anonymous-submission-acl2025 commited on
Commit
4897581
·
1 Parent(s): c907c18
25/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c30991c973eca15183b5ff245fc6adeb4c145059af922126a47612dd895a8821
3
+ size 630868
25/replication_package/AJPS_2021_Kim_Appendix.R ADDED
@@ -0,0 +1,780 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # --------------------------------------------------------------------------------------------------------------------------------
4
+ # ------------------------------------------- -------------------------------------------------------------------------------------
5
+ # Entertaining Beliefs in Economic Mobility
6
+ # Eunji Kim, 2021
7
+ # American Journal of Political Science
8
+ # APPENDIX #
9
+ # --------------------------------------------------------------------------------------------------------------------------------
10
+ # --------------------------------------------------------------------------------------------------------------------------------
11
+
12
+ #list.of.packages <- c("foreign", "ggplot2", "readstata13", "dplyr", "haven", "xtable", "stargazer", "tidytext", "stringr", "tidyr", "wordcloud", "scales", "tables", "ggpubr", "lubridate", "DescTools", "ggeffects", "tidyverse", "egg")
13
+ #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
14
+ #if(length(new.packages)) install.packages(new.packages)
15
+
16
+ #setwd("[path to where replication archive was downloaded]")
17
+
18
+
19
+ library(foreign)
20
+ library(ggplot2)
21
+ library(readstata13)
22
+ library(dplyr)
23
+ library(haven)
24
+ library(xtable)
25
+ library(stargazer)
26
+ library(tidytext)
27
+ library(stringr)
28
+ library(tidyr)
29
+ library(wordcloud)
30
+ library(scales)
31
+ library(tables)
32
+ library(ggpubr)
33
+ library(lubridate)
34
+ library(scales)
35
+ library(DescTools)
36
+ library(ggeffects)
37
+ library(tidyverse)
38
+ library(egg)
39
+
40
+
41
+ # --------------------------------------------------------------------------------------------------------------------------------
42
+
43
+ # APPENDIX A
44
+
45
+ ## Figure A1. Content analysis results of reality/game programs aired 2015-2017.
46
+
47
+
48
+ load("contentanalysis.rdata")
49
+
50
+ ca$ordinary <- as.factor(ca$ordinary)
51
+ ca$economicbenefit <- as.factor(ca$economicbenefit)
52
+ ca$hardwork <- as.factor(ca$hardwork)
53
+
54
+ ca$ordinary <- factor(ca$ordinary,
55
+ levels = c(0,1,2),
56
+ labels = c("Celebrity", "Professional", "Everyman"))
57
+
58
+
59
+ ca$economicbenefit <- factor(ca$economicbenefit,
60
+ levels = c(0,1,2),
61
+ labels = c("None/trivial", "Modest", "Significant"))
62
+
63
+ ca$hardwork <- factor(ca$hardwork,
64
+ levels = c(0,1,2),
65
+ labels = c("Not much effort", "Some effort", "A lot of effort"))
66
+
67
+
68
+ ordinary.pct = ca %>% group_by(ordinary) %>%
69
+ dplyr::summarise(count = n()) %>%
70
+ mutate(pct=count/sum(count))
71
+
72
+ econ.pct = ca %>% group_by(economicbenefit) %>%
73
+ dplyr::summarise(count = n()) %>%
74
+ mutate(pct=count/sum(count))
75
+ hardwork.pct = ca %>% group_by(hardwork) %>%
76
+ dplyr::summarise(count = n()) %>%
77
+ mutate(pct=count/sum(count))
78
+
79
+ ordinary.pct$ordinary <- factor(ordinary.pct$ordinary , levels=c("Celebrity", "Professional", "Everyman"))
80
+
81
+
82
+ p1 <- ggplot(ordinary.pct, aes(x=ordinary, y=pct*100, fill=ordinary)) +
83
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) +
84
+ theme(aspect.ratio = 1) +
85
+ scale_fill_manual(values = c("Celebrity" = "#214D72", "Professional" = "#2C7695", "Everyman"="#50BFC3")) +
86
+ scale_y_continuous(limits=c(0,100)) +
87
+ geom_text(data=ordinary.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
88
+ ylab("Percent") + xlab("") +
89
+ ggtitle("Type of People") + theme_minimal() + theme(legend.position="none") +
90
+ theme(legend.title = element_blank()) +
91
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
92
+ axis.text.y = element_text(color= "black", size=12),
93
+ axis.text.x = element_text(color= "black", size=12),
94
+ axis.title.y = element_text(color="black", size=14, face="bold"),
95
+ plot.title = element_text(size = 14, face="bold"))
96
+
97
+ ordinary.pct$ordinary <- factor(ordinary.pct$ordinary , levels=c("Celebrity", "Professional", "Everyman"))
98
+
99
+ econ.pct$economicbenefit <- factor(econ.pct$economicbenefit, levels=c("None/trivial", "Modest", "Significant"))
100
+
101
+ p2 <- ggplot(econ.pct, aes(x=economicbenefit, y=pct*100, fill=economicbenefit)) +
102
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) + theme(aspect.ratio = 1) +
103
+ scale_fill_manual(values = c("None/trivial" = "#214D72", "Modest" = "#2C7695", "Significant"="#50BFC3" )) +
104
+ scale_y_continuous(limits=c(0,100)) +
105
+ geom_text(data=econ.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
106
+ ylab("") + xlab("") +
107
+ ggtitle("Degree of Economic Benefit") + theme_minimal() + theme(legend.position="none") +
108
+ theme(legend.title = element_blank()) +
109
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
110
+ axis.text.y = element_blank(),
111
+ axis.text.x = element_text(color= "black", size=12),
112
+ axis.title.y = element_text(color="black", size=14, face="bold"),
113
+ plot.title = element_text(size = 14, face="bold"))
114
+
115
+ hardwork.pct$hardwork <- factor(hardwork.pct$hardwork, levels=c("Not much effort", "Some effort", "A lot of effort"))
116
+
117
+ p3 <- ggplot(hardwork.pct, aes(x=hardwork, y=pct*100, fill=hardwork)) +
118
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) + theme(aspect.ratio = 1) +
119
+ scale_fill_manual(values = c("Not much effort" = "#214D72", "Some effort" = "#2C7695", "A lot of effort"="#50BFC3")) +
120
+ scale_y_continuous(limits=c(0,100)) +
121
+ geom_text(data=hardwork.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
122
+ ylab("") + xlab("") +
123
+ ggtitle("Amount of Hard Work/Effort") + theme_minimal() + theme(legend.position="none") +
124
+ theme(legend.title = element_blank()) +
125
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
126
+ axis.text.y = element_blank(),
127
+ axis.text.x = element_text(color= "black", size=12),
128
+ axis.title.y = element_text(color="black", size=14, face="bold"),
129
+ plot.title = element_text(size = 14, face="bold"))
130
+
131
+ #jpeg("contentanalysis.jpeg", units="in", width=12, height=4.5, res=300)
132
+
133
+ egg::ggarrange(p1, p2, p3,nrow = 1)
134
+
135
+ #dev.off()
136
+
137
+
138
+
139
+ ## Table A1. Full Coding Results for a Random Subset of Competitive Reality/Game Shows
140
+
141
+ load("tvcoding.rdata")
142
+
143
+ first <- CohenKappa(tvcoding$ordinary1, tvcoding$ordinary2, weights = c("Unweighted"))
144
+ second <- CohenKappa(tvcoding$benefit1, tvcoding$benefit2, weights = c("Unweighted"))
145
+ third <- CohenKappa(tvcoding$hardwork1, tvcoding$hardwork2, weights = c("Unweighted"))
146
+
147
+ # Cohen's Kappa (unweighted) for the first category
148
+ round(first, digits=3)
149
+
150
+ # Cohen's Kappa (unweighted) for the second category
151
+ round(second, digits=3)
152
+
153
+ # Cohen's Kappa (unweighted) for the third category
154
+ round(third, digits=3)
155
+
156
+ # --------------------------------------------------------------------------------------------------------------------------------
157
+ # APPENDIX B
158
+
159
+ ## Figure B1. Relative Share of news shows and reality/game shows over time (1960-2017)
160
+
161
+ load("imdb.rdata")
162
+
163
+ p <- ggplot(imdb, aes(x = year, y = value,fill = variable),
164
+ scale_fill_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C"))) +
165
+ scale_x_continuous(breaks=seq(1960,2018,4)) +
166
+ scale_y_continuous(breaks=seq(0,0.7,0.05)) +
167
+ xlab("Year") + ylab("% of TV Shows by Genre") +
168
+ geom_jitter(size=2, aes(colour=variable), alpha=1) +
169
+ scale_color_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C")) +
170
+ geom_smooth(aes(x=year, y=value, color=as.factor(variable))) +
171
+ scale_fill_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C")) +
172
+ theme_minimal() +
173
+ theme(legend.title = element_blank(), legend.position = "none") +
174
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
175
+ axis.text.y = element_text(color= "black", size=12),
176
+ axis.text.x = element_text(color= "black", size=12),
