigatory + out_of_state + + factor(year), + data=fl.ag.officers) +save(contra.stop.rate.inter,file="Data/FlStopRate_Inter_OLS.RData") + +nc$of_race = ifelse(nc$Officer_Race=="White",0, + ifelse(nc$Officer_Race=="Black/African American",1, + ifelse(nc$Officer_Race=="Hispanic/Latino",2,NA))) +nc$subject_female = ifelse(nc$Driver_Gender=="Female",1,0) +nc$subject_race2 = ifelse(nc$Driver_Race=="White"& + nc$Driver_Ethnicity=="Non-Hispanic",0, + ifelse(nc$Driver_Race=="Black"& + nc$Driver_Ethnicity=="Non-Hispanic",1, + ifelse(nc$Driver_Ethnicity=="Hispanic",2,NA))) +nc.search.inter = lm(search~factor(of_gender)*factor(subject_female)+ + factor(of_race)*factor(subject_race2)+ + subject_age+investigatory+ + Officer_Years_of_Service+ + factor(month)+factor(year)+ + factor(CMPD_Division), + data=nc) +save(nc.search.inter,file = "Data/NCInter_Search.RData") \ No newline at end of file diff --git a/108/replication_package/Code/Step3_TablesAndFigures.R b/108/replication_package/Code/Step3_TablesAndFigures.R new file mode 100644 index 0000000000000000000000000000000000000000..575670c248aad45683051294427bd831a4cafae9 --- /dev/null +++ b/108/replication_package/Code/Step3_TablesAndFigures.R @@ -0,0 +1,630 @@ +####### +####### +####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops +####### This file produces the tables and figures seen in the paper and appendix. +####### Last Updated: Jan. 2021 +####### +####### + +### +### 1. Setting up the space. +### + +# Setting the working directory: +setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles") + +# Installing the needed libraries: +#install.packages("pscl",dependencies = T) +#install.packages("ggplot2",dependencies = T) +#install.packages("texreg",dependencies = T) +#install.packages("readr",dependencies = T) +#install.packages("arm",dependencies = T) + +# Opening up those libraries: +library(ggplot2) +library(texreg) +library(readr) +library(pscl) +library(arm) + +### +### 2. Body of the Paper +### + +# Clearing the workspace + reading in data bit by bit to produce each table and figure. +rm(list = ls()) + +# Loading in the Data +load("Data/NorthCarolina.RData") +load("Data/FloridaLarge.RData") +load("Data/FloridaSmall.RData") +cmpd.employee = read_csv("Data/CMPD_Employee_Demographics.csv") + +# Number of stops and searches by sex: +dim(fl) +dim(nc) + +table(fl$search_occur) +table(nc$search) + +prop.table(table(fl$search_occur)) +prop.table(table(nc$search)) + +table(fl$of_gender) +table(nc$of_gender) + +table(fl$of_gender,fl$search_occur) +table(nc$of_gender,nc$search) + +prop.table(table(fl$of_gender,fl$search_occur),1) +prop.table(table(nc$of_gender,nc$search),1) + +table(fl$of_gender,fl$contra) + +# Number of officers by sex in FL +length(unique(fl$officer_id_hash)) +length(unique(fl$officer_id_hash[fl$of_gender==0])) +length(unique(fl$officer_id_hash[fl$of_gender==1])) + +length(unique(fl$officer_id_hash[fl$officer_exclude==0])) +length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0])) +length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0])) + +table(cmpd.employee$JOB_TITLE[cmpd.employee$JOB_TITLE=="Police Officer"]) +sum(table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"])) + +table(fl$year) +(table(fl$of_gender)/c(length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0])),length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0]))))/6 + +avg.stops = aggregate(fl$year,by=list(fl$officer_id_hash,fl$year,fl$of_gender),length) +summary(avg.stops) +mean(avg.stops$x) +median(avg.stops$x[avg.stops$Group.3==0]) +median(avg.stops$x[avg.stops$Group.3==1]) + +prop.table(table(fl$investigatory[fl$of_gender==0])) +prop.table(table(fl$investigatory[fl$of_gender==1])) + +table(nc$of_gender[nc$year==2019])[2:1]/table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"]) + +# Excluding Cases: +dim(nc) +dim(nc)-dim(nc[!is.na(nc$search),]) +dim(fl) +dim(fl)-dim(fl[!is.na(fl$search_occur),]) +(dim(fl[!is.na(fl$search_occur),])-dim(fl.sm))+table(fl.sm$officer_exclude)[2] +table(fl.sm$county_include) + +# Table 1 +tab1 = data.frame("Department"=c("Charlotte PD (NC)", + "Male Officers","Female Officers", + "Florida Highwar Patrol", + "Male Officers","Female Officers"), + "Type"=c("Municipal","","","Statewide","",""), + "Years"=c("2016-2017","","", + "2010-2015","",""), + "Stops"=c(dim(nc)[1],table(nc$of_gender), + dim(fl[!is.na(fl$search_occur),])[1], + table(fl$of_gender[!is.na(fl$search_occur)])), + "Searches"=c(table(nc$search)[2],table(nc$of_gender,nc$search)[,2], + table(fl$search_occur)[2], + table(fl$of_gender,fl$search_occur)[,2]), + "Search Rate"=c(table(nc$search)[2]/dim(nc)[1], + table(nc$of_gender,nc$search)[,2]/table(nc$of_gender), + table(fl$search_occur)[2]/dim(fl[!is.na(fl$search_occur),])[1], + table(fl$of_gender,fl$search_occur)[,2]/ + table(fl$of_gender[!is.na(fl$search_occur)]))) +tab1 = rbind(tab1, + c("Total","","", + sum(tab1[c(1,4),4]),sum(tab1[c(1,4),5]), + sum(tab1[c(1,4),5])/sum(tab1[c(1,4),4]))) +tab1 + +# Figure 1 +load("Data/Fig1_Data.RData") +png("Figures/Fig1_PredProb.png", + 750,519) +ggplot(data = search.df, aes(x=Department,y=Rate,fill=Gender)) + + geom_bar(stat="identity", position=position_dodge()) + + ylab("Search Rate") + + theme_bw(base_size=15)+ + theme(legend.position = "bottom") + + labs(fill="Officer Sex")+ + scale_fill_grey(start = 0.25, end = .75) +dev.off() + +prop.test(table(fl$of_gender,fl$search_occur)) +prop.test(table(nc$of_gender,nc$search)) + +# Table 2 +load("Data/FLSearch_Sm_OLS.RData") +load("Data/FLSearch_OLS.RData") +load("Data/NCSearch_Sm_OLS.RData") +load("Data/NCSearch_OLS.RData") +screenreg(list(nc.search,fl.search), + stars=c(0.01,0.05), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "investigatory" = "Investigatory Stop Purpose"), + custom.model.names = c("(1) NC Search", + "(2) FL Search"), + digits=4) + +# Figure 2 +fl.of.pred = predict(fl.search, + newdata = data.frame("of_gender"=c(0,1),"race_gender"=0, + "subject_age"=35,"out_of_state"=0, + "investigatory"=1, + "officer_years_of_service"=6, + "of_race"=0,"officer_age"=39, + "hour_of_day"=15, + "month"="05","year"=2013, + "county_name"="Orange County"), + type="response",se.fit=T) +nc.of.pred = predict(nc.search, + newdata = data.frame("of_gender"=c(0,1), + "race_gender"=0, + "subject_age"=36, + "investigatory"=1, + "Officer_Years_of_Service"=10.25, + "of_race"=0,"month"="01", + "year"=2019,"CMPD_Division"="South Division"), + type="response",se.fit=T) + + + +pred.df = data.frame("Department" = c("Charlotte Police Department", + "Charlotte Police Department", + "Florida Highway Patrol", + "Florida Highway Patrol"), + "Gender" = c("Male","Female","Male","Female"), + "Predict" = c(nc.of.pred$fit, + fl.of.pred$fit), + "Lower"=c(nc.of.pred$fit-1.96*nc.of.pred$se.fit, + fl.of.pred$fit-1.96*fl.of.pred$se.fit), + "Upper"=c(nc.of.pred$fit+1.96*nc.of.pred$se.fit, + fl.of.pred$fit+1.96*fl.of.pred$se.fit)) + +png("Figures/Fig2_PredProb.png", + 900,514) +ggplot(data = pred.df, aes(x=Gender,y=Predict)) + + geom_point(size=4) + + geom_errorbar(aes(ymin = Lower, ymax = Upper), + width=.2,size = 0.75, + position=position_dodge(.9)) + + ylab("Expected Probbility of a Search") + + xlab("Officer Sex") + + theme_bw(base_size=15) +facet_wrap(~Department) +dev.off() + +pred.df$Predict[1]/pred.df$Predict[2] +pred.df$Predict[3]/pred.df$Predict[4] + +# Table 3 +tab3 = data.frame("Officer Gender"=c("Male","Female"), + "Searches"=table(fl$of_gender[!is.na(fl$search_occur)], + fl$search_occur[!is.na(fl$search_occur)])[,2], + "Contraband"=table(fl$of_gender[!is.na(fl$search_occur)], + fl$contra[!is.na(fl$search_occur)])[,2], + "Contraband Hit Rate"=table(fl$of_gender[!is.na(fl$search_occur)], + fl$contra[!is.na(fl$search_occur)])[,2]/ + table(fl$of_gender[!is.na(fl$search_occur)], + fl$search_occur[!is.na(fl$search_occur)])[,2], + "Difference"=c((table(fl$of_gender[!is.na(fl$search_occur)], + fl$contra[!is.na(fl$search_occur)])[,2]/ + table(fl$of_gender[!is.na(fl$search_occur)], + fl$search_occur[!is.na(fl$search_occur)])[,2])[1]- + (table(fl$of_gender[!is.na(fl$search_occur)], + fl$contra[!is.na(fl$search_occur)])[,2]/ + table(fl$of_gender[!is.na(fl$search_occur)], + fl$search_occur[!is.na(fl$search_occur)])[,2])[2],NA)) +tab3 +prop.test(table(fl$of_gender[fl$search_occur==1], + fl$contra[fl$search_occur==1])) + +# Table 4 +load("Data/FlContra_OLS.RData") +load("Data/FlSearchRate_OLS.RData") +load("Data/FlStopRate_OLS.RData") +screenreg(list(fl.contra,contra.search.rate.reg,contra.stop.rate.reg), + stars=c(0.01,0.05), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "investigatory" = "Investigatory Stop Purpose"), + custom.model.names = c("(1) Contra|Search", + "(2) Hit Rate, per 10 Searches", + "(3) Hit Rate, per 100 Stops"), + digits=4) + +### +### 3. Appendix A: Full Regression Results +### + +screenreg(list(nc.search,fl.search, + fl.contra,contra.search.rate.reg,contra.stop.rate.reg), + stars=c(0.01,0.05), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "officer_age"="Officer Age", + "factor(of_age)2"="Officer Age: 30-64", + "factor(of_age)3"="Officer Age: 65+", + "officer_years_of_service"="Officer Years of Service", + "Officer_Years_of_Service"="Officer Years of Service", + "factor(of_exper)1"="Experienced Officer", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "subject_age"="Driver Age", + "factor(driver_age)2"="Driver Age: 30-64", + "factor(driver_age)3"="Driver Age: 65+", + "investigatory" = "Investigatory Stop Purpose", + "out_of_state"="Out of State"), + custom.model.names = c("(1)","(2)", + "(3)","(4)","(5)"), + digits=3) + +### +### 4. Appendix B: Alternative Test of Differences in Search and Contraband Hit Rates +### + +# Florida +fl$stop = 1 +fl$of_exper = ifelse(fl$officer_years_of_service>= + mean(fl$officer_years_of_service,na.rm=T),1,0) +fl$of_age = ifelse(fl$officer_age<30,1, + ifelse(fl$officer_age>64,3,2)) +fl$driver_age = ifelse(fl$subject_age<30,1, + ifelse(fl$subject_age>64,3,2)) +fl$hour_of_day=as.numeric(fl$hour_of_day) +fl$tod = ifelse(fl$hour_of_day<3,1, + ifelse(fl$hour_of_day<6,2, + ifelse(fl$hour_of_day<9,3, + ifelse(fl$hour_of_day<12,4, + ifelse(fl$hour_of_day<15,5, + ifelse(fl$hour_of_day<18,6, + ifelse(fl$hour_of_day<21,7,8))))))) + +fl.ag = aggregate(fl[!is.na(fl$search_occur),c("stop","search_occur","contra")], + by = list(fl$tod[!is.na(fl$search_occur)], + fl$officer_race[!is.na(fl$search_occur)], + fl$officer_sex[!is.na(fl$search_occur)], + fl$of_exper[!is.na(fl$search_occur)], + fl$race_gender[!is.na(fl$search_occur)], + fl$driver_age[!is.na(fl$search_occur)], + fl$out_of_state[!is.na(fl$search_occur)], + fl$investigatory[!is.na(fl$search_occur)]), + sum,na.rm=T) +colnames(fl.ag) = c("tod", + "of_race","of_sex","of_exper","driver_rg", + "driver_age","out_of_state","invest", + "stop","search","contraband") +fl.ag.female = fl.ag[fl.ag$of_sex=="female",] +colnames(fl.ag.female)[c(3,9:11)] = c("female","stop.f", + "search.f","contra.f") +fl.ag.male = fl.ag[fl.ag$of_sex=="male",] +colnames(fl.ag.male)[c(3,9:11)] = c("male","stop.m", + "search.m","contra.m") + +fl.matches = merge(fl.ag.female,fl.ag.male) +min.stops = 9 +table(fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops) +min.searches = 0 +table(fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches) +table(fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops) + +# North Carolina +nc$stop = 1 +nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0) +nc$driver_age = ifelse(nc$Driver_Age<30,1, + ifelse(nc$Driver_Age>65,3,2)) +nc$of_exper = ifelse(nc$Officer_Years_of_Service>=mean(nc$Officer_Years_of_Service), + 1,0) +nc.ag = aggregate(nc[,c("search","stop")], + by = list(nc$CMPD_Division, + nc$Officer_Gender,nc$Officer_Race, + nc$of_exper, + nc$race_gender,nc$driver_age, + nc$investigatory, + nc$year), + sum) +nc.ag.female = nc.ag[nc.ag$Group.2=="Female",] +colnames(nc.ag.female) = c("division","female","race","of_exper", + "driver.rg","driver_age","investigatory", + "year", + "searches.f","stops.f") +nc.ag.male = nc.ag[nc.ag$Group.2=="Male",] +colnames(nc.ag.male) = c("division","male","race","of_exper", + "driver.rg","driver_age","investigatory", + "year", + "searches.m","stops.m") + + +# Searches +fl.matches$sr.f = fl.matches$search.f/fl.matches$stop.f +fl.matches$sr.m = fl.matches$search.m/fl.matches$stop.m +fl.matches$cr.f = fl.matches$contra.f/fl.matches$search.f +fl.matches$cr.m = fl.matches$contra.m/fl.matches$search.m +t.test(fl.matches$sr.f[fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops], + fl.matches$sr.m[fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops], + paired = T) +length(fl.matches$sr.f[fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) +mean(fl.matches$sr.f[fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) +mean(fl.matches$sr.m[fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) + +nc.matches = merge(nc.ag.female,nc.ag.male) +min.stops = 9 +nc.matches$sr.f = nc.matches$searches.f/nc.matches$stops.f +nc.matches$sr.m = nc.matches$searches.m/nc.matches$stops.m +t.test(nc.matches$sr.f[nc.matches$stops.f>min.stops& + nc.matches$stops.m>min.stops], + nc.matches$sr.m[nc.matches$stops.f>min.stops& + nc.matches$stops.m>min.stops], + paired = T) + +length(nc.matches$sr.f[nc.matches$stops.f>min.stops& + nc.matches$stops.m>min.stops]) +mean(nc.matches$sr.f[nc.matches$stops.f>min.stops& + nc.matches$stops.m>min.stops]) +mean(nc.matches$sr.m[nc.matches$stops.f>min.stops& + nc.matches$stops.m>min.stops],) + +# Contraband +t.test(fl.matches$cr.f[fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops], + fl.matches$cr.m[fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops], + paired = T) +length(fl.matches$cr.f[fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) +mean(fl.matches$cr.f[fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) +mean(fl.matches$cr.m[fl.matches$search.f>min.searches& + fl.matches$search.m>min.searches& + fl.matches$stop.f>min.stops& + fl.matches$stop.m>min.stops]) + +### +### 5. Appendix C: Logistic Regrssion Models +### + +rm(list = ls()) + +load("Data/FlContra_Logit.RData") +load("Data/FLSearch_Logit.RData") +load("Data/NCSearch_Logit.RData") + +texreg(list(nc.search,fl.search,fl.contra), + stars=c(0.01,0.05), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "factor(of_race)2"="Latinx