diff --git "a/108/replication_package/OutputFiles/Step2_AppendixAnalysis.html" "b/108/replication_package/OutputFiles/Step2_AppendixAnalysis.html" new file mode 100644--- /dev/null +++ "b/108/replication_package/OutputFiles/Step2_AppendixAnalysis.html" @@ -0,0 +1,772 @@ + + + + +
+ + + + + + + + + + +#######
+#######
+####### Replication files for Do Women Officers Police Differently? Evidence from Traffic Stops
+####### This file runs most of the supplemental regressions shown in the appendix.
+####### Last Updated: Jan. 2021
+#######
+#######
+
+# Opening up those libraries:
+library(dplyr)
+##
+## Attaching package: 'dplyr'
+## The following objects are masked from 'package:stats':
+##
+## filter, lag
+## The following objects are masked from 'package:base':
+##
+## intersect, setdiff, setequal, union
+library(ggplot2)
+library(texreg)
+## Version: 1.37.5
+## Date: 2020-06-17
+## Author: Philip Leifeld (University of Essex)
+##
+## Consider submitting praise using the praise or praise_interactive functions.
+## Please cite the JSS article in your publications -- see citation("texreg").
+library(readr)
+library(pscl)
+## Classes and Methods for R developed in the
+## Political Science Computational Laboratory
+## Department of Political Science
+## Stanford University
+## Simon Jackman
+## hurdle and zeroinfl functions by Achim Zeileis
+library(arm)
+## Loading required package: MASS
+##
+## Attaching package: 'MASS'
+## The following object is masked from 'package:dplyr':
+##
+## select
+## Loading required package: Matrix
+## Loading required package: lme4
+##
+## arm (Version 1.11-2, built: 2020-7-27)
+## Working directory is /Users/kelseyshoub/Desktop/PinkPolicing/AJPS_ReplicationFiles/ReplicationCode
+# Setting the working directory:
+setwd("~/Desktop/PinkPolicing/AJPS_ReplicationFiles")
+
+#
+# Appendix: Alternative Specifications
+#
+
+# Clearing the workspace.
+rm(list = ls())
+
+# Loading in the Data
+load("Data/FloridaSmall.RData")
+load("Data/FL_Aggregated.RData")
+
+# FE for Officer
+fl.search = lmer(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name)+(1|officer_id_hash),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search,file="Data/FLSearch_OLS_FE.RData")
+fl.contra = lmer(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+factor(county_name)+
+ (1|officer_id_hash),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra,file="Data/FlContra_OLS_FE.RData")
+contra.search.rate.reg = lmer(contra.search.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod)+
+ (1|officer_id),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.reg,file="Data/FlSearchRate_OLS_FE.RData")
+contra.stop.rate.reg = lmer(contra.stop.rate ~ factor(of_gender) + factor(of_exper) +
+ factor(of_age) + factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year)+factor(tod)+(1|officer_id),
+ data=fl.ag.officers)
+save(contra.stop.rate.reg,file="Data/FlStopRate_OLS_FE.RData")
+
+# Logistc Regressions
+rm(list = ls())
+
+load("Data/NorthCarolina.RData")
+load("Data/FloridaSmall.RData")
+
+fl.search = glm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,family="binomial",
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search,file="Data/FLSearch_Logit.RData")
+nc.search = glm(search~factor(race_gender)+subject_age+
+ investigatory+
+ factor(of_race)+
+ factor(of_gender)+Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ family="binomial",
+ data=nc)
+save(nc.search,file="Data/NCSearch_Logit.RData")
+fl.contra = glm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm, family = "binomial",
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra,file="Data/FlContra_Logit.RData")
+
+
+#
+# Appendix: Interaction Models
+#
+
+rm(list = ls())
+
+load("Data/NorthCarolina.RData")
+load("Data/FloridaSmall.RData")
+load("Data/FloridaLarge.RData")
+load("Data/FL_Aggregated.RData")
+
+
+# Experience
+fl.search.exper = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_race)+
+ factor(of_gender)*officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search.exper,file="Data/FLSearch_Exper_OLS.RData")
+nc.search.exper = lm(search~factor(race_gender)+subject_age+
+ investigatory+factor(of_race)+
+ factor(of_gender)*Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc)
+save(nc.search.exper,file="Data/NCSearch_Exper_OLS.RData")
+fl.contra.exper = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_gender)*officer_years_of_service+
+ factor(of_race)+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra.exper,file="Data/FlContra_Exper_OLS.RData")
+contra.search.rate.exper = lm(contra.search.rate ~ factor(of_gender)*factor(of_exper) +
+ investigatory+factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.exper,file="Data/FlSearchRate_Exper_OLS.RData")
+contra.stop.rate.exper = lm(contra.stop.rate ~ factor(of_gender)*factor(of_exper) +
+ investigatory+
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers)
+save(contra.stop.rate.exper,file="Data/FlStopRate_Exper_OLS.RData")
+
+# Prop Female
+fl$male.officer = ifelse(fl$of_gender==1,0,1)
+fl.ag = aggregate(fl$officer_id_hash,
+ by=list(fl$of_gender,fl$county_name,fl$year),
+ function(x){length(unique(x))})
+fl.ag.m = fl.ag[fl.ag$Group.1==0,]
+fl.ag.f = fl.ag[fl.ag$Group.1==1,]
+colnames(fl.ag.m)=c("male","county_name","year","male.count")
+colnames(fl.ag.f)=c("female","county_name","year","female.count")
+fl.ag = merge(fl.ag.m,fl.ag.f,all=T)
+fl.ag$male.count[is.na(fl.ag$male.count)] = 0
+fl.ag$female.count[is.na(fl.ag$female.count)] = 0
+fl.ag$female.prop = fl.ag$female.count/(fl.ag$female.count+fl.ag$male.count)
+summary(fl.ag$female.prop)
+## Min. 1st Qu. Median Mean 3rd Qu. Max.