177
+ axis.title.y = element_text(color="black", size=14, face="bold"),
178
+ plot.title = element_text(size = 14, face="bold"))
179
+
180
+ p <- p + theme(legend.position = "none") +
181
+ ggplot2::annotate("text", x = 1995, y = 0.13, fontface=2, size=4,
182
+ label = "REALITY/GAME", color="#2B8D9C") +
183
+ ggplot2::annotate("text", x = 2012, y = 0.05, fontface=2, size=4,
184
+ label = "NEWS", color= "#24345A") +
185
+ theme(panel.grid.minor = element_blank(),
186
+ panel.grid.major = element_line(color = "gray50", size = 0.1),
187
+ panel.grid.major.x = element_blank(),
188
+ panel.background = element_blank(),
189
+ axis.line.x = element_line(size = 0.1, linetype = "solid", colour = "gray50"))
190
+
191
+
192
+
193
+ #jpeg("imdbplot.jpeg", units="in", width=10, height=6, res=300)
194
+
195
+ p
196
+
197
+ #dev.off()
198
+
199
+ # --------------------------------------------------------------------------------------------------------------------------------
200
+
201
+ # APPENDIX E
202
+
203
+ ## Table E1. Program-Level Entertainment Media Consumption Patterns
204
+
205
+
206
+ load("ssi.rdata")
207
+
208
+ tv <- ssi %>%
209
+ dplyr::summarise( tv1=mean(tv_americagottalent)*100,
210
+ tv2=mean(tv_nflcbs)*100,
211
+ tv3=mean(tv_sundayfootball)*100,
212
+ tv4=mean(tv_foxnfl)*100,
213
+ tv5=mean(tv_sharktank)*100,
214
+ tv6 = mean(tv_hellkitchen)*100,
215
+ tv7 = mean(tv_voice)*100,
216
+ tv8 = mean(tv_idol)*100,
217
+ tv9 = mean(tv_ninja)*100,
218
+ tv10 = mean(tv_masterchef)*100,
219
+ tv11 = mean(tv_celebrityfamily)*100,
220
+ tv12 = mean(tv_survivor)*100,
221
+ tv13 = mean(tv_mlbfox)*100,
222
+ tv14 = mean(tv_collegefootball)*100,
223
+ tv15 = mean(tv_youcandance)*100,
224
+ tv16 = mean(tv_amazingrace)*100,
225
+ tv17 = mean(tv_collegebasketball)*100,
226
+ tv18 = mean(tv_nbaprimetime)*100,
227
+ tv19 = mean(tv_kardashians)*100,
228
+ tv20 = mean(tv_nascar)*100,
229
+ tv21 = mean(tv_bachelor)*100,
230
+ tv22 = mean(tv_bachelorette)*100,
231
+ tv23 = mean(tv_jerseyshore)*100,
232
+ tv24 = mean(tv_housewives)*100,
233
+ tv25 = mean(tv_ufc)*100,
234
+ tv26 = mean(tv_worldofdance)*100,
235
+ tv27 = mean(tv_lovehiphop)*100,
236
+ tv28 = mean(tv_cbssports)*100,
237
+ tv29 = mean(tv_battlebots)*100,
238
+ tv30 = mean(tv_loveconnection)*100 )
239
+
240
+ m <- as.data.frame(t(tv))
241
+
242
+ colnames(m) <- c('prop')
243
+
244
+ m$prop<- round(m$prop, digits=1)
245
+ m$tv <- c("America's Got Talent", "NFL on CBS", "Sunday Night Football",
246
+ "Fox NFL Sunday", "Shark Tank", "Hell's Kichen", "Voice", "American Idol",
247
+ "American Ninja Warrior", "MasterChef", "Celebrity Family Feud", "Survivor",
248
+ "MLB on Fox", "Colege Football Today", "So You Think You Can Dance", "Amazing Race",
249
+ "College Bastketball on CBS", "NBA Saturday Primetime", "Keeping Up with Kardashians",
250
+ "NASCAR on Fox", "Bachelor", "Bachelorette", "Jersey Shore", "The Real Housewives", "UFC Fight Night",
251
+ "World of Dance", "Love and Hip Hop: Hollywood", "CBS Sports Spectaular", "BattleBots", "Love Connection")
252
+
253
+ m
254
+
255
+
256
+ # --------------------------------------------------------------------------------------------------------------------------------
257
+
258
+ # APPENDIX F
259
+
260
+ ## Table F1.
261
+
262
+ load("ssi.rdata")
263
+
264
+ m1 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
265
+
266
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
267
+ education_n + income_n + married + female + age +
268
+ white + unemployed + polinterst + religion_attend +
269
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
270
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
271
+
272
+ m3 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
273
+
274
+ m4 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
275
+ education_n + income_n + married + female + age +
276
+ white + unemployed + polinterst + religion_attend +
277
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
278
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
279
+
280
+ m5 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
281
+
282
+ m6 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
283
+ education_n + income_n + married + female + age +
284
+ white + unemployed + polinterst + religion_attend +
285
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
286
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
287
+
288
+
289
+ table <- capture.output({stargazer(m1, m2, m3, m4, m5, m6,
290
+ dep.var.caption = "",
291
+ omit.stat=c("adj.rsq","LL","ser","f"),
292
+ omit = c('state_n') ,
293
+ star.cutoffs = c(0.1, .05,.01,.001),
294
+ no.space=TRUE,
295
+ star.char = c("+", "*", "**", "***"),
296
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
297
+ notes.append = F,
298
+ notes.align="l",
299
+ digits=3,
300
+ align = TRUE,
301
+ type= "text")
302
+ })
303
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
304
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
305
+ cat(table)
306
+
307
+
308
+ ## Table F2.
309
+
310
+ m2_conti <- lm(mindex_rsc ~ realitytv + othertv + sportstv + rep + dem +
311
+ education_n + income_n + married + female + age +
312
+ white + unemployed + polinterst + religion_attend +
313
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
314
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
315
+
316
+ table <- capture.output({stargazer(m2_conti,
317
+ dep.var.caption = "",
318
+ omit.stat=c("adj.rsq","LL","ser","f"),
319
+ omit = c('state_n') ,
320
+ star.cutoffs = c(0.1, .05,.01,.001),
321
+ no.space=TRUE,
322
+ star.char = c("+", "*", "**", "***"),
323
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
324
+ notes.append = F,
325
+ notes.align="l",
326
+ digits=3,
327
+ align = TRUE,
328
+ type= "text")
329
+ })
330
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
331
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
332
+ cat(table)
333
+
334
+
335
+ ## Table F3. The Impact of Watching Rags-to-Riches Programs By Level of Political Interest
336
+
337
+ load("ssi.rdata")
338
+
339
+ plow <- lm(mindex_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
340
+ education_n + income_n + married + female + age +
341
+ white + unemployed + religion_attend +
342
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
343
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
344
+
345
+
346
+ phigh <- lm(mindex_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
347
+ education_n + income_n + married + female + age +
348
+ white + unemployed + religion_attend +
349
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
350
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
351
+
352
+
353
+ plow_i <- lm(internalatt_rsc~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
354
+ education_n + income_n + married + female + age +
355
+ white + unemployed + religion_attend +
356
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
357
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
358
+
359
+
360
+ phigh_i <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
361
+ education_n + income_n + married + female + age +
362
+ white + unemployed + religion_attend +
363
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
364
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
365
+
366
+ plow_e <- lm(externalatt_rsc~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
367
+ education_n + income_n + married + female + age +
368
+ white + unemployed + religion_attend +
369
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
370
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
371
+
372
+
373
+ phigh_e <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
374
+ education_n + income_n + married + female + age +
375
+ white + unemployed + religion_attend +
376
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
377
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
378
+
379
+
380
+ table <- capture.output({stargazer(plow, phigh, plow_i, phigh_i, plow_e, phigh_e,
381
+ dep.var.caption = "",
382
+ omit.stat=c("adj.rsq","LL","ser","f"),
383
+ omit = c('state_n') ,
384
+ star.cutoffs = c(0.1, .05,.01,.001),
385
+ no.space=TRUE,
386
+ star.char = c("+", "*", "**", "***"),
387
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
388
+ notes.append = F,
389
+ notes.align="l",