Officer", + "factor(of_race)3"="Asain/Pacific Islander Officer", + "factor(of_race)4"="Other Race Officer", + "officer_age"="Officer Age", + "officer_years_of_service"="Officer Years of Service", + "Officer_Years_of_Service"="Officer Years of Service", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "subject_age"="Driver Age", + "investigatory" = "Investigatory Stop Purpose", + "out_of_state"="Out of State"), + custom.model.names = c("(1) NC Search", + "(2) FL Search", + "(3) FL Contra|Search"), + digits=4) + +### +### 6. Appendix C: Fixed Effects +### + +rm(list = ls()) + +load("Data/FLSearch_OLS_FE.RData") +load("Data/FlContra_OLS_FE.RData") +load("Data/FlSearchRate_OLS_FE.RData") +load("Data/FlStopRate_OLS_FE.RData") + +texreg(list(fl.search, + fl.contra, + contra.search.rate.reg, + contra.stop.rate.reg), + stars=c(0.01,0.05), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "officer_age"="Officer Age", + "factor(of_age)2"="Officer Age: 30-64", + "factor(of_age)3"="Officer Age: 65+", + "officer_years_of_service"="Officer Years of Service", + "Officer_Years_of_Service"="Officer Years of Service", + "factor(of_exper)1"="Experienced Officer", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "subject_age"="Driver Age", + "factor(driver_age)2"="Driver Age: 30-64", + "factor(driver_age)3"="Driver Age: 65+", + "investigatory" = "Investigatory Stop Purpose", + "out_of_state"="Out of State"), + custom.model.names = c("(1) Search", + "(2) Contra|Search", + "(3) Hit Rate, per 10 Searches", + "(4) Hit Rate, per 100 Stops"), + digits=4) + +### +### 7. Appendix D: Interaction Models +### + +rm(list = ls()) + +# Table 1. Officer Experience +load("Data/FLSearch_Exper_OLS.RData") +load("Data/NCSearch_Exper_OLS.RData") +load("Data/FlContra_Exper_OLS.RData") +load("Data/FlSearchRate_Exper_OLS.RData") +load("Data/FlStopRate_Exper_OLS.RData") + +texreg(list(nc.search.exper,fl.search.exper,fl.contra.exper, + contra.search.rate.exper,contra.stop.rate.exper), + stars=c(0.05,0.01), + custom.coef.map = list("factor(of_gender)1"="Female Officer", + "officer_years_of_service"="Officer Years of Service", + "Officer_Years_of_Service"="Officer Years of Service", + "factor(of_exper)1"="Experienced Officer", + "factor(of_gender)1:officer_years_of_service"="Female Officer * Exper.", + "factor(of_gender)1:Officer_Years_of_Service"="Female Officer * Exper.", + "factor(of_gender)1:factor(of_exper)1"="Female Officer * Exper."), + digits = 3) + +# Table 2. Prop Female +load("Data/FLSearch_Prop_OLS.RData") +load("Data/FlContra_Prop_OLS.RData") + +texreg(list(fl.search.prop,fl.contra.prop), + stars=c(0.05,0.01), + custom.coef.map = list("factor(of_gender)1"="Female Officer", + "female.prop"="Female Proportion of Proximate Force", + "factor(of_gender)1:female.prop"="Female Officer * Female Prop."), + digits = 3) + +# Table 3. Stop Type +load("Data/FLSearch_StopType_OLS.RData") +load("Data/NCSearch_StopType_OLS.RData") +load("Data/FlContra_StopType_OLS.RData") +load("Data/FlSearchRate_StopType_OLS.RData") +load("Data/FlStopRate_StopType_OLS.RData") + +texreg(list(nc.search.st,fl.search.st,fl.contra.st, + contra.search.rate.st,contra.stop.rate.st), + stars=c(0.05,0.01), + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "officer_age"="Officer Age", + "factor(of_age)2"="Officer Age: 30-64", + "factor(of_age)3"="Officer Age: 65+", + "officer_years_of_service"="Officer Years of Service", + "Officer_Years_of_Service"="Officer Years of Service", + "factor(of_exper)1"="Experienced Officer", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "factor(race_gender)4"="Latino Male", + "factor(race_gender)5"="Latina Female", + "subject_age"="Driver Age", + "factor(driver_age)2"="Driver Age: 30-64", + "factor(driver_age)3"="Driver Age: 65+", + "investigatory" = "Investigatory Stop Purpose", + "out_of_state"="Out of State"), + digits = 3) + +# Table 4. Driver Characteristics +load("Data/FLInter_Search.RData") +load("Data/FLInter_Contra.RData") +load("Data/FLStopRate_Inter_OLS.RData") +load("Data/FLSearchRate_Inter_OLS.RData") +load("Data/NCInter_Search.RData") + +texreg(list(nc.search.inter,fl.search.inter,fl.contra.inter, + contra.search.rate.inter,contra.stop.rate.inter), + stars=c(0.01,0.05), + custom.coef.map = list("factor(of_gender)1"="Female Officer", + "factor(subject_female)1"="Female Driver", + "factor(of_race)1"="Black Officer", + "factor(of_race)2"="Latinx Officer", + "factor(subject_race2)1"="Black Driver", + "factor(subject_race2)2"="Latinx Driver", + "factor(of_gender)1:factor(subject_female)1"="Female Officer*Driver", + "factor(of_race)1:factor(subject_race2)1"="Black Officer*Driver", + "factor(of_race)2:factor(subject_race2)1"="Latinx Officer*Black Driver", + "factor(of_race)1:factor(subject_race2)2"="Black Officer*Latinx Driver", + "factor(of_race)2:factor(subject_race2)2"="Latinx Officer* Driver"),digits=3) + +### +### 8. Appendix E: A Conservative Test with the Charlotte Police Department +### + +load("Data/NorthCarolina.RData") + +table(nc$year) + +nc.search16 = lm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+ + factor(CMPD_Division), + data=nc,subset=nc$year==2016) +nc.search17 = lm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+ + factor(CMPD_Division), + data=nc,subset=nc$year==2017) +nc.search19 = lm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+ + factor(CMPD_Division), + data=nc,subset=nc$year==2019) +nc.search20 = lm(search~factor(race_gender)+subject_age+ + investigatory+ + factor(of_race)+ + factor(of_gender)+Officer_Years_of_Service+ + factor(month)+ + factor(CMPD_Division), + data=nc,subset=nc$year==2020) +texreg(list(nc.search16,nc.search17,nc.search19,nc.search20), + omit.coef = "Division*|month*", + custom.coef.map = list("(Intercept)"="(Intercept)", + "factor(of_gender)1"="Female Officer", + "factor(of_race)1"="Black Officer", + "Officer_Years_of_Service"="Officer Years of Service", + "investigatory"="Investigatory Stop", + "factor(race_gender)1"="White Female", + "factor(race_gender)2"="Black Male", + "factor(race_gender)3"="Black Female", + "subject_age"="Driver Age"), + stars=c(0.01,0.05)) \ No newline at end of file diff --git a/108/replication_package/Codebook.pdf b/108/replication_package/Codebook.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7622151a4e8f46379ae80b0b467c7348af926f92 --- /dev/null +++ b/108/replication_package/Codebook.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:13005b9b5345b06738031cbc739cd7d498e0a522225906eabc134f6524848295 +size 100640 diff --git a/108/replication_package/Data/CMPD_Employee_Demographics-2.csv b/108/replication_package/Data/CMPD_Employee_Demographics-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..ae6c97fca2d1915fa4ede895ab79376d947dca04 --- /dev/null +++ b/108/replication_package/Data/CMPD_Employee_Demographics-2.csv @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85af7b553d7ac37b8a36be9f42f1a16b3dcb4b7b5b1e104d7e799a0162bf8717 +size 102070 diff --git a/108/replication_package/Data/FLInter_Contra.RData b/108/replication_package/Data/FLInter_Contra.RData new file mode 100644 index 0000000000000000000000000000000000000000..cb52aab704a8869ab051ccec14c620686bb660d2 --- /dev/null +++ b/108/replication_package/Data/FLInter_Contra.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e51490c9a53f92a300708b5ca2095e71d9d941e8381192e743414ec146e516d6 +size 11259261 diff --git a/108/replication_package/Data/FLInter_Search.RData b/108/replication_package/Data/FLInter_Search.RData new file mode 100644 index 0000000000000000000000000000000000000000..9f6d27508ac21afe016b5e17229680c29987e07c --- /dev/null +++ b/108/replication_package/Data/FLInter_Search.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98eaf6c3979cdfc1d254e1bf93748477ed3bead57f7c197eb35557461007563a +size 2359133801 diff --git a/108/replication_package/Data/FLSearch_Exper_OLS.RData b/108/replication_package/Data/FLSearch_Exper_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..da11832a560f54d9449cbcf4f07d304e8cbbd92c --- /dev/null +++ b/108/replication_package/Data/FLSearch_Exper_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bd30c101c09a686ed202bee900a75ef7f7fb3feae40c5079433dac3907f3921b +size 2362469120 diff --git a/108/replication_package/Data/FLSearch_OLS.RData b/108/replication_package/Data/FLSearch_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..a7d17462c9b419e8cd59cb8bb0b81faee32a6697 --- /dev/null +++ b/108/replication_package/Data/FLSearch_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a1514156c43a7f692d134890d25b99bc985748700f54f540c0ba3ff26df68661 +size 2342885016 diff --git a/108/replication_package/Data/FLSearch_OLS_FE.RData b/108/replication_package/Data/FLSearch_OLS_FE.RData new file mode 100644 index 0000000000000000000000000000000000000000..d7c6c3852ca66c63ebdbdb652c9ad85498bda090 --- /dev/null +++ b/108/replication_package/Data/FLSearch_OLS_FE.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dbda980fede0640cec254d207f62567d61be8a194ef1b4abb59a6eed958c3f17 +size 178632280 diff --git a/108/replication_package/Data/FLSearch_Prop_OLS.RData b/108/replication_package/Data/FLSearch_Prop_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..5503bc2a046c729836dd02ee4e28db8c2f63d912 --- /dev/null +++ b/108/replication_package/Data/FLSearch_Prop_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dd626b7947c497060e2ac5da415424c0851d990b1bbf8fd923b7f83bfd402f0d +size 2366944781 diff --git a/108/replication_package/Data/FLSearch_Sm_OLS.RData b/108/replication_package/Data/FLSearch_Sm_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..585258f2cfb00e58dac5182c19cd5117ca7a5e71 --- /dev/null +++ b/108/replication_package/Data/FLSearch_Sm_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2791ea705faa50c55af91d210f5bd2c40ba9ef1fb4f843f885be05cacdfa8723 +size 46668689 diff --git a/108/replication_package/Data/FLSearch_StopType_OLS.RData b/108/replication_package/Data/FLSearch_StopType_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..06540b3f96ca2ea384a74ee74ede9b758552d0ba --- /dev/null +++ b/108/replication_package/Data/FLSearch_StopType_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d510581a50fca4f503989fa258784e47d2dbcc6bcfaddce012947c381f6fb8e +size 1254399142 diff --git a/108/replication_package/Data/FL_Aggregated-2.RData b/108/replication_package/Data/FL_Aggregated-2.RData new file mode 100644 index 0000000000000000000000000000000000000000..68dc572b8393444752ef567cfbd11deac4e88653 --- /dev/null +++ b/108/replication_package/Data/FL_Aggregated-2.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23f19f7224610075cc557a54c48efe0d22f8e05128d20e457aded8542ac3c269 +size 2359133 diff --git a/108/replication_package/Data/Fig1_Data-2.RData b/108/replication_package/Data/Fig1_Data-2.RData new file mode 100644 index 0000000000000000000000000000000000000000..1b271cbf56405c3ad1fefc445eafdbf42c669980 --- /dev/null +++ b/108/replication_package/Data/Fig1_Data-2.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:01489db42bc824d3c335d2992cc2928436c2a8295965d12f02a09842f6317232 +size 227 diff --git a/108/replication_package/Data/FlContra_Exper_OLS.RData b/108/replication_package/Data/FlContra_Exper_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..66841bf17c38108f45fc3d87f9b9ef7d921ff0cc --- /dev/null +++ b/108/replication_package/Data/FlContra_Exper_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a02d19de084d28d8fa52873eca1435a6a732f9e50c6a652758f2bfca9fbf3987 +size 11198225 diff --git a/108/replication_package/Data/FlContra_Logit.RData b/108/replication_package/Data/FlContra_Logit.RData new file mode 100644 index 0000000000000000000000000000000000000000..5557f1135e397603d482c5ea3e99ea4791a52c9f --- /dev/null +++ b/108/replication_package/Data/FlContra_Logit.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:409491c82c65d415ff8ef172232ca9a85a747f7b4fef9485830bd9e7bd1c29d4 +size 106097885 diff --git a/108/replication_package/Data/FlContra_OLS.RData b/108/replication_package/Data/FlContra_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..9ebf8789207f79c887966e8097c0e67482f852bc --- /dev/null +++ b/108/replication_package/Data/FlContra_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c785e578736bbf092441b223d2a48aa961502f516c2345823ec3f435a646770 +size 11001727 diff --git a/108/replication_package/Data/FlContra_OLS_FE.RData b/108/replication_package/Data/FlContra_OLS_FE.RData new file mode 100644 index 0000000000000000000000000000000000000000..bdfa8233518177b36df46c688140b197fac493d1 --- /dev/null +++ b/108/replication_package/Data/FlContra_OLS_FE.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:adc0aba7bda58b3bb62478a4a98a3cb7a75829c46bf176577ab0cd49d05fbda7 +size 1159630 diff --git a/108/replication_package/Data/FlContra_Prop_OLS.RData b/108/replication_package/Data/FlContra_Prop_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..66a7061938a9914f33aba7a84999146c80d38129 --- /dev/null +++ b/108/replication_package/Data/FlContra_Prop_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5b9a91cc6baffa3d93740d5912bf7bd07ee213d265e005b6b88799457bcc0605 +size 11495685 diff --git a/108/replication_package/Data/FlContra_Sm_OLS.RData b/108/replication_package/Data/FlContra_Sm_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..80dac60b72f22bd1fe43ee683d5e52ec0d193541 --- /dev/null +++ b/108/replication_package/Data/FlContra_Sm_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:369f25d63c672d16149118b8cfed934599bcb9bd1e066ddb447496c188e9a6e4 +size 156422 diff --git a/108/replication_package/Data/FlContra_StopType_OLS.RData b/108/replication_package/Data/FlContra_StopType_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..e4694ff2b0987947023ca50a0d9733a5a7f7a68c --- /dev/null +++ b/108/replication_package/Data/FlContra_StopType_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6d48289c9409301da705fd8dc8c6d924174e4af1a9b5706ca46556d3070c1ee +size 9424568 diff --git a/108/replication_package/Data/FlSearchRate_Exper_OLS.RData b/108/replication_package/Data/FlSearchRate_Exper_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..5f7473adef56b6b3bb1526e228a5bacbb45f9605 --- /dev/null +++ b/108/replication_package/Data/FlSearchRate_Exper_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:79d926b7a6f669d70c89cc90fd8346959aabc2b6dfd9e5c470f0b663ce245b1c +size 430999 diff --git a/108/replication_package/Data/FlSearchRate_Inter_OLS.RData b/108/replication_package/Data/FlSearchRate_Inter_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..01df5ad3ebd609914d0aacebaa524c3db640bb33 --- /dev/null +++ b/108/replication_package/Data/FlSearchRate_Inter_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:331839e877eb0a2bf8b6c607d08dd85f4aadab9e4c044cb4322d8547fdccd5b5 +size 681337 diff --git a/108/replication_package/Data/FlSearchRate_OLS.RData b/108/replication_package/Data/FlSearchRate_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..28b615f94b905b1561b4afc6f66e3918ae2b3f33 --- /dev/null +++ b/108/replication_package/Data/FlSearchRate_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f15fefc7c3a7e6472994b9afe5db12d8c59827abaf50cccad1d20f9c66e854de +size 664257 diff --git a/108/replication_package/Data/FlSearchRate_OLS_FE.RData b/108/replication_package/Data/FlSearchRate_OLS_FE.RData new file mode 100644 index 0000000000000000000000000000000000000000..7ea48b0188d7af5825fac8cfae9e3dc62d1350c5 --- /dev/null +++ b/108/replication_package/Data/FlSearchRate_OLS_FE.