+## 0.00000 0.05042 0.07937 0.08078 0.10526 1.00000
+fl.sm = merge(fl.sm,fl.ag)
+fl.search.prop = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_race)+
+ factor(of_gender)*female.prop+officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0)
+save(fl.search.prop,file="Data/FLSearch_Prop_OLS.RData")
+fl.contra.prop = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ investigatory+factor(of_gender)*female.prop+
+ officer_years_of_service+
+ factor(of_race)+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0)
+save(fl.contra.prop,file="Data/FlContra_Prop_OLS.RData")
+
+# Stop Type
+fl.search.st = lm(search_occur~factor(race_gender)+
+ subject_age+out_of_state+
+ factor(of_gender)+factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&fl.sm$officer_exclude==0&
+ fl.sm$investigatory==1)
+save(fl.search.st,file="Data/FLSearch_StopType_OLS.RData")
+nc.search.st = lm(search~factor(race_gender)+subject_age+
+ factor(of_gender)+
+ factor(of_race)+Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc,
+ subset = nc$investigatory==1)
+save(nc.search.st,file="Data/NCSearch_StopType_OLS.RData")
+fl.contra.st = lm(contra~factor(race_gender)+
+ subject_age+out_of_state+
+ factor(of_gender)+
+ factor(of_race)+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$search_occur==1&
+ fl.sm$officer_exclude==0&
+ fl.sm$investigatory==1)
+save(fl.contra.st,file="Data/FlContra_StopType_OLS.RData")
+contra.search.rate.st = lm(contra.search.rate ~ factor(of_gender)+
+ factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0&
+ fl.ag.officers$investigatory==1)
+save(contra.search.rate.st,file="Data/FlSearchRate_StopType_OLS.RData")
+contra.stop.rate.st = lm(contra.stop.rate ~ factor(of_gender)+
+ factor(of_exper) +
+ factor(of_age) +factor(of_race) +
+ factor(race_gender) + factor(driver_age)+
+ out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$investigatory==1)
+save(contra.stop.rate.st,file="Data/FlStopRate_StopType_OLS.RData")
+
+# Driver Characteristics
+fl.sm$subject_female = ifelse(fl.sm$subject_sex=="female",1,0)
+fl.sm$subject_race2 = ifelse(fl.sm$subject_race=="white",0,
+ ifelse(fl.sm$subject_race=="black",1,2))
+fl.search.inter = lm(search_occur~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+out_of_state+investigatory+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$county_include==1&
+ fl.sm$officer_exclude==0&
+ as.numeric(fl.sm$of_race)<3)
+save(fl.search.inter,file="Data/FLInter_Search.RData")
+fl.contra.inter = lm(contra~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+out_of_state+investigatory+
+ officer_years_of_service+officer_age+
+ factor(hour_of_day)+factor(month)+factor(year)+
+ factor(county_name),
+ data=fl.sm,
+ subset=fl.sm$search_occur==1&
+ fl.sm$county_include==1&
+ fl.sm$officer_exclude==0&
+ as.numeric(fl.sm$of_race)<3)
+save(fl.contra.inter,file="Data/FLInter_Contra.RData")
+fl.ag.officers$subject_female = ifelse(fl.ag.officers$race_gender%in%c(1,3,5),1,0)
+fl.ag.officers$subject_race2 = ifelse(fl.ag.officers$race_gender%in%c(0,1),0,
+ ifelse(fl.ag.officers$race_gender%in%c(2,3),1,2))
+contra.search.rate.inter = lm(contra.search.rate ~ factor(of_gender)*factor(subject_female) +
+ factor(of_race) * factor(subject_race2)+
+ factor(of_exper) + factor(of_age) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year),
+ data=fl.ag.officers,
+ subset=fl.ag.officers$search_occur>0)
+save(contra.search.rate.inter,file="Data/FlSearchRate_Inter_OLS.RData")
+contra.stop.rate.inter = lm(contra.stop.rate ~ factor(of_gender)*factor(subject_female) +
+ factor(of_race) * factor(subject_race2)+
+ factor(of_exper) + factor(of_age) +
+ factor(race_gender) + factor(driver_age)+
+ investigatory + out_of_state +
+ factor(year),
+ data=fl.ag.officers)
+save(contra.stop.rate.inter,file="Data/FlStopRate_Inter_OLS.RData")
+
+nc$of_race = ifelse(nc$Officer_Race=="White",0,
+ ifelse(nc$Officer_Race=="Black/African American",1,
+ ifelse(nc$Officer_Race=="Hispanic/Latino",2,NA)))
+nc$subject_female = ifelse(nc$Driver_Gender=="Female",1,0)
+nc$subject_race2 = ifelse(nc$Driver_Race=="White"&
+ nc$Driver_Ethnicity=="Non-Hispanic",0,
+ ifelse(nc$Driver_Race=="Black"&
+ nc$Driver_Ethnicity=="Non-Hispanic",1,
+ ifelse(nc$Driver_Ethnicity=="Hispanic",2,NA)))
+nc.search.inter = lm(search~factor(of_gender)*factor(subject_female)+
+ factor(of_race)*factor(subject_race2)+
+ subject_age+investigatory+
+ Officer_Years_of_Service+
+ factor(month)+factor(year)+
+ factor(CMPD_Division),
+ data=nc)
+save(nc.search.inter,file = "Data/NCInter_Search.RData")
+
+
+
+
+