390
+ digits=3,
391
+ align = TRUE,
392
+ type= "text")
393
+ })
394
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
395
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
396
+ cat(table)
397
+
398
+ # --------------------------------------------------------------------------------------------------------------------------------
399
+ # APPENIDX G
400
+
401
+
402
+ ## Table G1, Columns (1) to (3)
403
+
404
+
405
+ load("anes2016.rdata")
406
+
407
+ # ANES 2016
408
+
409
+ aw <- lm(mobilityindex_rsc ~ realitynew + rep + dem + ideo_conserv + white + educat3 +
410
+ female + income + agecat13 + married + bornagain + outofwork +
411
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger ,
412
+ data=anes2016, weights=V160102)
413
+
414
+ awr <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
415
+ female + income + agecat13 + married + bornagain + outofwork +
416
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
417
+ data=anes2016[anes2016$rep==1,], weights=V160102)
418
+
419
+ awd <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
420
+ female + income + agecat13 + married + bornagain + outofwork +
421
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
422
+ data=anes2016[anes2016$dem==1,], weights=V160102)
423
+
424
+
425
+ table <- capture.output({stargazer(aw, awr, awd,
426
+ column.labels = c('All', 'Rep','Dem'),
427
+ column.separate = c(1, 1, 1),
428
+ dep.var.caption = "",
429
+ omit.stat=c("adj.rsq","LL","ser","f"),
430
+ omit = c('PPSTATEN_11', 'ideo_conserv', "white", "educat3", "female", "income", "agecat13",
431
+ "married", "bornagain", "outofwork", "wrongdirection", "econbetterthanlastyear",
432
+ "unemployment_worse", "incomegap_larger", "rep", "dem", "Constant") ,
433
+ star.cutoffs = c(0.1, .05,.01,.001),
434
+ no.space=TRUE,
435
+ star.char = c("+", "*", "**", "***"),
436
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
437
+ notes.append = F,
438
+ notes.align="l",
439
+ digits=3,
440
+ align = TRUE,
441
+ type="text")
442
+ })
443
+ #table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
444
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
445
+ cat(table)
446
+
447
+ ## Table G1, Columns (4) to (6)
448
+
449
+ # iscap
450
+
451
+ load("iscap.rdata")
452
+
453
+ ia <- lm(mobility_rsc ~ combined +
454
+ newscount_w8_new +
455
+ rep_11 + dem_11 +
456
+ ideo_11_rsc + age +
457
+ female_11 + income +
458
+ married_11 + white_11 +
459
+ educ_11 + protestant +
460
+ unemployed_11 + socio_11_rsc +
461
+ PPMSACAT_11 + sjs_mean_rsc,
462
+ data=iscap, weights=weight1_11)
463
+
464
+
465
+
466
+ iar <- lm(mobility_rsc ~ combined + newscount_w8_new +
467
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
468
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$rep_11==1,], weights=weight1_11)
469
+
470
+
471
+ iad <- lm(mobility_rsc ~ combined + newscount_w8_new +
472
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
473
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$dem_11==1,], weights=weight1_11)
474
+
475
+
476
+ table <- capture.output({stargazer( ia, iar, iad,
477
+ column.labels = c( 'All', 'Rep','Dem'),
478
+ column.separate = c( 1, 1, 1),
479
+ dep.var.caption = "",
480
+ omit.stat=c("adj.rsq","LL","ser","f"),
481
+ omit = c('newscount_w8_new', 'rep_11', "dem_11", "ideo_11_rsc", "age",
482
+ 'female_11', "income", "married_11", "white_11",
483
+ 'educ_11', "protestant", "unemployed_11", "socio_11_rsc",
484
+ "PPMSACAT_11", "sjs_mean_rsc", "Constant") ,
485
+ star.cutoffs = c(0.1, .05,.01,.001),
486
+ no.space=TRUE,
487
+ star.char = c("+", "*", "**", "***"),
488
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
489
+ notes.append = F,
490
+ notes.align="l",
491
+ digits=3,
492
+ align = TRUE,
493
+ type="text")
494
+ })
495
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
496
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
497
+ cat(table)
498
+
499
+ # --------------------------------------------------------------------------------------------------------------------------------
500
+ # APPENIDX H
501
+
502
+ # Table H1. Columns (1) to (4)
503
+
504
+ load("anes2016.rdata")
505
+
506
+
507
+ aw <- lm(mobilityindex_rsc ~ realitynew + rep + dem + ideo_conserv + white + educat3 +
508
+ female + income + agecat13 + married + bornagain + outofwork +
509
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger ,
510
+ data=anes2016, weights=V160102)
511
+
512
+ awr <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
513
+ female + income + agecat13 + married + bornagain + outofwork +
514
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
515
+ data=anes2016[anes2016$rep==1,], weights=V160102)
516
+
517
+ awd <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
518
+ female + income + agecat13 + married + bornagain + outofwork +
519
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
520
+ data=anes2016[anes2016$dem==1,], weights=V160102)
521
+
522
+
523
+ awi <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
524
+ female + income + agecat13 + married + bornagain + outofwork +
525
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
526
+ data=anes2016[anes2016$ind==1,], weights=V160102)
527
+
528
+ table <- capture.output({stargazer(aw, awr, awd, awi,
529
+ column.labels = c('All', 'Rep','Dem', "Ind"),
530
+ column.separate = c(1, 1, 1, 1),
531
+ dep.var.caption = "",
532
+ omit.stat=c("adj.rsq","LL","ser","f"),
533
+ omit = c('PPSTATEN_11', 'ideo_conserv', "white", "educat3", "female", "income", "agecat13",
534
+ "married", "bornagain", "outofwork", "wrongdirection", "econbetterthanlastyear",
535
+ "unemployment_worse", "incomegap_larger", "rep", "dem", "Constant") ,
536
+ star.cutoffs = c(0.1, .05,.01,.001),
537
+ no.space=TRUE,
538
+ star.char = c("+", "*", "**", "***"),
539
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
540
+ notes.append = F,
541
+ notes.align="l",
542
+ digits=3,
543
+ align = TRUE,
544
+ type="text")
545
+ })
546
+ #table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
547
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
548
+ cat(table)
549
+
550
+ # Table H1. Columns (5) to (8)
551
+
552
+
553
+ load("iscap.rdata")
554
+
555
+
556
+ ia <- lm(mobility_rsc ~ combined + newscount_w8_new +
557
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
558
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc,
559
+ data=iscap, weights=weight1_11)
560
+
561
+ iar <- lm(mobility_rsc ~ combined + newscount_w8_new +
562
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
563
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$rep_11==1,], weights=weight1_11)
564
+
565
+
566
+ iad <- lm(mobility_rsc ~ combined + newscount_w8_new +
567
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
568
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$dem_11==1,], weights=weight1_11)
569
+
570
+
571
+ iai <- lm(mobility_rsc ~ combined + newscount_w8_new +
572
+ ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
573
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$ind_11==1,], weights=weight1_11)
574
+
575
+
576
+ table <- capture.output({stargazer( ia, iar, iad, iai,
577
+ column.labels = c( 'All', 'Rep','Dem', "Ind"),
578
+ column.separate = c( 1, 1, 1),
579
+ dep.var.caption = "",
580
+ omit.stat=c("adj.rsq","LL","ser","f"),
581
+ omit = c('newscount_w8_new', 'rep_11', "dem_11", "ideo_11_rsc", "age",
582
+ 'female_11', "income", "married_11", "white_11",
583
+ 'educ_11', "protestant", "unemployed_11", "socio_11_rsc",
584
+ "PPMSACAT_11", "sjs_mean_rsc", "Constant") ,
585
+ star.cutoffs = c(0.1, .05,.01,.001),
586
+ no.space=TRUE,
587
+ star.char = c("+", "*", "**", "***"),
588
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
589
+ notes.append = F,
590
+ notes.align="l",
591
+ digits=3,
592
+ align = TRUE,
593
+ type="text")
594
+ })
595
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
596
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
597
+ cat(table)
598
+
599
+
600
+
601
+
602
+
603
+ ## Table H2 2018 Media and Culture Survey Results by Party ID
604
+
605
+ load("ssi.rdata")
606
+
607
+
608
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
609
+ education_n + income_n + married + female + age +
610
+ white + unemployed + polinterst + religion_attend +
611