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90c3648d7ac25842d2aaa1809a2427ab28d5558238fbbccf9d7c2f9427a1b60f +size 715255 diff --git a/108/replication_package/Data/FlSearchRate_StopType_OLS.RData b/108/replication_package/Data/FlSearchRate_StopType_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..65a287564e25e66eb57b49e6a117d3d247be1b8a --- /dev/null +++ b/108/replication_package/Data/FlSearchRate_StopType_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08093ceb38bc2d279479419d0670d772f906c998318f557352df08bb92302dac +size 301641 diff --git a/108/replication_package/Data/FlStopRate_Exper_OLS.RData b/108/replication_package/Data/FlStopRate_Exper_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..e831c450ae44e3c9bc7844e36d4b2b4958d77306 --- /dev/null +++ b/108/replication_package/Data/FlStopRate_Exper_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:48b7b5bbf65240de3142009835bf0a3665ce97c3543d20609554e6365820aa4c +size 13569388 diff --git a/108/replication_package/Data/FlStopRate_Inter_OLS.RData b/108/replication_package/Data/FlStopRate_Inter_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..952cdc74b56560fda10c433e01f62e926d27f4f9 --- /dev/null +++ b/108/replication_package/Data/FlStopRate_Inter_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d0d73e384cb9b7cc1e37e8e3672fea953045583ff5310394d74451a04f4dd67a +size 20515466 diff --git a/108/replication_package/Data/FlStopRate_OLS.RData b/108/replication_package/Data/FlStopRate_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..758be875bfde0261c837f45c5e1ab392a226083e --- /dev/null +++ b/108/replication_package/Data/FlStopRate_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85bd75b8f6f9bf0144874d7dd572a1776a7ac4b3a604582899eccd2075aab288 +size 16239663 diff --git a/108/replication_package/Data/FlStopRate_OLS_FE.RData b/108/replication_package/Data/FlStopRate_OLS_FE.RData new file mode 100644 index 0000000000000000000000000000000000000000..a43ed867ccab9b932c83d0a24858152ed2dc3460 --- /dev/null +++ b/108/replication_package/Data/FlStopRate_OLS_FE.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:590e1874612b47f5fb3cac2b0812b2f0546688f55276abcaa587ad35923fcd6f +size 31466666 diff --git a/108/replication_package/Data/FlStopRate_StopType_OLS.RData b/108/replication_package/Data/FlStopRate_StopType_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..4381bc87a7d1a5fa04a760f4eb0a3c4bb918beb0 --- /dev/null +++ b/108/replication_package/Data/FlStopRate_StopType_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:006a600056a5370ac28e5c6e06803f01d574354c51e4e95c3c7792ebc3200dc9 +size 6480541 diff --git a/108/replication_package/Data/FloridaLarge.RData b/108/replication_package/Data/FloridaLarge.RData new file mode 100644 index 0000000000000000000000000000000000000000..a0f8676f358e02fd51e376f3aa91e47219e037d1 --- /dev/null +++ b/108/replication_package/Data/FloridaLarge.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fcb05c938fd8f1c03d10c470fa7798c0b96fe1ba479feffcb5122bb88ffc91fc +size 162447547 diff --git a/108/replication_package/Data/FloridaSmall.RData b/108/replication_package/Data/FloridaSmall.RData new file mode 100644 index 0000000000000000000000000000000000000000..73702d6e525171191cfbd09f74de837674a9b932 --- /dev/null +++ b/108/replication_package/Data/FloridaSmall.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:348f5b056d7723726c70ee0bd06272d23c6aaa8d7a086e76b4f886c8a41bbaff +size 93337267 diff --git a/108/replication_package/Data/NCInter_Search.RData b/108/replication_package/Data/NCInter_Search.RData new file mode 100644 index 0000000000000000000000000000000000000000..22c781616a17a61dc3f4069df6b43b1e402f5d40 --- /dev/null +++ b/108/replication_package/Data/NCInter_Search.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23ee3c85f8545c110d7141dc5993c9ca088c51feb16dfe7045e1f6d0a8e49c94 +size 46453455 diff --git a/108/replication_package/Data/NCSearch_Exper_OLS.RData b/108/replication_package/Data/NCSearch_Exper_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..17d52908fec5dc8a6985fed523d3da34a53ab6ae --- /dev/null +++ b/108/replication_package/Data/NCSearch_Exper_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c97944fa5c25668536b01df9667a86e8c61728724357667c3c9b3a51cb359697 +size 35200154 diff --git a/108/replication_package/Data/NCSearch_Logit.RData b/108/replication_package/Data/NCSearch_Logit.RData new file mode 100644 index 0000000000000000000000000000000000000000..a2c4107d8f674eb1d88163228846a425726ecc1d --- /dev/null +++ b/108/replication_package/Data/NCSearch_Logit.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:195ae828e4eca39ffc3b12d04c45bb53461edfa5c1877804b77602d462b27f5b +size 50326018 diff --git a/108/replication_package/Data/NCSearch_OLS.RData b/108/replication_package/Data/NCSearch_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..78fe005a8c28f1309764c2c3075835ff3f9b824e --- /dev/null +++ b/108/replication_package/Data/NCSearch_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:43cc344a20dc09fbb4afad6735fee82fb158c6340c133bf2936f3aa1c462bb8d +size 34108717 diff --git a/108/replication_package/Data/NCSearch_Sm_OLS.RData b/108/replication_package/Data/NCSearch_Sm_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..6c8f2914f50cc4055962a18b7c52c1706fa10ee9 --- /dev/null +++ b/108/replication_package/Data/NCSearch_Sm_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1073b27ffcebae9427223fe79419f75bf62958e9566a73028f8050d3d0713fd +size 220878 diff --git a/108/replication_package/Data/NCSearch_StopType_OLS.RData b/108/replication_package/Data/NCSearch_StopType_OLS.RData new file mode 100644 index 0000000000000000000000000000000000000000..ae82fbd085d4e088f1ef8194c874a498e1d9310e --- /dev/null +++ b/108/replication_package/Data/NCSearch_StopType_OLS.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98d7812f9bb368364fefeb839b0b3f86019f2d56ffc3585a92e4fa71d58ba810 +size 17400474 diff --git a/108/replication_package/Data/NorthCarolina.RData b/108/replication_package/Data/NorthCarolina.RData new file mode 100644 index 0000000000000000000000000000000000000000..87241171b76b430cd7ea1cc3c63da239ec4adce7 --- /dev/null +++ b/108/replication_package/Data/NorthCarolina.RData @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3a6642b5def9756e49bd99c4ce1610048fd27bf5617c78aec3d658a5ca431422 +size 2821239 diff --git a/108/replication_package/Data/Officer_Traffic_Stops_Original.csv b/108/replication_package/Data/Officer_Traffic_Stops_Original.csv new file mode 100644 index 0000000000000000000000000000000000000000..3522b54f4072ea0222f211e5e85e9bd6fcb1ed59 --- /dev/null +++ b/108/replication_package/Data/Officer_Traffic_Stops_Original.csv @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:804a8c1ac803fcac70319b898e0a75dbbc705da548cb26cc0641b287aa184def +size 17327975 diff --git a/108/replication_package/Data/Officer_Traffic_Stops_Update.csv b/108/replication_package/Data/Officer_Traffic_Stops_Update.csv new file mode 100644 index 0000000000000000000000000000000000000000..a1b581e27af5c07a1fe3f6197c022947b7819ee0 --- /dev/null +++ b/108/replication_package/Data/Officer_Traffic_Stops_Update.csv @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7d2e1b647ba0739d6ff13e28ba0378ef4af8b8cc41f584038e39761a48a574c8 +size 20913993 diff --git a/108/replication_package/Data/fl_statewide_2019_08_13.csv b/108/replication_package/Data/fl_statewide_2019_08_13.csv new file mode 100644 index 0000000000000000000000000000000000000000..c1c2c57f3f856f6ec849040f987e678824c1d13a --- /dev/null +++ b/108/replication_package/Data/fl_statewide_2019_08_13.csv @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dd8bd39618a6f670122723eeafa9d11ba7f19065eda4fadb38ffdacc838f16db +size 1974334914 diff --git a/108/replication_package/Figures/Fig1_PredProb.png b/108/replication_package/Figures/Fig1_PredProb.png new file mode 100644 index 0000000000000000000000000000000000000000..470d964249df67b7dbe57cbfe147b5092d312479 --- /dev/null +++ b/108/replication_package/Figures/Fig1_PredProb.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b04006e4b3822e53a76a827780a000d2ceb711c7c0915fb54cd1e6bdf6158d01 +size 22319 diff --git a/108/replication_package/Figures/Fig2_PredProb.png b/108/replication_package/Figures/Fig2_PredProb.png new file mode 100644 index 0000000000000000000000000000000000000000..3e58fe13d88e902d3f657cbf8c506c809829f6ec --- /dev/null +++ b/108/replication_package/Figures/Fig2_PredProb.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4bd4a047496b785d9499a301333c4ce883102d777bec8cf35f9e7e3048cfde1 +size 31355 diff --git a/108/replication_package/OutputFiles/Step1_MainAnalysisAndData.html b/108/replication_package/OutputFiles/Step1_MainAnalysisAndData.html new file mode 100644 index 0000000000000000000000000000000000000000..b06d3661a37d0fe0d0b7e302e7449311910bf145 --- /dev/null +++ b/108/replication_package/OutputFiles/Step1_MainAnalysisAndData.html @@ -0,0 +1,778 @@ + + + + +
+ + + + + + + + + + +#######
+#######
+####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
+####### This file cleans the raw data and runs the analysis for the body of the paper.
+####### Last Updated: Jan. 2021
+#######
+#######
+
+
+###
+### 1. Setting up the space.
+###
+
+# Setting the working directory:
+setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
+
+# Installing the needed libraries:
+#install.packages("pscl",dependencies = T)
+#install.packages("ggplot2",dependencies = T)
+#install.packages("texreg",dependencies = T)
+#install.packages("readr",dependencies = T)
+#install.packages("arm",dependencies = T)
+#install.packages("dplyr",dependencies = T)
+
+# Opening up those libraries:
+library(dplyr)
+##
+## Attaching package: 'dplyr'
+## The following objects are masked from 'package:stats':
+##
+## filter, lag
+## The following objects are masked from 'package:base':
+##
+## intersect, setdiff, setequal, union
+library(ggplot2)
+library(texreg)
+## Version: 1.37.5
+## Date: 2020-06-17
+## Author: Philip Leifeld (University of Essex)
+##
+## Consider submitting praise using the praise or praise_interactive functions.
+## Please cite the JSS article in your publications -- see citation("texreg").
+library(readr)
+library(pscl)
+## Classes and Methods for R developed in the
+## Political Science Computational Laboratory
+## Department of Political Science
+## Stanford University
+## Simon Jackman
+## hurdle and zeroinfl functions by Achim Zeileis
+library(arm)
+## Loading required package: MASS
+##
+## Attaching package: 'MASS'
+## The following object is masked from 'package:dplyr':
+##
+## select
+## Loading required package: Matrix
+## Loading required package: lme4
+##
+## arm (Version 1.11-2, built: 2020-7-27)
+## Working directory is /Users/kelseyshoub/Desktop/PinkPolicing/AJPS_ReplicationFiles
+# Loading the raw data:
+nc_new = read_csv("Data/Officer_Traffic_Stops_Update.csv")
+##
+## ── Column specification ────────────────────────────────────────────────────────────────────────────────────
+## cols(
+## OBJECTID = col_double(),
+## Month_of_Stop = col_character(),
+## Reason_for_Stop = col_character(),
+## Officer_Race = col_character(),
+## Officer_Gender = col_character(),
+## Officer_Years_of_Service = col_double(),
+## Driver_Race = col_character(),
+## Driver_Ethnicity = col_character(),
+## Driver_Gender = col_character(),
+## Driver_Age = col_double(),
+## Was_a_Search_Conducted = col_character(),
+## Result_of_Stop = col_character(),
+## CMPD_Division = col_character(),
+## GlobalID = col_character()
+## )
+nc_old = read_csv("Data/Officer_Traffic_Stops_Original.csv")
+##
+## ── Column specification ────────────────────────────────────────────────────────────────────────────────────
+## cols(
+## Month_of_Stop = col_character(),
+## Reason_for_Stop = col_character(),
+## Officer_Race = col_character(),
+## Officer_Gender = col_character(),
+## Officer_Years_of_Service = col_double(),
+## Driver_Race = col_character(),
+## Driver_Ethnicity = col_character(),
+## Driver_Gender = col_character(),
+## Driver_Age = col_double(),
+## Was_a_Search_Conducted = col_character(),
+## Result_of_Stop = col_character(),
+## CMPD_Division = col_character(),
+## ObjectID = col_double(),
+## CreationDate = col_datetime(format = ""),
+## Creator = col_character(),
+## EditDate = col_datetime(format = ""),
+## Editor = col_character()
+## )
+nc = bind_rows(nc_new,nc_old)
+fl = read_csv("Data/fl_statewide_2019_08_13.csv")
+##
+## ── Column specification ────────────────────────────────────────────────────────────────────────────────────
+## cols(
+## .default = col_character(),
+## date = col_date(format = ""),
+## time = col_time(format = ""),
+## subject_age = col_double(),
+## officer_age = col_double(),
+## officer_years_of_service = col_double(),
+## arrest_made = col_logical(),
+## citation_issued = col_logical(),
+## warning_issued = col_logical(),
+## frisk_performed = col_logical(),
+## search_conducted = col_logical()
+## )
+## ℹ Use `spec()` for the full column specifications.