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
612
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
613
+
614
+
615
+ m2r <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
616
+ education_n + income_n + married + female + age +
617
+ white + unemployed + polinterst + religion_attend +
618
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
619
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$rep==1,])
620
+
621
+ m2d <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
622
+ education_n + income_n + married + female + age +
623
+ white + unemployed + polinterst + religion_attend +
624
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
625
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$dem==1,])
626
+
627
+
628
+ m2i <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
629
+ education_n + income_n + married + female + age +
630
+ white + unemployed + polinterst + religion_attend +
631
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
632
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$ind==1,])
633
+
634
+
635
+
636
+ table <- capture.output({stargazer(m2, m2r, m2d, m2i,
637
+ column.labels = c('All', 'Rep','Dem', 'Ind'),
638
+ column.separate = c(1, 1, 1, 1),
639
+ dep.var.caption = "",
640
+ omit.stat=c("adj.rsq","LL","ser","f"),
641
+ omit = c('state_n', "othertv", "sportstv", "education_n", "income_n", "married", "female", "age",
642
+ "white", "unemployed", "polinterst", "religion_attend", "protestant", "optimismindex", "insecurity",
643
+ "intergenmobility", "parentsimmigrant", "absolutemobility", "gini", "Constant", "rep", "dem") ,
644
+ star.cutoffs = c(0.1, .05,.01,.001),
645
+ no.space=TRUE,
646
+ star.char = c("+", "*", "**", "***"),
647
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
648
+ notes.append = F,
649
+ notes.align="l",
650
+ label = "ssi2018",
651
+ title = "ssi2018",
652
+ digits=3,
653
+ align = TRUE,
654
+ type="text")
655
+ })
656
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
657
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
658
+ cat(table)
659
+
660
+ # --------------------------------------------------------------------------------------------------------------------------------
661
+ # APPENDIX K
662
+
663
+
664
+ load("combined.rdata")
665
+
666
+ # manipulation check
667
+
668
+ # person featured on the show profitted a lot financially
669
+ t.test(combined$m1_rsc ~ combined$condition2)
670
+ # likely to have a higher income from now
671
+ t.test(combined$m2_rsc ~ combined$condition2)
672
+ # has a good work ethic
673
+ t.test(combined$m3_rsc ~ combined$condition2)
674
+ # showed that people can succeed when they are willing to work hard
675
+ t.test(combined$m4_rsc ~ combined$condition2)
676
+ # liked the program
677
+ t.test(combined$like ~ combined$condition2)
678
+ # thought the program was entertaining
679
+ t.test(combined$entertaining ~ combined$condition2)
680
+
681
+
682
+ ## Table K1. Heterogeneous Treatment Effects by System Justification Tendency
683
+
684
+
685
+ j <- lm(mperception_combined ~ condition2*sjs_high + pid + optimism_index + date + as.factor(surveymode_n),
686
+ data=combined)
687
+
688
+ table <- capture.output({stargazer(j,
689
+ covariate.labels = c('Rags-to-Riches TV Treatment', "System Justification Scale - High", "Party ID",
690
+ "Optimism Index", "Treatment x System Justification Scale"),
691
+ omit.stat=c("adj.rsq","LL","ser","f"),
692
+ omit = c('surveymode_n', 'date') ,
693
+ star.cutoffs = c(0.1, .05,.01,.001),
694
+ no.space=TRUE,
695
+ star.char = c("+", "*", "**", "***"),
696
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
697
+ notes.append = F,
698
+ notes.align="l",
699
+ label = "experiment",
700
+ title = "Heterogeneous Treatment Effects by SJS",
701
+ digits=3,
702
+ align = TRUE,
703
+ type="text")
704
+ })
705
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
706
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
707
+ cat(table)
708
+
709
+
710
+ # --------------------------------------------------------------------------------------------------------------------------------
711
+ # APPENDIX L
712
+
713
+ # Table L1. The impact of merit-based rags-to-riches TV on redistribution-related attitudes
714
+
715
+ load("merit.rdata")
716
+
717
+ m1 <- lm( dv3_rich_rcd ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
718
+ m2 <- lm( dv3_poor_rcd ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
719
+ m3 <- lm( dv4_inequality_rsc ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
720
+ m4 <- lm( antigov2 ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
721
+
722
+ table <- capture.output({stargazer(m1, m2, m3, m4,
723
+ dep.var.labels= c('The rich works hard',
724
+ 'The poor lacks efforts',
725
+ 'Inequality is desirable',
726
+ 'Anti-redistribution'),
727
+ covariate.labels = c('Meritocracy Treatment'),
728
+ dep.var.caption = "",
729
+ omit.stat=c("adj.rsq","LL","ser","f"),
730
+ omit = c('surveymode_n', 'date_n', 'durationinseconds', 'rep', 'dem', 'Constant') ,
731
+ star.cutoffs = c(0.1, .05,.01,.001),
732
+ no.space=TRUE,
733
+ star.char = c("+", "*", "**", "***"),
734
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
735
+ notes.append = F,
736
+ notes.align="l",
737
+ label = "main",
738
+ title = "The Casual Effect of Merit-Based Rags-to-Riches TV",
739
+ digits=3,
740
+ align = TRUE,
741
+ type = "text")
742
+ })
743
+
744
+ #%table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
745
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
746
+ cat(table)
747
+
748
+ # --------------------------------------------------------------------------------------------------------------------------------
749
+ # APPENDIX M
750
+ # Figure M1
751
+
752
+ load("gss.rdata")
753
+
754
+
755
+ fit <- lm(getahead_new~ tv_dummy*as.factor(year) + news + polviews + pid3 +
756
+ age + income + as.factor(race) + educ + sex, data = gss, weights=gss$wtssall)
757
+
758
+ dat <- ggpredict(fit, terms = c("year", "tv_dummy"))
759
+ dat$year <- as.Date(as.character(dat$x), format = "%Y")
760
+ dat$year <- year(dat$year)
761
+
762
+
763
+ p1 <- ggplot(dat, aes(x=year, y=predicted, color=group, shape=group)) +
764
+ geom_smooth(span=1.2, se=T, alpha=0.2, aes(fill=group)) + scale_fill_manual(name='group', values=c("black", "#00A7A3"))+ geom_point() + scale_shape_manual(values = c(4, 11)) +
765
+ theme_minimal() + theme(legend.position="top") + guides(shape = FALSE, fill=F) +
766
+ xlab("Year") +
767
+ ylab("people can get ahead by working hard") + scale_x_continuous(breaks=seq(1970,2020,4)) +
768
+ scale_y_continuous(breaks=scales::pretty_breaks(n=4)) +
769
+ scale_color_manual(values=c("#214455", "#00A7A3", "grey40"), name="Overall TV Consumption", labels=c("Low", "High")) +
770
+ theme(axis.text.x = element_text(colour = "black", size=15),
771
+ axis.title.x = element_text(size=15),
772
+ axis.text.y=element_text(colour = "black", size=15),
773
+ legend.text=element_text(size=16, face="bold"), legend.title=element_text(size=16, face="bold"),
774
+ axis.title.y = element_text(size=18), panel.grid.minor.x = element_blank(), panel.grid.minor.y=element_blank())
775
+ p1
776
+
777
+ #pdf('gss_timetrend_new.pdf',height=6,width=8)
778
+ #p1
779
+ #dev.off()
780
+
25/replication_package/AJPS_2021_Kim_Appendix_RMarkdown.Rmd ADDED
@@ -0,0 +1,777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "AJPS_2021_Kim_Appendix_Markdown"
3
+ subtitle: "Entertaining Beliefs in Economic Mobility"
4
+ author: "Eunji Kim"
5
+ date: "8/15/2021"
6
+ output: html_document
7
+ ---
8
+
9
+ ```{r, message=F, warning=F, echo=F}
10
+ # Load libraries
11
+ rm(list=ls())
12
+ library(foreign)
13
+ library(ggplot2)
14
+ library(readstata13)
15
+ library(dplyr)
16
+ library(haven)
17
+ library(xtable)
18
+ library(stargazer)
19
+ library(tidytext)
20
+ library(stringr)
21
+ library(tidyr)
22
+ library(wordcloud)
23
+ library(scales)
24
+ library(tables)
25
+ library(ggpubr)
26
+ library(lubridate)
27
+ library(scales)
28
+ library(DescTools)
29
+ library(ggeffects)
30
+ library(tidyverse)
31
+ library(egg)
32
+
33
+ ```
34
+
35
+
36
+
37
+ ```{r, warning=F, message=F, results="asis"}
38
+
39
+
40
+ # APPENDIX A
41
+
42
+ ## Figure A1. Content analysis results of reality/game programs aired 2015-2017.
43
+
44
+
45
+ load("contentanalysis.rdata")
46
+
47
+ ca$ordinary <- as.factor(ca$ordinary)
48
+ ca$economicbenefit <- as.factor(ca$economicbenefit)
49
+ ca$hardwork <- as.factor(ca$hardwork)
50
+
51
+ ca$ordinary <- factor(ca$ordinary,
52
+ levels = c(0,1,2),
53
+ labels = c("Celebrity", "Professional", "Everyman"))
54
+
55
+
56
+ ca$economicbenefit <- factor(ca$economicbenefit,
57
+ levels = c(0,1,2),
58
+ labels = c("None/trivial", "Modest", "Significant"))
59
+
60
+ ca$hardwork <- factor(ca$hardwork,
61
+ levels = c(0,1,2),
62
+ labels = c("Not much effort", "Some effort", "A lot of effort"))
63
+
64
+
65
+ ordinary.pct = ca %>% group_by(ordinary) %>%
66
+ dplyr::summarise(count = n()) %>%
67
+ mutate(pct=count/sum(count))
68
+
69
+ econ.pct = ca %>% group_by(economicbenefit) %>%
70
+ dplyr::summarise(count = n()) %>%
71
+ mutate(pct=count/sum(count))
72
+ hardwork.pct = ca %>% group_by(hardwork) %>%
73
+ dplyr::summarise(count = n()) %>%
74
+ mutate(pct=count/sum(count))
75
+
76
+ ordinary.pct$ordinary <- factor(ordinary.pct$ordinary , levels=c("Celebrity", "Professional", "Everyman"))
77
+
78
+
79
+ p1 <- ggplot(ordinary.pct, aes(x=ordinary, y=pct*100, fill=ordinary)) +
80
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) +
81
+ theme(aspect.ratio = 1) +
82
+ scale_fill_manual(values = c("Celebrity" = "#214D72", "Professional" = "#2C7695", "Everyman"="#50BFC3")) +
83
+ scale_y_continuous(limits=c(0,100)) +
84
+ geom_text(data=ordinary.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
85
+ ylab("Percent") + xlab("") +
86
+ ggtitle("Type of People") + theme_minimal() + theme(legend.position="none") +
87
+ theme(legend.title = element_blank()) +
88
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
89
+ axis.text.y = element_text(color= "black", size=12),
90
+ axis.text.x = element_text(color= "black", size=12),
91
+ axis.title.y = element_text(color="black", size=14, face="bold"),
92
+ plot.title = element_text(size = 14, face="bold"))
93
+
94
+ ordinary.pct$ordinary <- factor(ordinary.pct$ordinary , levels=c("Celebrity", "Professional", "Everyman"))
95
+
96
+ econ.pct$economicbenefit <- factor(econ.pct$economicbenefit, levels=c("None/trivial", "Modest", "Significant"))
97
+
98
+ p2 <- ggplot(econ.pct, aes(x=economicbenefit, y=pct*100, fill=economicbenefit)) +
99
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) + theme(aspect.ratio = 1) +
100
+ scale_fill_manual(values = c("None/trivial" = "#214D72", "Modest" = "#2C7695", "Significant"="#50BFC3" )) +
101
+ scale_y_continuous(limits=c(0,100)) +
102
+ geom_text(data=econ.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
103
+ ylab("") + xlab("") +
104
+ ggtitle("Degree of Economic Benefit") + theme_minimal() + theme(legend.position="none") +
105
+ theme(legend.title = element_blank()) +
106
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
107
+ axis.text.y = element_blank(),
108
+ axis.text.x = element_text(color= "black", size=12),
109
+ axis.title.y = element_text(color="black", size=14, face="bold"),
110
+ plot.title = element_text(size = 14, face="bold"))
111
+
112
+ hardwork.pct$hardwork <- factor(hardwork.pct$hardwork, levels=c("Not much effort", "Some effort", "A lot of effort"))
113
+
114
+ p3 <- ggplot(hardwork.pct, aes(x=hardwork, y=pct*100, fill=hardwork)) +
115
+ geom_bar(stat="identity", width = 0.4, position=position_dodge(0.1)) + theme(aspect.ratio = 1) +
116
+ scale_fill_manual(values = c("Not much effort" = "#214D72", "Some effort" = "#2C7695", "A lot of effort"="#50BFC3")) +
117
+ scale_y_continuous(limits=c(0,100)) +
118
+ geom_text(data=hardwork.pct, aes(label=paste0(round(pct*100,1),"%"), y=pct*100+3), size=4) +
119
+ ylab("") + xlab("") +
120
+ ggtitle("Amount of Hard Work/Effort") + theme_minimal() + theme(legend.position="none") +
121
+ theme(legend.title = element_blank()) +
122
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
123
+ axis.text.y = element_blank(),
124
+ axis.text.x = element_text(color= "black", size=12),
125
+ axis.title.y = element_text(color="black", size=14, face="bold"),
126
+ plot.title = element_text(size = 14, face="bold"))
127
+
128
+ #jpeg("contentanalysis.jpeg", units="in", width=12, height=4.5, res=300)
129
+
130
+ egg::ggarrange(p1, p2, p3,nrow = 1)
131
+
132
+ #dev.off()
133
+
134
+
135
+
136
+
137
+ ## Table A1. Full Coding Results for a Random Subset of Competitive Reality/Game Shows
138
+
139
+ load("tvcoding.rdata")
140
+
141
+ first <- CohenKappa(tvcoding$ordinary1, tvcoding$ordinary2, weights = c("Unweighted"))
142
+ second <- CohenKappa(tvcoding$benefit1, tvcoding$benefit2, weights = c("Unweighted"))
143
+ third <- CohenKappa(tvcoding$hardwork1, tvcoding$hardwork2, weights = c("Unweighted"))
144
+
145
+ # Cohen's Kappa (unweighted) for the first category
146
+ round(first, digits=3)
147
+
148
+ # Cohen's Kappa (unweighted) for the second category
149
+ round(second, digits=3)
150
+
151
+ # Cohen's Kappa (unweighted) for the third category
152
+ round(third, digits=3)
153
+
154
+ # --------------------------------------------------------------------------------------------------------------------------------
155
+ # APPENDIX B
156
+
157
+ ## Figure B1. Relative Share of news shows and reality/game shows over time (1960-2017)
158
+
159
+ load("imdb.rdata")
160
+
161
+ p <- ggplot(imdb, aes(x = year, y = value,fill = variable),
162
+ scale_fill_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C"))) +
163
+ scale_x_continuous(breaks=seq(1960,2018,4)) +
164
+ scale_y_continuous(breaks=seq(0,0.7,0.05)) +
165
+ xlab("Year") + ylab("% of TV Shows by Genre") +
166
+ geom_jitter(size=2, aes(colour=variable), alpha=1) +
167
+ scale_color_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C")) +
168
+ geom_smooth(aes(x=year, y=value, color=as.factor(variable))) +
169
+ scale_fill_manual(breaks = c("news", "realitygame"), values =c("#24345A", "#2B8D9C")) +
170
+ theme_minimal() +
171
+ theme(legend.title = element_blank(), legend.position = "none") +
172
+ theme(axis.title.x = element_text(color="black", size=14, face="bold"),
173
+ axis.text.y = element_text(color= "black", size=12),
174
+ axis.text.x = element_text(color= "black", size=12),
175
+ axis.title.y = element_text(color="black", size=14, face="bold"),
176
+ plot.title = element_text(size = 14, face="bold"))
177
+
178
+ p <- p + theme(legend.position = "none") +
179
+ ggplot2::annotate("text", x = 1995, y = 0.13, fontface=2, size=4,
180
+ label = "REALITY/GAME", color="#2B8D9C") +
181
+ ggplot2::annotate("text", x = 2012, y = 0.05, fontface=2, size=4,
182
+ label = "NEWS", color= "#24345A") +
183
+ theme(panel.grid.minor = element_blank(),
184
+ panel.grid.major = element_line(color = "gray50", size = 0.1),
185
+ panel.grid.major.x = element_blank(),
186
+ panel.background = element_blank(),
187
+ axis.line.x = element_line(size = 0.1, linetype = "solid", colour = "gray50"))
188
+
189
+
190
+
191
+ #jpeg("imdbplot.jpeg", units="in", width=10, height=6, res=300)
192
+
193
+ p
194
+
195
+ #dev.off()
196
+
197
+ # --------------------------------------------------------------------------------------------------------------------------------
198
+ # APPENDIX E
199
+
200
+ ## Table E1. Program-Level Entertainment Media Consumption Patterns
201
+
202
+
203
+ load("ssi.rdata")
204
+
205
+ tv <- ssi %>%
206
+ dplyr::summarise( tv1=mean(tv_americagottalent)*100,
207
+ tv2=mean(tv_nflcbs)*100,
208
+ tv3=mean(tv_sundayfootball)*100,
209
+ tv4=mean(tv_foxnfl)*100,
210
+ tv5=mean(tv_sharktank)*100,
211
+ tv6 = mean(tv_hellkitchen)*100,
212
+ tv7 = mean(tv_voice)*100,
213
+ tv8 = mean(tv_idol)*100,
214
+ tv9 = mean(tv_ninja)*100,
215
+ tv10 = mean(tv_masterchef)*100,
216
+ tv11 = mean(tv_celebrityfamily)*100,
217
+ tv12 = mean(tv_survivor)*100,
218
+ tv13 = mean(tv_mlbfox)*100,
219
+ tv14 = mean(tv_collegefootball)*100,
220
+ tv15 = mean(tv_youcandance)*100,
221
+ tv16 = mean(tv_amazingrace)*100,
222
+ tv17 = mean(tv_collegebasketball)*100,
223
+ tv18 = mean(tv_nbaprimetime)*100,
224
+ tv19 = mean(tv_kardashians)*100,
225
+ tv20 = mean(tv_nascar)*100,
226
+ tv21 = mean(tv_bachelor)*100,
227
+ tv22 = mean(tv_bachelorette)*100,
228
+ tv23 = mean(tv_jerseyshore)*100,
229
+ tv24 = mean(tv_housewives)*100,
230
+ tv25 = mean(tv_ufc)*100,
231
+ tv26 = mean(tv_worldofdance)*100,
232
+ tv27 = mean(tv_lovehiphop)*100,
233
+ tv28 = mean(tv_cbssports)*100,
234
+ tv29 = mean(tv_battlebots)*100,
235
+ tv30 = mean(tv_loveconnection)*100 )
236
+
237
+ m <- as.data.frame(t(tv))
238
+
239
+ colnames(m) <- c('prop')
240
+
241
+ m$prop<- round(m$prop, digits=1)
242
+ m$tv <- c("America's Got Talent", "NFL on CBS", "Sunday Night Football",
243
+ "Fox NFL Sunday", "Shark Tank", "Hell's Kichen", "Voice", "American Idol",
244
+ "American Ninja Warrior", "MasterChef", "Celebrity Family Feud", "Survivor",
245
+ "MLB on Fox", "Colege Football Today", "So You Think You Can Dance", "Amazing Race",
246
+ "College Bastketball on CBS", "NBA Saturday Primetime", "Keeping Up with Kardashians",
247
+ "NASCAR on Fox", "Bachelor", "Bachelorette", "Jersey Shore", "The Real Housewives", "UFC Fight Night",
248
+ "World of Dance", "Love and Hip Hop: Hollywood", "CBS Sports Spectaular", "BattleBots", "Love Connection")
249
+
250
+ m
251
+
252
+
253
+ # --------------------------------------------------------------------------------------------------------------------------------
254
+
255
+ # APPENDIX F
256
+
257
+ ## Table F1.