+###
+### 2. Producing the data sets for each table.
+###
+
+# Cleaning the NC Data
+nc$driver_re = as.numeric(ifelse(nc$Driver_Race=="White"&
+ nc$Driver_Ethnicity=="Non-Hispanic","0",
+ ifelse(nc$Driver_Race=="Black"&
+ nc$Driver_Ethnicity=="Non-Hispanic","1",
+ ifelse(nc$Driver_Ethnicity=="Hispanic","2",NA))))
+nc$of_rg = ifelse(nc$Officer_Race=="White",
+ ifelse(nc$Officer_Gender=="Male","0","1"),
+ ifelse(nc$Officer_Race=="Black/African American",
+ ifelse(nc$Officer_Gender=="Male","2","3"),NA))
+nc$of_race = ifelse(nc$Officer_Race=="White",0,
+ ifelse(nc$Officer_Race=="Black/African American",1,NA))
+nc$of_gender = ifelse(nc$Officer_Gender=="Male","0","1")
+nc$investigatory = ifelse(grepl("Impaired|Speeding|Light|Movement",
+ as.character(nc$Reason_for_Stop)),0,1)
+nc$investigatory = ifelse(grepl("Check",as.character(nc$Reason_for_Stop)),
+ NA,nc$investigatory)
+nc$race_gender = ifelse(nc$driver_re=="0",
+ ifelse(nc$Driver_Gender=="Male","0","1"),
+ ifelse(nc$driver_re=="1",
+ ifelse(nc$Driver_Gender=="Male","2","3"),NA))
+nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0)
+
+nc$subject_sex = tolower(nc$Driver_Gender)
+nc$subject_age = nc$Driver_Age
+nc$officer_sex = tolower(nc$Officer_Gender)
+nc$month = apply(as.matrix(as.character(nc$Month_of_Stop)),1,
+ function(x){strsplit(x,"/",fixed=T)[[1]][2]})
+nc$year = apply(as.matrix(as.character(nc$Month_of_Stop)),1,
+ function(x){strsplit(x,"/",fixed=T)[[1]][1]})
+
+nc$arrest = ifelse(nc$Result_of_Stop=="Arrest",1,0)
+save(nc,file="Data/NorthCarolina.RData")
+
+# Cleaning the FL data.
+violations_list = strsplit(paste(fl$reason_for_stop,collapse = "|"),"|",fixed = T)
+violations_list_small = unique(violations_list[[1]])[2:71]
+violations_indicator = violations_list_small[c(1,2,5,6,7,9,10,14,19,
+ 20,23,40,45)]
+fl$investigatory = ifelse(is.na(fl$violation),NA,
+ ifelse(fl$violation %in% violations_indicator, 0, 1))
+fl$contraband_found = ifelse(grepl("contraband",
+ tolower(fl$violation)),1,0)
+fl$race_gender = ifelse(fl$subject_race=="white",
+ ifelse(fl$subject_sex=="male",0,1),
+ ifelse(fl$subject_race=="black",
+ ifelse(fl$subject_sex=="male",2,3),
+ ifelse(fl$subject_race=="hispanic",
+ ifelse(fl$subject_sex=="male",4,5),NA)))
+fl$of_rg = ifelse(fl$officer_race=="white",
+ ifelse(fl$officer_sex=="male",0,1),
+ ifelse(fl$officer_race=="black",
+ ifelse(fl$officer_sex=="male",2,3),
+ ifelse(fl$officer_race=="hispanic",
+ ifelse(fl$officer_sex=="male",4,5),NA)))
+fl$of_race = ifelse(fl$officer_race=="white",0,
+ ifelse(fl$officer_race=="black",1,
+ ifelse(fl$officer_race=="hispanic",2,
+ ifelse(fl$officer_race=="asian/pacific islander",3,
+ ifelse(fl$officer_race=="other",4,NA)))))
+fl$of_gender = ifelse(fl$officer_sex=="male",0,1)
+fl$out_of_state = ifelse(fl$vehicle_registration_state=="FL",0,1)
+fl$hour_of_day = apply(as.matrix(as.character(fl$time)),1,
+ function(x)(strsplit(x,":",fixed = T)[[1]][1]))
+fl$month = apply(as.matrix(as.character(fl$date)),1,
+ function(x)(paste(strsplit(x,"-",fixed = T)[[1]][2],
+ collapse = "_")))
+fl$year = apply(as.matrix(as.character(fl$date)),1,
+ function(x)(paste(strsplit(x,"-",fixed = T)[[1]][1],
+ collapse = "_")))
+fl = subset(fl,fl$year!="2016"&fl$year!="2017"&fl$year!="2018") #Narrows down to complete years that don't report extreme misingness on key outcome.
+fl.officers = names(table(fl$officer_id_hash))[table(fl$officer_id_hash)>1000]
+fl$officers_include = ifelse(fl$officer_id_hash%in%fl.officers,1,0)
+fl.counties = names(table(fl$county_name))[table(fl$county_name)>1000]
+fl$county_include = ifelse(fl$county_name%in%fl.counties,1,0)
+fl.ag.id = aggregate(fl$of_gender,
+ list(fl$officer_id_hash,fl$year,fl$county_name),
+ mean)
+fl.ag.id$officer = ifelse(!is.na(fl.ag.id$x),1,0)
+fl.ag.gender = aggregate(fl.ag.id[,c("x","officer")],
+ list(fl.ag.id$Group.2,fl.ag.id$Group.3),
+ sum,na.rm=T)
+fl.ag.gender$prop.female = fl.ag.gender$x/fl.ag.gender$officer
+colnames(fl.ag.gender) = c("year","county_name","count.female","tot.officer","prop.female")
+fl = merge(fl,fl.ag.gender,by=c("year","county_name"),all.x=T)
+fl$officer_exclude = ifelse(fl$officer_years_of_service<0|fl$officer_years_of_service>40,1,0)
+fl.ag.id2 = aggregate(fl$of_gender,
+ list(fl$officer_id_hash),
+ mean)
+fl$search_occur = ifelse(fl$search_conducted == 0, 0,
+ ifelse(fl$search_basis != "other",1,NA))
+fl$contra = ifelse(is.na(fl$search_occur),0,
+ ifelse(fl$search_occur==1,fl$contraband_found,0))
+
+complete = complete.cases(fl[,c("search_occur","race_gender","subject_age",
+ "out_of_state","investigatory","of_gender",
+ "of_race","officer_years_of_service","officer_age",
+ "hour_of_day","month","year","county_name")])
+fl.sm = fl[complete,]
+complete2 = complete.cases(fl[,c("search_occur","of_gender")])
+table(complete)
+## complete
+## FALSE TRUE
+## 2111746 2731204
+table(complete2)
+## complete2
+## FALSE TRUE
+## 692067 4150883
+fl.missingness = apply(fl[,c("search_occur","race_gender","subject_age",
+ "out_of_state","investigatory","of_gender",
+ "of_race","officer_years_of_service","officer_age",
+ "county_name")],
+ 2,
+ FUN = function(x){table(is.na(x))})
+save(fl,file="Data/FloridaLarge.RData")
+save(fl.sm,file="Data/FloridaSmall.RData")
+
+fl$stops = ifelse(!is.na(fl$search_occur),1,0)
+fl$contra.ttest = ifelse(fl$search_occur==1,fl$contra,NA)
+prop.test(table(fl$of_gender,fl$contra.ttest))
+##
+## 2-sample test for equality of proportions with continuity correction
+##
+## data: table(fl$of_gender, fl$contra.ttest)
+## X-squared = 16.681, df = 1, p-value = 4.423e-05
+## alternative hypothesis: two.sided
+## 95 percent confidence interval:
+## 0.05554105 0.17724120
+## sample estimates:
+## prop 1 prop 2
+## 0.7009499 0.5845588
+fl$of_exper = ifelse(fl$officer_years_of_service>=
+ mean(fl$officer_years_of_service,na.rm=T),1,0)
+fl$of_age = ifelse(fl$officer_age<30,1,
+ ifelse(fl$officer_age>64,3,2))
+fl$driver_age = ifelse(fl$subject_age<30,1,
+ ifelse(fl$subject_age>64,3,2))
+fl$hour_of_day2 = as.numeric(fl$hour_of_day)
+fl$tod = ifelse(fl$hour_of_day2<3,1,
+ ifelse(fl$hour_of_day2<6,2,
+ ifelse(fl$hour_of_day2<9,3,
+ ifelse(fl$hour_of_day2<12,4,
+ ifelse(fl$hour_of_day2<15,5,
+ ifelse(fl$hour_of_day2<18,6,
+ ifelse(fl$hour_of_day2<21,7,8)))))))
+
+fl.ag.officers = aggregate(fl[,c("stops","search_occur","contra")],
+ by=list(fl$officer_id_hash,
+ fl$of_race,fl$of_gender,
+ fl$of_exper,fl$of_age,
+ fl$race_gender,fl$driver_age,
+ fl$out_of_state,fl$investigatory,
+ fl$year,fl$tod),
+ sum,na.rm=T)
+colnames(fl.ag.officers) = c("officer_id","of_race","of_gender","of_exper",
+ "of_age","race_gender","driver_age",
+ "out_of_state","investigatory","year",
+ "tod","stops","search_occur","contra")
+fl.ag.officers$contra.search.rate = (fl.ag.officers$contra/fl.ag.officers$search_occur)*10
+fl.ag.officers$contra.stop.rate = (fl.ag.officers$contra/fl.ag.officers$stops)*100
+save(fl.ag.officers,file="Data/FL_Aggregated.RData")
+
+# Data for Figure 1
+search.df = data.frame("Department" = c("CPD","CPD","FHP","FHP"),
+ "Gender" = c("Male","Female","Male","Female"),
+ "Rate" = c(prop.table(table(nc$of_gender,nc$search),1)[,2],
+ prop.table(table(fl$of_gender[fl.sm$county_include==1&
+ fl.sm$officer_exclude==0],
+ fl$search_occur[fl.sm$county_include==1&
+ fl.sm$officer_exclude==0]),1)[,2]))
+save(search.df,file="Data/Fig1_Data.RData")
+
+###
+### 3. Regressions
+###
+
+#
+# For the Main Text:
+#
+
+# Search Regressions
+fl.search.sm = lm(search_occur~factor(of_gender),data=fl)
+save(fl.search.sm, file="Data/FLSearch_Sm_OLS.RData")
+fl.search = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search,file="Data/FLSearch_OLS.RData")
+nc.search.sm = lm(search~factor(of_gender),data = nc)
+save(nc.search.sm,file="Data/NCSearch_Sm_OLS.RData")
+nc.search = lm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc)
+save(nc.search,file="Data/NCSearch_OLS.RData")
+
+# Contraband Regressions
+fl.contra = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra,file="Data/FlContra_OLS.RData")
+contra.search.rate.reg = lm(contra.search.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.reg,file="Data/FlSearchRate_OLS.RData")
+contra.stop.rate.reg = lm(contra.stop.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) + factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod),
+ data=fl.ag.officers)
+save(contra.stop.rate.reg,file="Data/FlStopRate_OLS.RData")
+
+
+
+
+#######
+#######
+####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
+####### This file runs most of the supplemental regressions shown in the appendix.
+####### Last Updated: Jan. 2021
+#######
+#######
+
+# Opening up those libraries:
+library(dplyr)
+##
+## Attaching package: 'dplyr'
+## The following objects are masked from 'package:stats':
+##
+## filter, lag
+## The following objects are masked from 'package:base':
+##
+## intersect, setdiff, setequal, union
+library(ggplot2)
+library(texreg)
+## Version: 1.37.5
+## Date: 2020-06-17
+## Author: Philip Leifeld (University of Essex)
+##
+## Consider submitting praise using the praise or praise_interactive functions.
+## Please cite the JSS article in your publications -- see citation("texreg").
+library(readr)
+library(pscl)
+## Classes and Methods for R developed in the
+## Political Science Computational Laboratory
+## Department of Political Science
+## Stanford University
+## Simon Jackman
+## hurdle and zeroinfl functions by Achim Zeileis
+library(arm)
+## Loading required package: MASS
+##
+## Attaching package: 'MASS'
+## The following object is masked from 'package:dplyr':
+##
+## select
+## Loading required package: Matrix
+## Loading required package: lme4
+##
+## arm (Version 1.11-2, built: 2020-7-27)
+## Working directory is /Users/kelseyshoub/Desktop/PinkPolicing/AJPS_ReplicationFiles/ReplicationCode
+# Setting the working directory:
+setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
+
+#
+# Appendix: Alternative Specifications
+#
+
+# Clearing the workspace.
+rm(list = ls())
+
+# Loading in the Data
+load("Data/FloridaSmall.RData")
+load("Data/FL_Aggregated.RData")
+
+# FE for Officer
+fl.search = lmer(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name)+(1|officer_id_hash),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search,file="Data/FLSearch_OLS_FE.RData")
+fl.contra = lmer(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+factor(county_name)+
+ (1|officer_id_hash),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra,file="Data/FlContra_OLS_FE.RData")
+contra.search.rate.reg = lmer(contra.search.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod)+
+ (1|officer_id),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.reg,file="Data/FlSearchRate_OLS_FE.RData")
+contra.stop.rate.reg = lmer(contra.stop.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) + factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod)+(1|officer_id),
+ data=fl.ag.officers)
+save(contra.stop.rate.reg,file="Data/FlStopRate_OLS_FE.RData")
+
+# Logistc Regressions
+rm(list = ls())
+
+load("Data/NorthCarolina.RData")
+load("Data/FloridaSmall.RData")
+
+fl.search = glm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,family="binomial",
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search,file="Data/FLSearch_Logit.RData")
+nc.search = glm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ family="binomial",
+ data=nc)
+save(nc.search,file="Data/NCSearch_Logit.RData")
+fl.contra = glm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm, family = "binomial",
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra,file="Data/FlContra_Logit.RData")
+
+
+#
+# Appendix: Interaction Models
+#
+
+rm(list = ls())
+
+load("Data/NorthCarolina.RData")
+load("Data/FloridaSmall.RData")
+load("Data/FloridaLarge.RData")
+load("Data/FL_Aggregated.RData")
+
+
+# Experience
+fl.search.exper = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_race)+
+ factor(of_gender)*officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search.exper,file="Data/FLSearch_Exper_OLS.RData")
+nc.search.exper = lm(search~factor(race_gender)+subject_age+
+ investigatory+factor(of_race)+
+ factor(of_gender)*Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc)
+save(nc.search.exper,file="Data/NCSearch_Exper_OLS.RData")
+fl.contra.exper = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_gender)*officer_years_of_service+
+ factor(of_race)+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra.exper,file="Data/FlContra_Exper_OLS.RData")
+contra.search.rate.exper = lm(contra.search.rate ~ factor(of_gender)*factor(of_exper) +
+ investigatory+factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.exper,file="Data/FlSearchRate_Exper_OLS.RData")
+contra.stop.rate.exper = lm(contra.stop.rate ~ factor(of_gender)*factor(of_exper) +
+ investigatory+
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers)
+save(contra.stop.rate.exper,file="Data/FlStopRate_Exper_OLS.RData")
+
+# Prop Female
+fl$male.officer = ifelse(fl$of_gender==1,0,1)
+fl.ag = aggregate(fl$officer_id_hash,
+ by=list(fl$of_gender,fl$county_name,fl$year),
+ function(x){length(unique(x))})
+fl.ag.m = fl.ag[fl.ag$Group.1==0,]
+fl.ag.f = fl.ag[fl.ag$Group.1==1,]
+colnames(fl.ag.m)=c("male","county_name","year","male.count")
+colnames(fl.ag.f)=c("female","county_name","year","female.count")
+fl.ag = merge(fl.ag.m,fl.ag.f,all=T)
+fl.ag$male.count[is.na(fl.ag$male.count)] = 0
+fl.ag$female.count[is.na(fl.ag$female.count)] = 0
+fl.ag$female.prop = fl.ag$female.count/(fl.ag$female.count+fl.ag$male.count)
+summary(fl.ag$female.prop)
+## Min. 1st Qu. Median Mean 3rd Qu. Max.