258
+
259
+ load("ssi.rdata")
260
+
261
+ m1 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
262
+
263
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
264
+ education_n + income_n + married + female + age +
265
+ white + unemployed + polinterst + religion_attend +
266
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
267
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
268
+
269
+ m3 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
270
+
271
+ m4 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
272
+ education_n + income_n + married + female + age +
273
+ white + unemployed + polinterst + religion_attend +
274
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
275
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
276
+
277
+ m5 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
278
+
279
+ m6 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
280
+ education_n + income_n + married + female + age +
281
+ white + unemployed + polinterst + religion_attend +
282
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
283
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
284
+
285
+
286
+ table <- capture.output({stargazer(m1, m2, m3, m4, m5, m6,
287
+ dep.var.caption = "",
288
+ omit.stat=c("adj.rsq","LL","ser","f"),
289
+ omit = c('state_n') ,
290
+ star.cutoffs = c(0.1, .05,.01,.001),
291
+ no.space=TRUE,
292
+ star.char = c("+", "*", "**", "***"),
293
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
294
+ notes.append = F,
295
+ notes.align="l",
296
+ digits=3,
297
+ align = TRUE,
298
+ type= "html")
299
+ })
300
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
301
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
302
+ cat(table)
303
+
304
+
305
+ ## Table F2.
306
+
307
+ m2_conti <- lm(mindex_rsc ~ realitytv + othertv + sportstv + rep + dem +
308
+ education_n + income_n + married + female + age +
309
+ white + unemployed + polinterst + religion_attend +
310
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
311
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
312
+
313
+ table <- capture.output({stargazer(m2_conti,
314
+ dep.var.caption = "",
315
+ omit.stat=c("adj.rsq","LL","ser","f"),
316
+ omit = c('state_n') ,
317
+ star.cutoffs = c(0.1, .05,.01,.001),
318
+ no.space=TRUE,
319
+ star.char = c("+", "*", "**", "***"),
320
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
321
+ notes.append = F,
322
+ notes.align="l",
323
+ digits=3,
324
+ align = TRUE,
325
+ type= "html")
326
+ })
327
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
328
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
329
+ cat(table)
330
+
331
+
332
+ ## Table F3. The Impact of Watching Rags-to-Riches Programs By Level of Political Interest
333
+
334
+ load("ssi.rdata")
335
+
336
+ plow <- lm(mindex_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
337
+ education_n + income_n + married + female + age +
338
+ white + unemployed + religion_attend +
339
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
340
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
341
+
342
+
343
+ phigh <- lm(mindex_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
344
+ education_n + income_n + married + female + age +
345
+ white + unemployed + religion_attend +
346
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
347
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
348
+
349
+
350
+ plow_i <- lm(internalatt_rsc~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
351
+ education_n + income_n + married + female + age +
352
+ white + unemployed + religion_attend +
353
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
354
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
355
+
356
+
357
+ phigh_i <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
358
+ education_n + income_n + married + female + age +
359
+ white + unemployed + religion_attend +
360
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
361
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
362
+
363
+ plow_e <- lm(externalatt_rsc~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
364
+ education_n + income_n + married + female + age +
365
+ white + unemployed + religion_attend +
366
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
367
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==0,])
368
+
369
+
370
+ phigh_e <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer+ heavyviewer + othertv + sportstv + rep + dem +
371
+ education_n + income_n + married + female + age +
372
+ white + unemployed + religion_attend +
373
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
374
+ absolutemobility + gini + as.factor(state_n), data=ssi[ssi$polinterest_high==1,])
375
+
376
+
377
+ table <- capture.output({stargazer(plow, phigh, plow_i, phigh_i, plow_e, phigh_e,
378
+ dep.var.caption = "",
379
+ omit.stat=c("adj.rsq","LL","ser","f"),
380
+ omit = c('state_n') ,
381
+ star.cutoffs = c(0.1, .05,.01,.001),
382
+ no.space=TRUE,
383
+ star.char = c("+", "*", "**", "***"),
384
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
385
+ notes.append = F,
386
+ notes.align="l",
387
+ digits=3,
388
+ align = TRUE,
389
+ type= "html")
390
+ })
391
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
392
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
393
+ cat(table)
394
+
395
+ # --------------------------------------------------------------------------------------------------------------------------------
396
+
397
+ # APPENIDX G
398
+
399
+
400
+ ## Table G1, Columns (1) to (3)
401
+
402
+
403
+ load("anes2016.rdata")
404
+
405
+ # ANES 2016
406
+
407
+ aw <- lm(mobilityindex_rsc ~ realitynew + rep + dem + ideo_conserv + white + educat3 +
408
+ female + income + agecat13 + married + bornagain + outofwork +
409
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger ,
410
+ data=anes2016, weights=V160102)
411
+
412
+ awr <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
413
+ female + income + agecat13 + married + bornagain + outofwork +
414
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
415
+ data=anes2016[anes2016$rep==1,], weights=V160102)
416
+
417
+ awd <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
418
+ female + income + agecat13 + married + bornagain + outofwork +
419
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
420
+ data=anes2016[anes2016$dem==1,], weights=V160102)
421
+
422
+
423
+ table <- capture.output({stargazer(aw, awr, awd,
424
+ column.labels = c('All', 'Rep','Dem'),
425
+ column.separate = c(1, 1, 1),
426
+ dep.var.caption = "",
427
+ omit.stat=c("adj.rsq","LL","ser","f"),
428
+ omit = c('PPSTATEN_11', 'ideo_conserv', "white", "educat3", "female", "income", "agecat13",
429
+ "married", "bornagain", "outofwork", "wrongdirection", "econbetterthanlastyear",
430
+ "unemployment_worse", "incomegap_larger", "rep", "dem", "Constant") ,
431
+ star.cutoffs = c(0.1, .05,.01,.001),
432
+ no.space=TRUE,
433
+ star.char = c("+", "*", "**", "***"),
434
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
435
+ notes.append = F,
436
+ notes.align="l",
437
+ digits=3,
438
+ align = TRUE,
439
+ type="html")
440
+ })
441
+ #table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
442
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
443
+ cat(table)
444
+
445
+ ## Table G1, Columns (4) to (6)
446
+
447
+ # iscap
448
+
449
+ load("iscap.rdata")
450
+
451
+ ia <- lm(mobility_rsc ~ combined +
452
+ newscount_w8_new +
453
+ rep_11 + dem_11 +
454
+ ideo_11_rsc + age +
455
+ female_11 + income +
456
+ married_11 + white_11 +
457
+ educ_11 + protestant +
458
+ unemployed_11 + socio_11_rsc +
459
+ PPMSACAT_11 + sjs_mean_rsc,
460
+ data=iscap, weights=weight1_11)
461
+
462
+
463
+
464
+ iar <- lm(mobility_rsc ~ combined + newscount_w8_new +
465
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
466
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$rep_11==1,], weights=weight1_11)
467
+
468
+
469
+ iad <- lm(mobility_rsc ~ combined + newscount_w8_new +
470
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
471
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$dem_11==1,], weights=weight1_11)
472
+
473
+
474
+ table <- capture.output({stargazer( ia, iar, iad,
475
+ column.labels = c( 'All', 'Rep','Dem'),
476
+ column.separate = c( 1, 1, 1),
477
+ dep.var.caption = "",
478
+ omit.stat=c("adj.rsq","LL","ser","f"),
479
+ omit = c('newscount_w8_new', 'rep_11', "dem_11", "ideo_11_rsc", "age",
480
+ 'female_11', "income", "married_11", "white_11",
481
+ 'educ_11', "protestant", "unemployed_11", "socio_11_rsc",
482
+ "PPMSACAT_11", "sjs_mean_rsc", "Constant") ,
483
+ star.cutoffs = c(0.1, .05,.01,.001),
484
+ no.space=TRUE,
485
+ star.char = c("+", "*", "**", "***"),
486
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
487
+ notes.append = F,
488
+ notes.align="l",
489
+ digits=3,
490
+ align = TRUE,
491
+ type="html")
492
+ })
493
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
494
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
495
+ cat(table)
496
+
497
+ # --------------------------------------------------------------------------------------------------------------------------------
498
+ # Table H1. Columns (1) to (4)
499
+
500
+ load("anes2016.rdata")
501
+
502
+
503
+ aw <- lm(mobilityindex_rsc ~ realitynew + rep + dem + ideo_conserv + white + educat3 +
504
+ female + income + agecat13 + married + bornagain + outofwork +
505
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger ,
506
+ data=anes2016, weights=V160102)
507
+
508
+ awr <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
509
+ female + income + agecat13 + married + bornagain + outofwork +
510
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
511
+ data=anes2016[anes2016$rep==1,], weights=V160102)
512
+
513
+ awd <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
514
+ female + income + agecat13 + married + bornagain + outofwork +
515
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
516
+ data=anes2016[anes2016$dem==1,], weights=V160102)
517
+
518
+
519
+ awi <- lm(mobilityindex_rsc ~ realitynew + ideo_conserv + white + educat3 +
520
+ female + income + agecat13 + married + bornagain + outofwork +
521
+ wrongdirection + econbetterthanlastyear + unemployment_worse + incomegap_larger,
522
+ data=anes2016[anes2016$ind==1,], weights=V160102)
523
+
524
+ table <- capture.output({stargazer(aw, awr, awd, awi,
525
+ column.labels = c('All', 'Rep','Dem', "Ind"),
526
+ column.separate = c(1, 1, 1, 1),
527
+ dep.var.caption = "",
528
+ omit.stat=c("adj.rsq","LL","ser","f"),
529
+ omit = c('PPSTATEN_11', 'ideo_conserv', "white", "educat3", "female", "income", "agecat13",
530
+ "married", "bornagain", "outofwork", "wrongdirection", "econbetterthanlastyear",
531
+ "unemployment_worse", "incomegap_larger", "rep", "dem", "Constant") ,
532
+ star.cutoffs = c(0.1, .05,.01,.001),
533
+ no.space=TRUE,
534
+ star.char = c("+", "*", "**", "***"),
535
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
536
+ notes.append = F,
537
+ notes.align="l",
538
+ digits=3,
539
+ align = TRUE,
540
+ type="html")
541
+ })
542
+ #table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
543
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
544
+ cat(table)
545
+
546
+
547
+ # Table H1. Columns (5) to (8)
548
+
549
+
550
+ load("iscap.rdata")
551
+
552
+
553
+ ia <- lm(mobility_rsc ~ combined + newscount_w8_new +
554
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
555
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc,
556
+ data=iscap, weights=weight1_11)
557
+
558
+ iar <- lm(mobility_rsc ~ combined + newscount_w8_new +
559
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
560
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$rep_11==1,], weights=weight1_11)
561
+
562
+
563
+ iad <- lm(mobility_rsc ~ combined + newscount_w8_new +
564
+ rep_11 + dem_11 + ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
565
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$dem_11==1,], weights=weight1_11)
566
+
567
+
568
+ iai <- lm(mobility_rsc ~ combined + newscount_w8_new +
569
+ ideo_11_rsc + age + female_11 + income + married_11 + white_11 +
570
+ educ_11 + protestant + unemployed_11 + socio_11_rsc + PPMSACAT_11 + sjs_mean_rsc, data=iscap[iscap$ind_11==1,], weights=weight1_11)
571
+
572
+
573
+ table <- capture.output({stargazer( ia, iar, iad, iai,
574
+ column.labels = c( 'All', 'Rep','Dem', "Ind"),
575
+ column.separate = c( 1, 1, 1),
576
+ dep.var.caption = "",
577
+ omit.stat=c("adj.rsq","LL","ser","f"),
578
+ omit = c('newscount_w8_new', 'rep_11', "dem_11", "ideo_11_rsc", "age",
579
+ 'female_11', "income", "married_11", "white_11",
580
+ 'educ_11', "protestant", "unemployed_11", "ind_11" ,"socio_11_rsc",
581
+ "PPMSACAT_11", "sjs_mean_rsc", "Constant") ,
582
+ star.cutoffs = c(0.1, .05,.01,.001),
583
+ no.space=TRUE,
584
+ star.char = c("+", "*", "**", "***"),
585
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
586
+ notes.append = F,
587
+ notes.align="l",
588
+ digits=3,
589
+ align = TRUE,
590
+ type="html")
591
+ })
592
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
593
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
594
+ cat(table)
595
+
596
+
597
+ ## Table H2 2018 Media and Culture Survey Results by Party ID
598
+ load("ssi.rdata")
599
+
600
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
601
+ education_n + income_n + married + female + age +
602
+ white + unemployed + polinterst + religion_attend +
603
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
604
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
605
+
606
+
607
+ m2r <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
608
+ education_n + income_n + married + female + age +
609
+ white + unemployed + polinterst + religion_attend +
610
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
611
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$rep==1,])
612
+
613
+ m2d <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
614
+ education_n + income_n + married + female + age +
615
+ white + unemployed + polinterst + religion_attend +
616
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
617
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$dem==1,])
618
+
619
+
620
+ m2i <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv +
621
+ education_n + income_n + married + female + age +
622
+ white + unemployed + polinterst + religion_attend +
623
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
624
+ +absolutemobility + gini + as.factor(state_n) , data=ssi[ssi$ind==1,])
625
+
626
+
627
+
628
+ table <- capture.output({stargazer(m2, m2r, m2d, m2i,
629
+ column.labels = c('All', 'Rep','Dem', 'Ind'),
630
+ column.separate = c(1, 1, 1, 1),
631
+ dep.var.caption = "",
632
+ omit.stat=c("adj.rsq","LL","ser","f"),
633
+ omit = c('state_n', "othertv", "sportstv", "education_n",
634
+ "income_n", "married", "female", "age",
635
+ "white", "unemployed", "polinterst", "religion_attend",
636
+ "protestant", "optimismindex", "insecurity",
637
+ "intergenmobility", "parentsimmigrant", "absolutemobility",
638
+ "gini", "Constant", "rep", "dem") ,
639
+ star.cutoffs = c(0.1, .05,.01,.001),
640
+ no.space=TRUE,
641
+ star.char = c("+", "*", "**", "***"),
642
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
643
+ notes.append = F,
644
+ notes.align="l",
645
+ label = "ssi2018",
646
+ title = "ssi2018",
647
+ digits=3,
648
+ align = TRUE,
649
+ type="html")
650
+ })
651
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
652
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
653
+ cat(table)
654
+
655
+ # --------------------------------------------------------------------------------------------------------------------------------
656
+
657
+
658
+ # APPENDIX K
659
+
660
+
661
+ load("combined.rdata")
662
+
663
+ # manipulation check
664
+
665
+ # person featured on the show profitted a lot financially
666
+ t.test(combined$m1_rsc ~ combined$condition2)
667
+ # likely to have a higher income from now
668
+ t.test(combined$m2_rsc ~ combined$condition2)
669
+ # has a good work ethic
670
+ t.test(combined$m3_rsc ~ combined$condition2)
671
+ # showed that people can succeed when they are willing to work hard
672
+ t.test(combined$m4_rsc ~ combined$condition2)
673
+ # liked the program
674
+ t.test(combined$like ~ combined$condition2)
675
+ # thought the program was entertaining
676
+ t.test(combined$entertaining ~ combined$condition2)
677
+
678
+
679
+ ## Table K1. Heterogeneous Treatment Effects by System Justification Tendency
680
+
681
+
682
+ j <- lm(mperception_combined ~ condition2*sjs_high + pid + optimism_index + date + as.factor(surveymode_n),
683
+ data=combined)
684
+
685
+ table <- capture.output({stargazer(j,
686
+ covariate.labels = c('Rags-to-Riches TV Treatment',
687
+ "System Justification Scale - High", "Party ID",
688
+ "Optimism Index", "Treatment x System Justification Scale"),
689
+ omit.stat=c("adj.rsq","LL","ser","f"),
690
+ omit = c('surveymode_n', 'date') ,
691
+ star.cutoffs = c(0.1, .05,.01,.001),
692
+ no.space=TRUE,
693
+ star.char = c("+", "*", "**", "***"),
694
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
695
+ notes.append = F,
696
+ notes.align="l",
697
+ label = "experiment",
698
+ title = "Heterogeneous Treatment Effects by SJS",
699
+ digits=3,
700
+ align = TRUE,
701
+ type="html")
702
+ })
703
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
704
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
705
+ cat(table)
706
+
707
+
708
+ # --------------------------------------------------------------------------------------------------------------------------------
709
+ # APPENDIX L
710
+
711
+ # Table L1. The impact of merit-based rags-to-riches TV on redistribution-related attitudes
712
+
713
+ load("merit.rdata")
714
+
715
+ m1 <- lm( dv3_rich_rcd ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
716
+ m2 <- lm( dv3_poor_rcd ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
717
+ m3 <- lm( dv4_inequality_rsc ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
718
+ m4 <- lm( antigov2 ~ condition2 + rep + dem + as.factor(surveymode_n) + as.factor(date_n) + durationinseconds,data=merit)
719
+
720
+ table <- capture.output({stargazer(m1, m2, m3, m4,
721
+ dep.var.labels= c('The rich works hard',
722
+ 'The poor lacks efforts',
723
+ 'Inequality is desirable',
724
+ 'Anti-redistribution'),
725
+ covariate.labels = c('Meritocracy Treatment'),
726
+ dep.var.caption = "",
727
+ omit.stat=c("adj.rsq","LL","ser","f"),
728
+ omit = c('surveymode_n', 'date_n', 'durationinseconds', 'rep', 'dem', 'Constant') ,
729
+ star.cutoffs = c(0.1, .05,.01,.001),
730
+ no.space=TRUE,
731
+ star.char = c("+", "*", "**", "***"),
732
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
733
+ notes.append = F,
734
+ notes.align="l",
735
+ label = "main",
736