+## 0.00000 0.05042 0.07937 0.08078 0.10526 1.00000
+fl.sm = merge(fl.sm,fl.ag)
+fl.search.prop = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_race)+
+ factor(of_gender)*female.prop+officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search.prop,file="Data/FLSearch_Prop_OLS.RData")
+fl.contra.prop = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_gender)*female.prop+
+ officer_years_of_service+
+ factor(of_race)+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra.prop,file="Data/FlContra_Prop_OLS.RData")
+
+# Stop Type
+fl.search.st = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0&
+ fl.sm$investigatory==1)
+save(fl.search.st,file="Data/FLSearch_StopType_OLS.RData")
+nc.search.st = lm(search~factor(race_gender)+subject_age+
+ factor(of_gender)+
+ factor(of_race)+Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc,
+ subset = nc$investigatory==1)
+save(nc.search.st,file="Data/NCSearch_StopType_OLS.RData")
+fl.contra.st = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ factor(of_gender)+
+ factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0&
+ fl.sm$investigatory==1)
+save(fl.contra.st,file="Data/FlContra_StopType_OLS.RData")
+contra.search.rate.st = lm(contra.search.rate ~ factor(of_gender)+
+ factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0&
+ fl.ag.officers$investigatory==1)
+save(contra.search.rate.st,file="Data/FlSearchRate_StopType_OLS.RData")
+contra.stop.rate.st = lm(contra.stop.rate ~ factor(of_gender)+
+ factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$investigatory==1)
+save(contra.stop.rate.st,file="Data/FlStopRate_StopType_OLS.RData")
+
+# Driver Characteristics
+fl.sm$subject_female = ifelse(fl.sm$subject_sex=="female",1,0)
+fl.sm$subject_race2 = ifelse(fl.sm$subject_race=="white",0,
+ ifelse(fl.sm$subject_race=="black",1,2))
+fl.search.inter = lm(search_occur~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+out_of_state+investigatory+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$officer_exclude==0&
+ as.numeric(fl.sm$of_race)<3)
+save(fl.search.inter,file="Data/FLInter_Search.RData")
+fl.contra.inter = lm(contra~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+out_of_state+investigatory+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$search_occur==1&
+ fl.sm$county_include==1&
+ fl.sm$officer_exclude==0&
+ as.numeric(fl.sm$of_race)<3)
+save(fl.contra.inter,file="Data/FLInter_Contra.RData")
+fl.ag.officers$subject_female = ifelse(fl.ag.officers$race_gender%in%c(1,3,5),1,0)
+fl.ag.officers$subject_race2 = ifelse(fl.ag.officers$race_gender%in%c(0,1),0,
+ ifelse(fl.ag.officers$race_gender%in%c(2,3),1,2))
+contra.search.rate.inter = lm(contra.search.rate ~ factor(of_gender)*factor(subject_female) +
+ factor(of_race) * factor(subject_race2)+
+ factor(of_exper) + factor(of_age) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.inter,file="Data/FlSearchRate_Inter_OLS.RData")
+contra.stop.rate.inter = lm(contra.stop.rate ~ factor(of_gender)*factor(subject_female) +
+ factor(of_race) * factor(subject_race2)+
+ factor(of_exper) + factor(of_age) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year),
+ data=fl.ag.officers)
+save(contra.stop.rate.inter,file="Data/FlStopRate_Inter_OLS.RData")
+
+nc$of_race = ifelse(nc$Officer_Race=="White",0,
+ ifelse(nc$Officer_Race=="Black/African American",1,
+ ifelse(nc$Officer_Race=="Hispanic/Latino",2,NA)))
+nc$subject_female = ifelse(nc$Driver_Gender=="Female",1,0)
+nc$subject_race2 = ifelse(nc$Driver_Race=="White"&
+ nc$Driver_Ethnicity=="Non-Hispanic",0,
+ ifelse(nc$Driver_Race=="Black"&
+ nc$Driver_Ethnicity=="Non-Hispanic",1,
+ ifelse(nc$Driver_Ethnicity=="Hispanic",2,NA)))
+nc.search.inter = lm(search~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+investigatory+
+ Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc)
+save(nc.search.inter,file = "Data/NCInter_Search.RData")
+
+
+
+
+#######
+#######
+####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
+####### This file produces the tables and figures seen in the paper and appendix.
+####### Last Updated: Jan. 2021
+#######
+#######
+
+###
+### 1. Setting up the space.
+###
+
+# Setting the working directory:
+setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
+
+# Installing the needed libraries:
+#install.packages("pscl",dependencies = T)
+#install.packages("ggplot2",dependencies = T)
+#install.packages("texreg",dependencies = T)
+#install.packages("readr",dependencies = T)
+#install.packages("arm",dependencies = T)
+
+# Opening up those libraries:
+library(ggplot2)
+library(texreg)
+## Version: 1.37.5
+## Date: 2020-06-17
+## Author: Philip Leifeld (University of Essex)
+##
+## Consider submitting praise using the praise or praise_interactive functions.
+## Please cite the JSS article in your publications -- see citation("texreg").
+library(readr)
+library(pscl)
+## Classes and Methods for R developed in the
+## Political Science Computational Laboratory
+## Department of Political Science
+## Stanford University
+## Simon Jackman
+## hurdle and zeroinfl functions by Achim Zeileis
+library(arm)
+## Loading required package: MASS
+## Loading required package: Matrix
+## Loading required package: lme4
+##
+## arm (Version 1.11-2, built: 2020-7-27)
+## Working directory is /Users/kelseyshoub/Desktop/PinkPolicing/AJPS_ReplicationFiles
+###
+### 2. Body of the Paper
+###
+
+# Clearing the workspace + reading in data bit by bit to produce each table and figure.
+rm(list = ls())
+
+# Loading in the Data
+load("Data/NorthCarolina.RData")
+load("Data/FloridaLarge.RData")
+load("Data/FloridaSmall.RData")
+cmpd.employee = read_csv("Data/CMPD_Employee_Demographics.csv")
+##
+## ── Column specification ──────────────────────────────────────────────────────
+## cols(
+## JOB_TITLE = col_character(),
+## Years_Of_Service = col_double(),
+## Age = col_double(),
+## Gender = col_character(),
+## Race = col_character(),
+## ObjectID = col_double()
+## )
+# Number of stops and searches by sex:
+dim(fl)
+## [1] 4842950 52
+dim(nc)
+## [1] 218158 32
+table(fl$search_occur)
+##
+## 0 1
+## 4391272 17356
+table(nc$search)
+##
+## 0 1
+## 207714 10444
+prop.table(table(fl$search_occur))
+##
+## 0 1
+## 0.996063174 0.003936826
+prop.table(table(nc$search))
+##
+## 0 1
+## 0.95212644 0.04787356
+table(fl$of_gender)
+##
+## 0 1
+## 3870641 291604
+table(nc$of_gender)
+##
+## 0 1
+## 199234 18924
+table(fl$of_gender,fl$search_occur)
+##
+## 0 1
+## 0 3843369 16422
+## 1 290820 272
+table(nc$of_gender,nc$search)
+##
+## 0 1
+## 0 189611 9623
+## 1 18103 821
+prop.table(table(fl$of_gender,fl$search_occur),1)
+##
+## 0 1
+## 0 0.9957453655 0.0042546345
+## 1 0.9990655875 0.0009344125
+prop.table(table(nc$of_gender,nc$search),1)
+##
+## 0 1
+## 0 0.95170001 0.04829999
+## 1 0.95661594 0.04338406
+table(fl$of_gender,fl$contra)
+##
+## 0 1
+## 0 3865730 4911
+## 1 291491 113
+# Number of officers by sex in FL
+length(unique(fl$officer_id_hash))
+## [1] 2708
+length(unique(fl$officer_id_hash[fl$of_gender==0]))
+## [1] 1916
+length(unique(fl$officer_id_hash[fl$of_gender==1]))
+## [1] 244
+length(unique(fl$officer_id_hash[fl$officer_exclude==0]))
+## [1] 2338
+length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0]))
+## [1] 1910
+length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0]))
+## [1] 244
+table(cmpd.employee$JOB_TITLE[cmpd.employee$JOB_TITLE=="Police Officer"])
+##
+## Police Officer
+## 1540
+sum(table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"]))
+## [1] 1540
+table(fl$year)
+##
+## 2010 2011 2012 2013 2014 2015
+## 675487 870349 748026 830791 922008 796289
+(table(fl$of_gender)/c(length(unique(fl$officer_id_hash[fl$of_gender==0&fl$officer_exclude==0])),length(unique(fl$officer_id_hash[fl$of_gender==1&fl$officer_exclude==0]))))/6
+##
+## 0 1
+## 337.7523 199.1831
+avg.stops = aggregate(fl$year,by=list(fl$officer_id_hash,fl$year,fl$of_gender),length)
+summary(avg.stops)
+## Group.1 Group.2 Group.3 x
+## Length:9319 Length:9319 Min. :0.0000 Min. : 1.0
+## Class :character Class :character 1st Qu.:0.0000 1st Qu.: 125.0
+## Mode :character Mode :character Median :0.0000 Median : 359.0
+## Mean :0.1062 Mean : 446.6
+## 3rd Qu.:0.0000 3rd Qu.: 649.0
+## Max. :1.0000 Max. :5299.0
+mean(avg.stops$x)
+## [1] 446.6407
+median(avg.stops$x[avg.stops$Group.3==0])
+## [1] 380
+median(avg.stops$x[avg.stops$Group.3==1])
+## [1] 202.5
+prop.table(table(fl$investigatory[fl$of_gender==0]))
+##
+## 0 1
+## 0.4649428 0.5350572
+prop.table(table(fl$investigatory[fl$of_gender==1]))
+##
+## 0 1
+## 0.4334131 0.5665869
+table(nc$of_gender[nc$year==2019])[2:1]/table(cmpd.employee$Gender[cmpd.employee$JOB_TITLE=="Police Officer"])
+##
+## 1 0
+## 33.13750 68.11154
+# Excluding Cases:
+dim(nc)
+## [1] 218158 32
+dim(nc)-dim(nc[!is.na(nc$search),])
+## [1] 0 0
+dim(fl)
+## [1] 4842950 52
+dim(fl)-dim(fl[!is.na(fl$search_occur),])
+## [1] 434322 0
+(dim(fl[!is.na(fl$search_occur),])-dim(fl.sm))+table(fl.sm$officer_exclude)[2]
+## [1] 1695594 18170
+table(fl.sm$county_include)
+##
+## 0 1
+## 556 2730648
+# Table 1
+tab1 = data.frame("Department"=c("Charlotte PD (NC)",
+ "Male Officers","Female Officers",
+ "Florida Highwar Patrol",
+ "Male Officers","Female Officers"),
+ "Type"=c("Municipal","","","Statewide","",""),
+ "Years"=c("2016-2017","","",
+ "2010-2015","",""),
+ "Stops"=c(dim(nc)[1],table(nc$of_gender),
+ dim(fl[!is.na(fl$search_occur),])[1],
+ table(fl$of_gender[!is.na(fl$search_occur)])),
+ "Searches"=c(table(nc$search)[2],table(nc$of_gender,nc$search)[,2],
+ table(fl$search_occur)[2],
+ table(fl$of_gender,fl$search_occur)[,2]),
+ "Search Rate"=c(table(nc$search)[2]/dim(nc)[1],
+ table(nc$of_gender,nc$search)[,2]/table(nc$of_gender),
+ table(fl$search_occur)[2]/dim(fl[!is.na(fl$search_occur),])[1],
+ table(fl$of_gender,fl$search_occur)[,2]/
+ table(fl$of_gender[!is.na(fl$search_occur)])))
+tab1 = rbind(tab1,
+ c("Total","","",
+ sum(tab1[c(1,4),4]),sum(tab1[c(1,4),5]),
+ sum(tab1[c(1,4),5])/sum(tab1[c(1,4),4])))
+tab1
+## Department Type Years Stops Searches
+## 1 Charlotte PD (NC) Municipal 2016-2017 218158 10444
+## 2 Male Officers 199234 9623
+## 3 Female Officers 18924 821
+## 4 Florida Highwar Patrol Statewide 2010-2015 4408628 17356
+## 5 Male Officers 3859791 16422
+## 6 Female Officers 291092 272
+## 7 Total 4626786 27800
+## Search.Rate
+## 1 0.0478735595302487
+## 2 0.048299988957708
+## 3 0.0433840625660537
+## 4 0.0039368256972464
+## 5 0.00425463451259408
+## 6 0.000934412488148077
+## 7 0.00600849055910518
+# Figure 1
+load("Data/Fig1_Data.RData")
+png("Figures/Fig1_PredProb.png",
+ 750,519)
+ggplot(data = search.df, aes(x=Department,y=Rate,fill=Gender)) +
+ geom_bar(stat="identity", position=position_dodge()) +
+ ylab("Search Rate") +
+ theme_bw(base_size=15)+
+ theme(legend.position = "bottom") +
+ labs(fill="Officer Sex")+
+ scale_fill_grey(start = 0.25, end = .75)
+dev.off()
+## quartz_off_screen
+## 2
+prop.test(table(fl$of_gender,fl$search_occur))
+##
+## 2-sample test for equality of proportions with continuity correction
+##
+## data: table(fl$of_gender, fl$search_occur)
+## X-squared = 744.11, df = 1, p-value < 2.2e-16
+## alternative hypothesis: two.sided
+## 95 percent confidence interval:
+## -0.003450662 -0.003189782
+## sample estimates:
+## prop 1 prop 2
+## 0.9957454 0.9990656
+prop.test(table(nc$of_gender,nc$search))
+##
+## 2-sample test for equality of proportions with continuity correction
+##
+## data: table(nc$of_gender, nc$search)
+## X-squared = 9.0552, df = 1, p-value = 0.002619
+## alternative hypothesis: two.sided
+## 95 percent confidence interval:
+## -0.007996240 -0.001835613
+## sample estimates:
+## prop 1 prop 2
+## 0.9517000 0.9566159
+# Table 2
+load("Data/FLSearch_Sm_OLS.RData")
+load("Data/FLSearch_OLS.RData")
+load("Data/NCSearch_Sm_OLS.RData")
+load("Data/NCSearch_OLS.RData")
+screenreg(list(nc.search,fl.search),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "investigatory" = "Investigatory Stop Purpose"),
+ custom.model.names = c("(1) NC Search",
+ "(2) FL Search"),
+ digits=4)
+##
+## ===========================================================
+## (1) NC Search (2) FL Search
+## -----------------------------------------------------------
+## (Intercept) 0.0862 ** 0.0263 **
+## (0.0037) (0.0005)
+## Female Officer -0.0256 ** -0.0038 **
+## (0.0020) (0.0002)
+## Black Officer -0.0292 ** -0.0028 **
+## (0.0015) (0.0001)
+## White Female -0.0086 ** -0.0026 **
+## (0.0019) (0.0001)
+## Black Male 0.0465 ** 0.0066 **
+## (0.0016) (0.0001)
+## Black Female -0.0204 ** -0.0015 **
+## (0.0017) (0.0002)
+## Latino Male 0.0015 **
+## (0.0001)
+## Latina Female -0.0020 **
+## (0.0002)
+## Investigatory Stop Purpose 0.0285 ** 0.0055 **
+## (0.0012) (0.0001)
+## -----------------------------------------------------------
+## R^2 0.0713 0.0092
+## Adj. R^2 0.0711 0.0091
+## Num. obs. 150547 2712478
+## ===========================================================
+## ** p < 0.01; * p < 0.05
+# Figure 2
+fl.of.pred = predict(fl.search,
+ newdata = data.frame("of_gender"=c(0,1),"race_gender"=0,
+ "subject_age"=35,"out_of_state"=0,
+ "investigatory"=1,
+ "officer_years_of_service"=6,
+ "of_race"=0,"officer_age"=39,
+ "hour_of_day"=15,
+ "month"="05","year"=2013,
+ "county_name"="Orange County"),
+ type="response",se.fit=T)
+nc.of.pred = predict(nc.search,
+ newdata = data.frame("of_gender"=c(0,1),
+ "race_gender"=0,
+ "subject_age"=36,
+ "investigatory"=1,
+ "Officer_Years_of_Service"=10.25,
+ "of_race"=0,"month"="01",
+ "year"=2019,"CMPD_Division"="South Division"),
+ type="response",se.fit=T)
+
+
+
+pred.df = data.frame("Department" = c("Charlotte Police Department",
+ "Charlotte Police Department",
+ "Florida Highway Patrol",
+ "Florida Highway Patrol"),
+ "Gender" = c("Male","Female","Male","Female"),
+ "Predict" = c(nc.of.pred$fit,
+ fl.of.pred$fit),
+ "Lower"=c(nc.of.pred$fit-1.96*nc.of.pred$se.fit,
+ fl.of.pred$fit-1.96*fl.of.pred$se.fit),
+ "Upper"=c(nc.of.pred$fit+1.96*nc.of.pred$se.fit,
+ fl.of.pred$fit+1.96*fl.of.pred$se.fit))
+
+png("Figures/Fig2_PredProb.png",
+ 900,514)
+ggplot(data = pred.df, aes(x=Gender,y=Predict)) +
+ geom_point(size=4) +
+ geom_errorbar(aes(ymin = Lower, ymax = Upper),
+ width=.2,size = 0.75,
+ position=position_dodge(.9)) +
+ ylab("Expected Probbility of a Search") +
+ xlab("Officer Sex") +
+ theme_bw(base_size=15) +facet_wrap(~Department)
+dev.off()
+## quartz_off_screen
+## 2
+pred.df$Predict[1]/pred.df$Predict[2]
+## [1] 2.245964
+pred.df$Predict[3]/pred.df$Predict[4]
+## [1] 2.720538
+# Table 3
+tab3 = data.frame("Officer Gender"=c("Male","Female"),
+ "Searches"=table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$search_occur[!is.na(fl$search_occur)])[,2],
+ "Contraband"=table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$contra[!is.na(fl$search_occur)])[,2],
+ "Contraband Hit Rate"=table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$contra[!is.na(fl$search_occur)])[,2]/
+ table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$search_occur[!is.na(fl$search_occur)])[,2],
+ "Difference"=c((table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$contra[!is.na(fl$search_occur)])[,2]/
+ table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$search_occur[!is.na(fl$search_occur)])[,2])[1]-
+ (table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$contra[!is.na(fl$search_occur)])[,2]/
+ table(fl$of_gender[!is.na(fl$search_occur)],
+ fl$search_occur[!is.na(fl$search_occur)])[,2])[2],NA))
+tab3
+## Officer.Gender Searches Contraband Contraband.Hit.Rate Difference
+## 0 Male 16422 4911 0.2990501 -0.1163911
+## 1 Female 272 113 0.4154412 NA
+prop.test(table(fl$of_gender[fl$search_occur==1],
+ fl$contra[fl$search_occur==1]))
+##
+## 2-sample test for equality of proportions with continuity correction
+##
+## data: table(fl$of_gender[fl$search_occur == 1], fl$contra[fl$search_occur == 1])
+## X-squared = 16.681, df = 1, p-value = 4.423e-05
+## alternative hypothesis: two.sided
+## 95 percent confidence interval:
+## 0.05554105 0.17724120
+## sample estimates:
+## prop 1 prop 2
+## 0.7009499 0.5845588
+# Table 4
+load("Data/FlContra_OLS.RData")
+load("Data/FlSearchRate_OLS.RData")
+load("Data/FlStopRate_OLS.RData")
+screenreg(list(fl.contra,contra.search.rate.reg,contra.stop.rate.reg),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "investigatory" = "Investigatory Stop Purpose"),
+ custom.model.names = c("(1) Contra|Search",
+ "(2) Hit Rate, per 10 Searches",
+ "(3) Hit Rate, per 100 Stops"),
+ digits=4)
+##
+## =========================================================================================================
+## (1) Contra|Search (2) Hit Rate, per 10 Searches (3) Hit Rate, per 100 Stops
+## ---------------------------------------------------------------------------------------------------------
+## (Intercept) 0.1118 ** 0.3006 0.1380 **
+## (0.0421) (0.2148) (0.0176)
+## Female Officer 0.1026 ** 1.1223 ** -0.0771 **
+## (0.0294) (0.2760) (0.0117)
+## Black Officer 0.0578 ** 0.7640 ** -0.0976 **
+## (0.0199) (0.2030) (0.0096)
+## White Female -0.0025 0.0512 -0.0557 **
+## (0.0144) (0.1467) (0.0096)
+## Black Male -0.0531 ** -0.4505 ** 0.0975 **
+## (0.0097) (0.1058) (0.0104)
+## Black Female -0.0594 ** -0.4565 ** -0.0519 **
+## (0.0172) (0.1728) (0.0117)
+## Latino Male -0.0909 ** -0.8755 ** -0.0021
+## (0.0115) (0.1195) (0.0107)
+## Latina Female -0.0027 0.0346 -0.0669 **
+## (0.0267) (0.2586) (0.0128)
+## Investigatory Stop Purpose 0.3394 ** 3.4794 ** 0.2534 **
+## (0.0112) (0.1102) (0.0066)
+## ---------------------------------------------------------------------------------------------------------
+## R^2 0.1346 0.1311 0.0036
+## Adj. R^2 0.1265 0.1285 0.0036
+## Num. obs. 12782 9677 747784
+## =========================================================================================================
+## ** p < 0.01; * p < 0.05
+###
+### 3. Appendix A: Full Regression Results
+###
+
+screenreg(list(nc.search,fl.search,
+ fl.contra,contra.search.rate.reg,contra.stop.rate.reg),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "officer_age"="Officer Age",
+ "factor(of_age)2"="Officer Age: 30-64",
+ "factor(of_age)3"="Officer Age: 65+",
+ "officer_years_of_service"="Officer Years of Service",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "factor(of_exper)1"="Experienced Officer",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "subject_age"="Driver Age",
+ "factor(driver_age)2"="Driver Age: 30-64",
+ "factor(driver_age)3"="Driver Age: 65+",
+ "investigatory" = "Investigatory Stop Purpose",
+ "out_of_state"="Out of State"),
+ custom.model.names = c("(1)","(2)",
+ "(3)","(4)","(5)"),
+ digits=3)
+##
+## ===================================================================================================
+## (1) (2) (3) (4) (5)
+## ---------------------------------------------------------------------------------------------------
+## (Intercept) 0.086 ** 0.026 ** 0.112 ** 0.301 0.138 **
+## (0.004) (0.001) (0.042) (0.215) (0.018)
+## Female Officer -0.026 ** -0.004 ** 0.103 ** 1.122 ** -0.077 **
+## (0.002) (0.000) (0.029) (0.276) (0.012)
+## Black Officer -0.029 ** -0.003 ** 0.058 ** 0.764 ** -0.098 **
+## (0.001) (0.000) (0.020) (0.203) (0.010)
+## Officer Age -0.000 ** -0.004 **
+## (0.000) (0.001)
+## Officer Age: 30-64 -0.375 ** -0.044 **
+## (0.096) (0.008)
+## Officer Age: 65+ -0.829 -0.262
+## (4.048) (0.183)
+## Officer Years of Service -0.002 ** 0.000 ** -0.000
+## (0.000) (0.000) (0.001)
+## Experienced Officer -0.026 0.053 **
+## (0.086) (0.007)
+## White Female -0.009 ** -0.003 ** -0.003 0.051 -0.056 **
+## (0.002) (0.000) (0.014) (0.147) (0.010)
+## Black Male 0.046 ** 0.007 ** -0.053 ** -0.451 ** 0.098 **
+## (0.002) (0.000) (0.010) (0.106) (0.010)
+## Black Female -0.020 ** -0.001 ** -0.059 ** -0.456 ** -0.052 **
+## (0.002) (0.000) (0.017) (0.173) (0.012)
+## Latino Male 0.001 ** -0.091 ** -0.876 ** -0.002
+## (0.000) (0.011) (0.120) (0.011)
+## Latina Female -0.002 ** -0.003 0.035 -0.067 **
+## (0.000) (0.027) (0.259) (0.013)
+## Driver Age -0.001 ** -0.000 ** -0.003 **
+## (0.000) (0.000) (0.000)
+## Driver Age: 30-64 -0.485 ** -0.123 **
+## (0.085) (0.007)
+## Driver Age: 65+ -1.113 * -0.187 **
+## (0.446) (0.012)
+## Investigatory Stop Purpose 0.028 ** 0.006 ** 0.339 ** 3.479 ** 0.253 **
+## (0.001) (0.000) (0.011) (0.110) (0.007)
+## Out of State 0.001 ** -0.053 ** -0.667 ** 0.037 **
+## (0.000) (0.011) (0.110) (0.008)
+## ---------------------------------------------------------------------------------------------------
+## R^2 0.071 0.009 0.135 0.131 0.004
+## Adj. R^2 0.071 0.009 0.127 0.128 0.004
+## Num. obs. 150547 2712478 12782 9677 747784
+## ===================================================================================================
+## ** p < 0.01; * p < 0.05
+###
+### 4. Appendix B: Alternative Test of Differences in Search and Contraband Hit Rates
+###
+
+# Florida
+fl$stop = 1
+fl$of_exper = ifelse(fl$officer_years_of_service>=
+ mean(fl$officer_years_of_service,na.rm=T),1,0)
+fl$of_age = ifelse(fl$officer_age<30,1,
+ ifelse(fl$officer_age>64,3,2))
+fl$driver_age = ifelse(fl$subject_age<30,1,
+ ifelse(fl$subject_age>64,3,2))
+fl$hour_of_day=as.numeric(fl$hour_of_day)
+fl$tod = ifelse(fl$hour_of_day<3,1,
+ ifelse(fl$hour_of_day<6,2,
+ ifelse(fl$hour_of_day<9,3,
+ ifelse(fl$hour_of_day<12,4,
+ ifelse(fl$hour_of_day<15,5,
+ ifelse(fl$hour_of_day<18,6,
+ ifelse(fl$hour_of_day<21,7,8)))))))
+
+fl.ag = aggregate(fl[!is.na(fl$search_occur),c("stop","search_occur","contra")],
+ by = list(fl$tod[!is.na(fl$search_occur)],
+ fl$officer_race[!is.na(fl$search_occur)],
+ fl$officer_sex[!is.na(fl$search_occur)],
+ fl$of_exper[!is.na(fl$search_occur)],
+ fl$race_gender[!is.na(fl$search_occur)],
+ fl$driver_age[!is.na(fl$search_occur)],
+ fl$out_of_state[!is.na(fl$search_occur)],
+ fl$investigatory[!is.na(fl$search_occur)]),
+ sum,na.rm=T)
+colnames(fl.ag) = c("tod",
+ "of_race","of_sex","of_exper","driver_rg",
+ "driver_age","out_of_state","invest",
+ "stop","search","contraband")
+fl.ag.female = fl.ag[fl.ag$of_sex=="female",]
+colnames(fl.ag.female)[c(3,9:11)] = c("female","stop.f",
+ "search.f","contra.f")
+fl.ag.male = fl.ag[fl.ag$of_sex=="male",]
+colnames(fl.ag.male)[c(3,9:11)] = c("male","stop.m",
+ "search.m","contra.m")
+
+fl.matches = merge(fl.ag.female,fl.ag.male)
+min.stops = 9
+table(fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops)
+##
+## FALSE TRUE
+## 1461 1784
+min.searches = 0
+table(fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches)
+##
+## FALSE TRUE
+## 3084 161
+table(fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops)
+##
+## FALSE TRUE
+## 3084 161
+# North Carolina
+nc$stop = 1
+nc$search = ifelse(nc$Was_a_Search_Conducted=="Yes",1,0)
+nc$driver_age = ifelse(nc$Driver_Age<30,1,
+ ifelse(nc$Driver_Age>65,3,2))
+nc$of_exper = ifelse(nc$Officer_Years_of_Service>=mean(nc$Officer_Years_of_Service),
+ 1,0)
+nc.ag = aggregate(nc[,c("search","stop")],
+ by = list(nc$CMPD_Division,
+ nc$Officer_Gender,nc$Officer_Race,
+ nc$of_exper,
+ nc$race_gender,nc$driver_age,
+ nc$investigatory,
+ nc$year),
+ sum)
+nc.ag.female = nc.ag[nc.ag$Group.2=="Female",]
+colnames(nc.ag.female) = c("division","female","race","of_exper",
+ "driver.rg","driver_age","investigatory",
+ "year",
+ "searches.f","stops.f")
+nc.ag.male = nc.ag[nc.ag$Group.2=="Male",]
+colnames(nc.ag.male) = c("division","male","race","of_exper",
+ "driver.rg","driver_age","investigatory",
+ "year",
+ "searches.m","stops.m")
+
+
+# Searches
+fl.matches$sr.f = fl.matches$search.f/fl.matches$stop.f
+fl.matches$sr.m = fl.matches$search.m/fl.matches$stop.m
+fl.matches$cr.f = fl.matches$contra.f/fl.matches$search.f
+fl.matches$cr.m = fl.matches$contra.m/fl.matches$search.m
+t.test(fl.matches$sr.f[fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops],
+ fl.matches$sr.m[fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops],
+ paired = T)
+##
+## Paired t-test
+##
+## data: fl.matches$sr.f[fl.matches$stop.f > min.stops & fl.matches$stop.m > min.stops] and fl.matches$sr.m[fl.matches$stop.f > min.stops & fl.matches$stop.m > min.stops]
+## t = -13.359, df = 1783, p-value < 2.2e-16
+## alternative hypothesis: true difference in means is not equal to 0
+## 95 percent confidence interval:
+## -0.003700686 -0.002753143
+## sample estimates:
+## mean of the differences
+## -0.003226915
+length(fl.matches$sr.f[fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 1784
+mean(fl.matches$sr.f[fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 0.001355022
+mean(fl.matches$sr.m[fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 0.004581936
+nc.matches = merge(nc.ag.female,nc.ag.male)
+min.stops = 9
+nc.matches$sr.f = nc.matches$searches.f/nc.matches$stops.f
+nc.matches$sr.m = nc.matches$searches.m/nc.matches$stops.m
+t.test(nc.matches$sr.f[nc.matches$stops.f>min.stops&
+ nc.matches$stops.m>min.stops],
+ nc.matches$sr.m[nc.matches$stops.f>min.stops&
+ nc.matches$stops.m>min.stops],
+ paired = T)
+##
+## Paired t-test
+##
+## data: nc.matches$sr.f[nc.matches$stops.f > min.stops & nc.matches$stops.m > min.stops] and nc.matches$sr.m[nc.matches$stops.f > min.stops & nc.matches$stops.m > min.stops]
+## t = -4.0127, df = 352, p-value = 7.335e-05
+## alternative hypothesis: true difference in means is not equal to 0
+## 95 percent confidence interval:
+## -0.024123468 -0.008254384
+## sample estimates:
+## mean of the differences
+## -0.01618893
+length(nc.matches$sr.f[nc.matches$stops.f>min.stops&
+ nc.matches$stops.m>min.stops])
+## [1] 353
+mean(nc.matches$sr.f[nc.matches$stops.f>min.stops&
+ nc.matches$stops.m>min.stops])
+## [1] 0.05538775
+mean(nc.matches$sr.m[nc.matches$stops.f>min.stops&
+ nc.matches$stops.m>min.stops],)
+## [1] 0.07157667
+# Contraband
+t.test(fl.matches$cr.f[fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops],
+ fl.matches$cr.m[fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops],
+ paired = T)
+##
+## Paired t-test
+##
+## data: fl.matches$cr.f[fl.matches$search.f > min.searches & fl.matches$search.m > min.searches & fl.matches$stop.f > min.stops & fl.matches$stop.m > min.stops] and fl.matches$cr.m[fl.matches$search.f > min.searches & fl.matches$search.m > min.searches & fl.matches$stop.f > min.stops & fl.matches$stop.m > min.stops]
+## t = 2.6679, df = 160, p-value = 0.008419
+## alternative hypothesis: true difference in means is not equal to 0
+## 95 percent confidence interval:
+## 0.02401357 0.16088431
+## sample estimates:
+## mean of the differences
+## 0.09244894
+length(fl.matches$cr.f[fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 161
+mean(fl.matches$cr.f[fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 0.4090506
+mean(fl.matches$cr.m[fl.matches$search.f>min.searches&
+ fl.matches$search.m>min.searches&
+ fl.matches$stop.f>min.stops&
+ fl.matches$stop.m>min.stops])
+## [1] 0.3166016
+###
+### 5. Appendix C: Logistic Regrssion Models
+###
+
+rm(list = ls())
+
+load("Data/FlContra_Logit.RData")
+load("Data/FLSearch_Logit.RData")
+load("Data/NCSearch_Logit.RData")
+
+texreg(list(nc.search,fl.search,fl.contra),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "factor(of_race)2"="Latinx Officer",
+ "factor(of_race)3"="Asain/Pacific Islander Officer",
+ "factor(of_race)4"="Other Race Officer",
+ "officer_age"="Officer Age",
+ "officer_years_of_service"="Officer Years of Service",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "subject_age"="Driver Age",
+ "investigatory" = "Investigatory Stop Purpose",
+ "out_of_state"="Out of State"),
+ custom.model.names = c("(1) NC Search",
+ "(2) FL Search",
+ "(3) FL Contra|Search"),
+ digits=4)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c}
+## \hline
+## & (1) NC Search & (2) FL Search & (3) FL Contra|Search \\
+## \hline
+## (Intercept) & $-1.9244^{**}$ & $-2.8175^{**}$ & $-17.9811$ \\
+## & $(0.0906)$ & $(0.0900)$ & $(148.7052)$ \\
+## Female Officer & $-0.4702^{**}$ & $-1.4253^{**}$ & $0.4986^{**}$ \\
+## & $(0.0477)$ & $(0.0674)$ & $(0.1547)$ \\
+## Black Officer & $-0.7213^{**}$ & $-1.0929^{**}$ & $0.2932^{**}$ \\
+## & $(0.0387)$ & $(0.0441)$ & $(0.1060)$ \\
+## Latinx Officer & & $-0.3512^{**}$ & $-0.1044$ \\
+## & & $(0.0363)$ & $(0.0924)$ \\
+## Asain/Pacific Islander Officer & & $-1.0206^{**}$ & $0.7392$ \\
+## & & $(0.2019)$ & $(0.5612)$ \\
+## Other Race Officer & & $-0.8249^{**}$ & $0.8317^{*}$ \\
+## & & $(0.1632)$ & $(0.3917)$ \\
+## Officer Age & & $-0.0221^{**}$ & $-0.0202^{**}$ \\
+## & & $(0.0012)$ & $(0.0036)$ \\
+## Officer Years of Service & $-0.0770^{**}$ & $0.0129^{**}$ & $-0.0002$ \\
+## & $(0.0023)$ & $(0.0017)$ & $(0.0045)$ \\
+## White Female & $-0.6166^{**}$ & $-0.8276^{**}$ & $-0.0151$ \\
+## & $(0.0751)$ & $(0.0337)$ & $(0.0782)$ \\
+## Black Male & $0.8877^{**}$ & $0.8883^{**}$ & $-0.2900^{**}$ \\
+## & $(0.0436)$ & $(0.0228)$ & $(0.0534)$ \\
+## Black Female & $-0.4638^{**}$ & $-0.2870^{**}$ & $-0.3230^{**}$ \\
+## & $(0.0518)$ & $(0.0404)$ & $(0.0960)$ \\
+## Latino Male & & $0.3641^{**}$ & $-0.5462^{**}$ \\
+## & & $(0.0276)$ & $(0.0663)$ \\
+## Latina Female & & $-0.7432^{**}$ & $0.0039$ \\
+## & & $(0.0624)$ & $(0.1465)$ \\
+## Driver Age & $-0.0422^{**}$ & $-0.0450^{**}$ & $-0.0161^{**}$ \\
+## & $(0.0012)$ & $(0.0008)$ & $(0.0022)$ \\
+## Investigatory Stop Purpose & $0.6995^{**}$ & $1.5916^{**}$ & $17.9495$ \\
+## & $(0.0298)$ & $(0.0262)$ & $(148.7051)$ \\
+## Out of State & & $0.3653^{**}$ & $-0.3378^{**}$ \\
+## & & $(0.0269)$ & $(0.0667)$ \\
+## \hline
+## AIC & $49914.2052$ & $137958.1571$ & $13507.4833$ \\
+## BIC & $50261.4763$ & $139508.5753$ & $14402.1785$ \\
+## Log Likelihood & $-24922.1026$ & $-68858.0786$ & $-6633.7416$ \\
+## Deviance & $49844.2052$ & $137716.1571$ & $13267.4833$ \\
+## Num. obs. & $150547$ & $2712478$ & $12782$ \\
+## \hline
+## \multicolumn{4}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+###
+### 6. Appendix C: Fixed Effects
+###
+
+rm(list = ls())
+
+load("Data/FLSearch_OLS_FE.RData")
+load("Data/FlContra_OLS_FE.RData")
+load("Data/FlSearchRate_OLS_FE.RData")
+load("Data/FlStopRate_OLS_FE.RData")
+
+texreg(list(fl.search,
+ fl.contra,
+ contra.search.rate.reg,
+ contra.stop.rate.reg),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "officer_age"="Officer Age",
+ "factor(of_age)2"="Officer Age: 30-64",
+ "factor(of_age)3"="Officer Age: 65+",
+ "officer_years_of_service"="Officer Years of Service",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "factor(of_exper)1"="Experienced Officer",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "subject_age"="Driver Age",
+ "factor(driver_age)2"="Driver Age: 30-64",
+ "factor(driver_age)3"="Driver Age: 65+",
+ "investigatory" = "Investigatory Stop Purpose",
+ "out_of_state"="Out of State"),
+ custom.model.names = c("(1) Search",
+ "(2) Contra|Search",
+ "(3) Hit Rate, per 10 Searches",
+ "(4) Hit Rate, per 100 Stops"),
+ digits=4)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c c}
+## \hline
+## & (1) Search & (2) Contra|Search & (3) Hit Rate, per 10 Searches & (4) Hit Rate, per 100 Stops \\
+## \hline
+## (Intercept) & $0.0142^{**}$ & $0.1363^{*}$ & $0.2596$ & $0.0707^{**}$ \\
+## & $(0.0017)$ & $(0.0567)$ & $(0.2384)$ & $(0.0232)$ \\
+## Female Officer & $-0.0026^{*}$ & $0.0916^{*}$ & $0.9424^{*}$ & $-0.0531$ \\
+## & $(0.0013)$ & $(0.0376)$ & $(0.3793)$ & $(0.0334)$ \\
+## Black Officer & $-0.0035^{**}$ & $0.0541$ & $0.3139$ & $-0.0894^{**}$ \\
+## & $(0.0012)$ & $(0.0399)$ & $(0.4081)$ & $(0.0306)$ \\
+## Officer Age & $-0.0001^{**}$ & $-0.0048^{**}$ & & \\
+## & $(0.0000)$ & $(0.0012)$ & & \\
+## Officer Age: 30-64 & & & $-0.4058^{**}$ & $-0.0231$ \\
+## & & & $(0.1474)$ & $(0.0160)$ \\
+## Officer Age: 65+ & & & $-0.5371$ & $-0.1241$ \\
+## & & & $(4.0924)$ & $(0.2141)$ \\
+## Officer Years of Service & $0.0002^{**}$ & $0.0024$ & & \\
+## & $(0.0000)$ & $(0.0016)$ & & \\
+## Experienced Officer & & & $0.3207^{*}$ & $0.0692^{**}$ \\
+## & & & $(0.1614)$ & $(0.0151)$ \\
+## White Female & $-0.0022^{**}$ & $-0.0037$ & $0.0647$ & $-0.0545^{**}$ \\
+## & $(0.0001)$ & $(0.0142)$ & $(0.1418)$ & $(0.0096)$ \\
+## Black Male & $0.0051^{**}$ & $-0.0535^{**}$ & $-0.5417^{**}$ & $0.0851^{**}$ \\
+## & $(0.0001)$ & $(0.0097)$ & $(0.1042)$ & $(0.0104)$ \\
+## Black Female & $-0.0019^{**}$ & $-0.0609^{**}$ & $-0.4922^{**}$ & $-0.0630^{**}$ \\
+## & $(0.0002)$ & $(0.0170)$ & $(0.1682)$ & $(0.0116)$ \\
+## Latino Male & $0.0013^{**}$ & $-0.0909^{**}$ & $-0.8668^{**}$ & $-0.0088$ \\
+## & $(0.0001)$ & $(0.0114)$ & $(0.1177)$ & $(0.0107)$ \\
+## Latina Female & $-0.0019^{**}$ & $-0.0114$ & $-0.1267$ & $-0.0675^{**}$ \\
+## & $(0.0002)$ & $(0.0264)$ & $(0.2512)$ & $(0.0128)$ \\
+## Driver Age & $-0.0001^{**}$ & $-0.0023^{**}$ & & \\
+## & $(0.0000)$ & $(0.0004)$ & & \\
+## Driver Age: 30-64 & & & $-0.3525^{**}$ & $-0.1190^{**}$ \\
+## & & & $(0.0829)$ & $(0.0069)$ \\
+## Driver Age: 65+ & & & $-0.8633^{*}$ & $-0.1688^{**}$ \\
+## & & & $(0.4308)$ & $(0.0117)$ \\
+## Investigatory Stop Purpose & $0.0041^{**}$ & $0.3340^{**}$ & $3.3725^{**}$ & $0.2428^{**}$ \\
+## & $(0.0001)$ & $(0.0112)$ & $(0.1081)$ & $(0.0067)$ \\
+## Out of State & $0.0018^{**}$ & $-0.0544^{**}$ & $-0.5205^{**}$ & $0.0317^{**}$ \\
+## & $(0.0001)$ & $(0.0112)$ & $(0.1093)$ & $(0.0083)$ \\
+## \hline
+## AIC & $-6993843.0503$ & $15022.3545$ & $54081.7043$ & $3674955.2660$ \\
+## BIC & $-6992267.0054$ & $15931.9613$ & $54311.3845$ & $3675324.0618$ \\
+## Log Likelihood & $3497044.5251$ & $-7389.1773$ & $-27008.8521$ & $-1837445.6330$ \\
+## Num. obs. & $2712478$ & $12782$ & $9677$ & $747784$ \\
+## Num. groups: officer\_id\_hash & $1419$ & $599$ & $$ & $$ \\
+## Var: officer\_id\_hash (Intercept) & $0.0002$ & $0.0150$ & $$ & $$ \\
+## Var: Residual & $0.0044$ & $0.1744$ & $14.8268$ & $7.9441$ \\
+## Num. groups: officer\_id & $$ & $$ & $602$ & $1424$ \\
+## Var: officer\_id (Intercept) & $$ & $$ & $2.1381$ & $0.1270$ \\
+## \hline
+## \multicolumn{5}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+###
+### 7. Appendix D: Interaction Models
+###
+
+rm(list = ls())
+
+# Table 1. Officer Experience
+load("Data/FLSearch_Exper_OLS.RData")
+load("Data/NCSearch_Exper_OLS.RData")
+load("Data/FlContra_Exper_OLS.RData")
+load("Data/FlSearchRate_Exper_OLS.RData")
+load("Data/FlStopRate_Exper_OLS.RData")
+
+texreg(list(nc.search.exper,fl.search.exper,fl.contra.exper,
+ contra.search.rate.exper,contra.stop.rate.exper),
+ stars=c(0.05,0.01),
+ custom.coef.map = list("factor(of_gender)1"="Female Officer",
+ "officer_years_of_service"="Officer Years of Service",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "factor(of_exper)1"="Experienced Officer",
+ "factor(of_gender)1:officer_years_of_service"="Female Officer * Exper.",
+ "factor(of_gender)1:Officer_Years_of_Service"="Female Officer * Exper.",
+ "factor(of_gender)1:factor(of_exper)1"="Female Officer * Exper."),
+ digits = 3)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c c c}
+## \hline
+## & Model 1 & Model 2 & Model 3 & Model 4 & Model 5 \\
+## \hline
+## Female Officer & $-0.025^{**}$ & $-0.004^{**}$ & $0.112^{**}$ & $0.971^{**}$ & $-0.059^{**}$ \\
+## & $(0.003)$ & $(0.000)$ & $(0.040)$ & $(0.364)$ & $(0.015)$ \\
+## Officer Years of Service & $-0.002^{**}$ & $0.000^{**}$ & $-0.000$ & & \\
+## & $(0.000)$ & $(0.000)$ & $(0.001)$ & & \\
+## Experienced Officer & & & & $-0.043$ & $0.056^{**}$ \\
+## & & & & $(0.087)$ & $(0.008)$ \\
+## Female Officer * Exper. & $-0.000$ & $-0.000$ & $-0.002$ & $0.443$ & $-0.047^{*}$ \\
+## & $(0.000)$ & $(0.000)$ & $(0.005)$ & $(0.558)$ & $(0.024)$ \\
+## \hline
+## R$^2$ & $0.071$ & $0.009$ & $0.135$ & $0.129$ & $0.003$ \\
+## Adj. R$^2$ & $0.071$ & $0.009$ & $0.126$ & $0.127$ & $0.003$ \\
+## Num. obs. & $150547$ & $2712478$ & $12782$ & $9677$ & $747784$ \\
+## \hline
+## \multicolumn{6}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+# Table 2. Prop Female
+load("Data/FLSearch_Prop_OLS.RData")
+load("Data/FlContra_Prop_OLS.RData")
+
+texreg(list(fl.search.prop,fl.contra.prop),
+ stars=c(0.05,0.01),
+ custom.coef.map = list("factor(of_gender)1"="Female Officer",
+ "female.prop"="Female Proportion of Proximate Force",
+ "factor(of_gender)1:female.prop"="Female Officer * Female Prop."),
+ digits = 3)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c}
+## \hline
+## & Model 1 & Model 2 \\
+## \hline
+## Female Officer & $-0.003^{**}$ & $0.434^{**}$ \\
+## & $(0.001)$ & $(0.105)$ \\
+## Female Proportion of Proximate Force & $-0.004$ & $-0.269$ \\
+## & $(0.002)$ & $(0.203)$ \\
+## Female Officer * Female Prop. & $-0.010$ & $-3.350^{**}$ \\
+## & $(0.006)$ & $(1.020)$ \\
+## \hline
+## R$^2$ & $0.009$ & $0.136$ \\
+## Adj. R$^2$ & $0.009$ & $0.127$ \\
+## Num. obs. & $2712478$ & $12782$ \\
+## \hline
+## \multicolumn{3}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+# Table 3. Stop Type
+load("Data/FLSearch_StopType_OLS.RData")
+load("Data/NCSearch_StopType_OLS.RData")
+load("Data/FlContra_StopType_OLS.RData")
+load("Data/FlSearchRate_StopType_OLS.RData")
+load("Data/FlStopRate_StopType_OLS.RData")
+
+texreg(list(nc.search.st,fl.search.st,fl.contra.st,
+ contra.search.rate.st,contra.stop.rate.st),
+ stars=c(0.05,0.01),
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "officer_age"="Officer Age",
+ "factor(of_age)2"="Officer Age: 30-64",
+ "factor(of_age)3"="Officer Age: 65+",
+ "officer_years_of_service"="Officer Years of Service",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "factor(of_exper)1"="Experienced Officer",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "factor(race_gender)4"="Latino Male",
+ "factor(race_gender)5"="Latina Female",
+ "subject_age"="Driver Age",
+ "factor(driver_age)2"="Driver Age: 30-64",
+ "factor(driver_age)3"="Driver Age: 65+",
+ "investigatory" = "Investigatory Stop Purpose",
+ "out_of_state"="Out of State"),
+ digits = 3)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c c c}
+## \hline
+## & Model 1 & Model 2 & Model 3 & Model 4 & Model 5 \\
+## \hline
+## (Intercept) & $0.145^{**}$ & $0.045^{**}$ & $0.485^{**}$ & $3.754^{**}$ & $0.449^{**}$ \\
+## & $(0.006)$ & $(0.001)$ & $(0.048)$ & $(0.170)$ & $(0.025)$ \\
+## Female Officer & $-0.032^{**}$ & $-0.006^{**}$ & $0.114^{**}$ & $1.322^{**}$ & $-0.147^{**}$ \\
+## & $(0.003)$ & $(0.000)$ & $(0.034)$ & $(0.323)$ & $(0.022)$ \\
+## Black Officer & $-0.039^{**}$ & $-0.005^{**}$ & $0.065^{**}$ & $0.892^{**}$ & $-0.195^{**}$ \\
+## & $(0.002)$ & $(0.000)$ & $(0.023)$ & $(0.242)$ & $(0.019)$ \\
+## Officer Age & & $-0.000^{**}$ & $-0.004^{**}$ & & \\
+## & & $(0.000)$ & $(0.001)$ & & \\
+## Officer Age: 30-64 & & & & $-0.495^{**}$ & $-0.096^{**}$ \\
+## & & & & $(0.115)$ & $(0.016)$ \\
+## Officer Age: 65+ & & & & & $-0.436$ \\
+## & & & & & $(0.310)$ \\
+## Officer Years of Service & $-0.003^{**}$ & $0.000^{**}$ & $-0.000$ & & \\
+## & $(0.000)$ & $(0.000)$ & $(0.001)$ & & \\
+## Experienced Officer & & & & $-0.037$ & $0.103^{**}$ \\
+## & & & & $(0.104)$ & $(0.014)$ \\
+## White Female & $-0.018^{**}$ & $-0.004^{**}$ & $-0.004$ & $0.068$ & $-0.115^{**}$ \\
+## & $(0.004)$ & $(0.000)$ & $(0.017)$ & $(0.174)$ & $(0.019)$ \\
+## Black Male & $0.055^{**}$ & $0.010^{**}$ & $-0.061^{**}$ & $-0.558^{**}$ & $0.184^{**}$ \\
+## & $(0.003)$ & $(0.000)$ & $(0.011)$ & $(0.127)$ & $(0.020)$ \\
+## Black Female & $-0.028^{**}$ & $-0.002^{**}$ & $-0.068^{**}$ & $-0.562^{**}$ & $-0.105^{**}$ \\
+## & $(0.003)$ & $(0.000)$ & $(0.020)$ & $(0.208)$ & $(0.023)$ \\
+## Latino Male & & $0.002^{**}$ & $-0.109^{**}$ & $-1.087^{**}$ & $-0.004$ \\
+## & & $(0.000)$ & $(0.013)$ & $(0.143)$ & $(0.021)$ \\
+## Latina Female & & $-0.003^{**}$ & $0.005$ & $0.091$ & $-0.135^{**}$ \\
+## & & $(0.000)$ & $(0.032)$ & $(0.314)$ & $(0.025)$ \\
+## Driver Age & $-0.002^{**}$ & $-0.000^{**}$ & $-0.003^{**}$ & & \\
+## & $(0.000)$ & $(0.000)$ & $(0.000)$ & & \\
+## Driver Age: 30-64 & & & & $-0.630^{**}$ & $-0.244^{**}$ \\
+## & & & & $(0.101)$ & $(0.014)$ \\
+## Driver Age: 65+ & & & & $-1.573^{**}$ & $-0.398^{**}$ \\
+## & & & & $(0.567)$ & $(0.023)$ \\
+## Out of State & & $0.003^{**}$ & $-0.065^{**}$ & $-0.864^{**}$ & $0.066^{**}$ \\
+## & & $(0.000)$ & $(0.013)$ & $(0.133)$ & $(0.016)$ \\
+## \hline
+## R$^2$ & $0.071$ & $0.012$ & $0.084$ & $0.047$ & $0.003$ \\
+## Adj. R$^2$ & $0.070$ & $0.012$ & $0.074$ & $0.045$ & $0.003$ \\
+## Num. obs. & $79523$ & $1474530$ & $11041$ & $8045$ & $382456$ \\
+## \hline
+## \multicolumn{6}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+# Table 4. Driver Characteristics
+load("Data/FLInter_Search.RData")
+load("Data/FLInter_Contra.RData")
+load("Data/FLStopRate_Inter_OLS.RData")
+load("Data/FLSearchRate_Inter_OLS.RData")
+load("Data/NCInter_Search.RData")
+
+texreg(list(nc.search.inter,fl.search.inter,fl.contra.inter,
+ contra.search.rate.inter,contra.stop.rate.inter),
+ stars=c(0.01,0.05),
+ custom.coef.map = list("factor(of_gender)1"="Female Officer",
+ "factor(subject_female)1"="Female Driver",
+ "factor(of_race)1"="Black Officer",
+ "factor(of_race)2"="Latinx Officer",
+ "factor(subject_race2)1"="Black Driver",
+ "factor(subject_race2)2"="Latinx Driver",
+ "factor(of_gender)1:factor(subject_female)1"="Female Officer*Driver",
+ "factor(of_race)1:factor(subject_race2)1"="Black Officer*Driver",
+ "factor(of_race)2:factor(subject_race2)1"="Latinx Officer*Black Driver",
+ "factor(of_race)1:factor(subject_race2)2"="Black Officer*Latinx Driver",
+ "factor(of_race)2:factor(subject_race2)2"="Latinx Officer* Driver"),digits=3)
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c c c}
+## \hline
+## & Model 1 & Model 2 & Model 3 & Model 4 & Model 5 \\
+## \hline
+## Female Officer & $-0.024^{**}$ & $-0.005^{**}$ & $0.111^{**}$ & $1.216^{**}$ & $-0.098^{**}$ \\
+## & $(0.002)$ & $(0.000)$ & $(0.034)$ & $(0.315)$ & $(0.015)$ \\
+## Female Driver & $-0.046^{**}$ & $-0.004^{**}$ & $0.010$ & $0.956^{**}$ & $-0.071^{**}$ \\
+## & $(0.001)$ & $(0.000)$ & $(0.010)$ & $(0.266)$ & $(0.014)$ \\
+## Black Officer & $-0.017^{**}$ & $-0.001^{**}$ & $0.020$ & $0.415$ & $-0.077^{**}$ \\
+## & $(0.002)$ & $(0.000)$ & $(0.031)$ & $(0.330)$ & $(0.014)$ \\
+## Latinx Officer & $-0.020^{**}$ & $-0.000$ & $0.063^{*}$ & $1.338^{**}$ & $-0.032^{*}$ \\
+## & $(0.005)$ & $(0.000)$ & $(0.026)$ & $(0.247)$ & $(0.015)$ \\
+## Black Driver & $0.027^{**}$ & $0.006^{**}$ & $-0.044^{**}$ & $-1.295^{**}$ & $0.035$ \\
+## & $(0.001)$ & $(0.000)$ & $(0.009)$ & $(0.318)$ & $(0.019)$ \\
+## Latinx Driver & $-0.007^{**}$ & $0.002^{**}$ & $-0.075^{**}$ & $-0.800^{**}$ & $0.004$ \\
+## & $(0.002)$ & $(0.000)$ & $(0.012)$ & $(0.129)$ & $(0.012)$ \\
+## Female Officer*Driver & $0.003$ & $0.003^{**}$ & $-0.042$ & $-0.315$ & $0.046$ \\
+## & $(0.004)$ & $(0.000)$ & $(0.068)$ & $(0.641)$ & $(0.024)$ \\
+## Black Officer*Driver & $-0.018^{**}$ & $-0.005^{**}$ & $0.085^{*}$ & $0.790$ & $-0.056^{*}$ \\
+## & $(0.003)$ & $(0.000)$ & $(0.043)$ & $(0.470)$ & $(0.023)$ \\
+## Latinx Officer*Black Driver & $-0.001$ & $-0.003^{**}$ & $-0.167^{**}$ & $-1.922^{**}$ & $-0.113^{**}$ \\
+## & $(0.006)$ & $(0.000)$ & $(0.033)$ & $(0.350)$ & $(0.025)$ \\
+## Black Officer*Latinx Driver & $0.002$ & $-0.002^{**}$ & $0.018$ & $0.219$ & $-0.016$ \\
+## & $(0.005)$ & $(0.000)$ & $(0.047)$ & $(0.513)$ & $(0.024)$ \\
+## Latinx Officer* Driver & $0.012$ & $-0.002^{**}$ & $-0.088^{**}$ & $-1.132^{**}$ & $-0.038$ \\
+## & $(0.008)$ & $(0.000)$ & $(0.034)$ & $(0.348)$ & $(0.023)$ \\
+## \hline
+## R$^2$ & $0.063$ & $0.009$ & $0.132$ & $0.132$ & $0.004$ \\
+## Adj. R$^2$ & $0.063$ & $0.009$ & $0.124$ & $0.130$ & $0.003$ \\
+## Num. obs. & $176332$ & $2658706$ & $12718$ & $9677$ & $747784$ \\
+## \hline
+## \multicolumn{6}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+###
+### 8. Appendix E: A Conservative Test with the Charlotte Police Department
+###
+
+load("Data/NorthCarolina.RData")
+
+table(nc$year)
+##
+## 2016 2017 2019 2020
+## 41113 46943 96498 33604
+nc.search16 = lm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+
+ factor(CMPD_Division),
+ data=nc,subset=nc$year==2016)
+nc.search17 = lm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+
+ factor(CMPD_Division),
+ data=nc,subset=nc$year==2017)
+nc.search19 = lm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+
+ factor(CMPD_Division),
+ data=nc,subset=nc$year==2019)
+nc.search20 = lm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+
+ factor(CMPD_Division),
+ data=nc,subset=nc$year==2020)
+texreg(list(nc.search16,nc.search17,nc.search19,nc.search20),
+ omit.coef = "Division*|month*",
+ custom.coef.map = list("(Intercept)"="(Intercept)",
+ "factor(of_gender)1"="Female Officer",
+ "factor(of_race)1"="Black Officer",
+ "Officer_Years_of_Service"="Officer Years of Service",
+ "investigatory"="Investigatory Stop",
+ "factor(race_gender)1"="White Female",
+ "factor(race_gender)2"="Black Male",
+ "factor(race_gender)3"="Black Female",
+ "subject_age"="Driver Age"),
+ stars=c(0.01,0.05))
+##
+## \begin{table}
+## \begin{center}
+## \begin{tabular}{l c c c c}
+## \hline
+## & Model 1 & Model 2 & Model 3 & Model 4 \\
+## \hline
+## (Intercept) & $0.10^{**}$ & $0.09^{**}$ & $0.09^{**}$ & $0.10^{**}$ \\
+## & $(0.01)$ & $(0.01)$ & $(0.01)$ & $(0.01)$ \\
+## Female Officer & $-0.03^{**}$ & $-0.03^{**}$ & $-0.02^{**}$ & $-0.02^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.01)$ \\
+## Black Officer & $-0.03^{**}$ & $-0.03^{**}$ & $-0.03^{**}$ & $-0.04^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.00)$ \\
+## Officer Years of Service & $-0.00^{**}$ & $-0.00^{**}$ & $-0.00^{**}$ & $-0.00^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.00)$ \\
+## Investigatory Stop & $0.02^{**}$ & $0.02^{**}$ & $0.03^{**}$ & $0.04^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.00)$ \\
+## White Female & $-0.01^{**}$ & $-0.00$ & $-0.01^{**}$ & $-0.01$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.01)$ \\
+## Black Male & $0.04^{**}$ & $0.05^{**}$ & $0.04^{**}$ & $0.04^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.00)$ \\
+## Black Female & $-0.02^{**}$ & $-0.01^{**}$ & $-0.02^{**}$ & $-0.03^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.01)$ \\
+## Driver Age & $-0.00^{**}$ & $-0.00^{**}$ & $-0.00^{**}$ & $-0.00^{**}$ \\
+## & $(0.00)$ & $(0.00)$ & $(0.00)$ & $(0.00)$ \\
+## \hline
+## R$^2$ & $0.07$ & $0.06$ & $0.08$ & $0.09$ \\
+## Adj. R$^2$ & $0.07$ & $0.06$ & $0.08$ & $0.09$ \\
+## Num. obs. & $31275$ & $34701$ & $64501$ & $20070$ \\
+## \hline
+## \multicolumn{5}{l}{\scriptsize{$^{**}p<0.01$; $^{*}p<0.05$}}
+## \end{tabular}
+## \caption{Statistical models}
+## \label{table:coefficients}
+## \end{center}
+## \end{table}
+
+
+
+
+