+ title = "The Casual Effect of Merit-Based Rags-to-Riches TV",
737
+ digits=3,
738
+ align = TRUE,
739
+ type = "html")
740
+ })
741
+
742
+ #%table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
743
+ #table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
744
+ cat(table)
745
+
746
+ # --------------------------------------------------------------------------------------------------------------------------------
747
+ # APPENDIX M
748
+ # Figure M1
749
+
750
+ load("gss.rdata")
751
+
752
+
753
+ fit <- lm(getahead_new~ tv_dummy*as.factor(year) + news + polviews + pid3 +
754
+ age + income + as.factor(race) + educ + sex, data = gss, weights=gss$wtssall)
755
+
756
+ dat <- ggpredict(fit, terms = c("year", "tv_dummy"))
757
+ dat$year <- as.Date(as.character(dat$x), format = "%Y")
758
+ dat$year <- year(dat$year)
759
+
760
+
761
+ p1 <- ggplot(dat, aes(x=year, y=predicted, color=group, shape=group)) +
762
+ geom_smooth(span=1.2, se=T, alpha=0.2, aes(fill=group)) + scale_fill_manual(name='group', values=c("black", "#00A7A3"))+ geom_point() + scale_shape_manual(values = c(4, 11)) +
763
+ theme_minimal() + theme(legend.position="top") + guides(shape = FALSE, fill=F) +
764
+ xlab("Year") +
765
+ ylab("people can get ahead by working hard") + scale_x_continuous(breaks=seq(1970,2020,4)) +
766
+ scale_y_continuous(breaks=scales::pretty_breaks(n=4)) +
767
+ scale_color_manual(values=c("#214455", "#00A7A3", "grey40"), name="Overall TV Consumption", labels=c("Low", "High")) +
768
+ theme(axis.text.x = element_text(colour = "black", size=15),
769
+ axis.title.x = element_text(size=15),
770
+ axis.text.y=element_text(colour = "black", size=15),
771
+ legend.text=element_text(size=16, face="bold"), legend.title=element_text(size=16, face="bold"),
772
+ axis.title.y = element_text(size=18), panel.grid.minor.x = element_blank(), panel.grid.minor.y=element_blank())
773
+ p1
774
+
775
+
776
+ ```
777
+
25/replication_package/AJPS_2021_Kim_Appendix_RMarkdown.html ADDED
The diff for this file is too large to render. See raw diff
 
25/replication_package/AJPS_2021_Kim_Manuscript.R ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # --------------------------------------------------------------------------------------------------------------------------------
3
+ # --------------------------------------------------------------------------------------------------------------------------------
4
+ # Entertaining Beliefs in Economic Mobility
5
+ # Eunji Kim, 2021
6
+ # American Journal of Political Science
7
+ # --------------------------------------------------------------------------------------------------------------------------------
8
+ # --------------------------------------------------------------------------------------------------------------------------------
9
+
10
+ #list.of.packages <- c("foreign", "ggplot2", "readstata13", "dplyr", "haven", "xtable", "stargazer", "tidytext", "stringr", "tidyr", "scales", "tables", "ggpubr")
11
+ #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
12
+ #if(length(new.packages)) install.packages(new.packages)
13
+
14
+ #setwd("[path to where replication archive was downloaded]")
15
+
16
+ library(foreign)
17
+ library(ggplot2)
18
+ library(readstata13)
19
+ library(dplyr)
20
+ library(haven)
21
+ library(xtable)
22
+ library(stargazer)
23
+ library(tidytext)
24
+ library(stringr)
25
+ library(tidyr)
26
+ library(scales)
27
+ library(tables)
28
+ library(ggpubr)
29
+
30
+ # --------------------------------------------------------------------------------------------------------------------------------
31
+ # MAIN MANUSCRIPT FIGURE 1 #
32
+ # --------------------------------------------------------------------------------------------------------------------------------
33
+
34
+ load("nyt.rdata")
35
+
36
+ cleaned_nyt_text %>%
37
+ count(year) %>%
38
+ filter(year != 2020 & year != 1980) %>%
39
+ ggplot(aes(as.Date(paste(year, "-01", "-01", sep="")), n)) +
40
+ geom_col(show.legend = F) +
41
+ labs(x = "Year", y = "Number of Articles Containing Keywords",
42
+ title = "Articles by Year")
43
+
44
+
45
+ search_terms <- paste(c('economic mobility', 'social ladder', 'income ladder', 'social mobility', 'economic ladder',
46
+ 'rags to riches', 'economic mobility', 'social ladder', 'class mobility', 'socioeconomic mobility',
47
+ 'intergenerational mobility', 'upward mobility', "meritocracy", "american dream", "land of opportunity",
48
+ 'rugged individualism', 'horatio alger', 'self-made man', 'self-made woman', 'self-made success'),
49
+ collapse = '|')
50
+
51
+ custom_stop_words <- stop_words
52
+
53
+ cleaned_nyt_text$text <- as.character(cleaned_nyt_text$text)
54
+
55
+ nyt_words <- cleaned_nyt_text %>%
56
+ unnest_tokens(word, text) %>%
57
+ mutate(word = gsub("\u2019", "'", word)) %>%
58
+ anti_join(custom_stop_words)
59
+
60
+ bing <- get_sentiments('bing')
61
+
62
+ nyt_polarity_year <- nyt_words %>%
63
+ inner_join(bing) %>%
64
+ count(sentiment, Month_Yr) %>%
65
+ spread(sentiment, n) %>%
66
+ mutate(polarity = positive - negative,
67
+ percent_positive = positive / (positive + negative) * 100) %>%
68
+ filter(!str_detect(Month_Yr, "2020"))
69
+
70
+
71
+ nyt_polarity_year$year<- nyt_polarity_year %>%
72
+ separate(Month_Yr, into = c("year", "month")) %>%
73
+ pull("year")
74
+
75
+ nyt_polarity_year_2000 <- nyt_polarity_year %>% filter(year > 1999)
76
+
77
+
78
+ polarity_over_time <- nyt_polarity_year_2000 %>%
79
+ ggplot(aes(as.Date(paste(Month_Yr, "-01", sep="")),
80
+ polarity,
81
+ color = ifelse(polarity >= 0, '#86d7c1', '#0e698b'))) +
82
+ geom_col(position = "identity",
83
+ color=ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
84
+ fill = ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
85
+ size = 0.1, show.legend = F) +
86
+ #theme(plot.title = element_text(size = 11), legend.position = "none") +
87
+ theme(plot.title = element_text(size = 11), legend.position = "none",
88
+ panel.background = element_blank(),
89
+ axis.title.x = element_text(color="black", size=10),
90
+ axis.title.y = element_text(color="black", size=10)) +
91
+ theme(axis.text.x = element_text(color="black", size=10),
92
+ axis.text.y = element_text(color="black", size=10)) +
93
+ xlab("Year") + ylab("Sentiment Score")
94
+
95
+ # ggtitle("NYT Word Sentiment Polarity Over Time (positive words - negative words per year)")
96
+
97
+ polarity_over_time
98
+
99
+
100
+ #pdf('nytsentiment.pdf',height=4,width=7)
101
+ #polarity_over_time
102
+ #dev.off()
103
+
104
+
105
+ # --------------------------------------------------------------------------------------------------------------------------------
106
+ # MAIN MANUSCRIPT TABLE 1 #
107
+ # --------------------------------------------------------------------------------------------------------------------------------
108
+
109
+ # mturk
110
+
111
+ load("mturk.rdata")
112
+
113
+ m1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index, data=msample)
114
+ mr <-lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$rep==1,])
115
+ md <- lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$dem==1,])
116
+ # interaction model
117
+ mrd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index, data=msample)
118
+
119
+ # lab in the field
120
+ # main model
121
+
122
+ load("labinthefield.rdata")
123
+
124
+ f1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
125
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
126
+ fr <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
127
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$rep==1,])
128
+ fd <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
129
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$dem==1,])
130
+ frd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index +
131
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
132
+
133
+ table <- capture.output({stargazer(m1, mr, md, mrd, f1, fr, fd, frd,
134
+ dep.var.labels= c(
135
+ "Mturk Sample",
136
+ "Lab-in-the-Field Sample"),
137
+ covariate.labels = c('Rags-to-Riches TV Treatment'),
138
+ column.labels = c('All', 'Rep', 'Dem', 'Interaction Model','All', 'Rep', 'Dem', 'Interaction Model'),
139
+ column.separate = c(1,1, 1, 1, 1, 1, 1,1),
140
+ dep.var.caption = "",
141
+ omit.stat=c("adj.rsq","LL","ser","f"),
142
+ omit = c('surveymode_n', 'date_n' ) ,
143
+ star.cutoffs = c(0.1, .05,.01,.001),
144
+ no.space=TRUE,
145
+ star.char = c("+", "*", "**", "***"),
146
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
147
+ notes.append = F,
148
+ notes.align="l",
149
+ label = "experiment",
150
+ title = "The Casual Effect of Rags-to-Riches TV",
151
+ digits=3,
152
+ align = TRUE,
153
+ type="text")
154
+ })
155
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
156
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
157
+ cat(table)
158
+
159
+
160
+ # --------------------------------------------------------------------------------------------------------------------------------
161
+ # MAIN MANUSCRIPT TABLE 2 #
162
+ # --------------------------------------------------------------------------------------------------------------------------------
163
+
164
+
165
+ load("ssi.rdata")
166
+
167
+ m1 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
168
+
169
+
170
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
171
+ education_n + income_n + married + female + age +
172
+ white + unemployed + polinterst + religion_attend +
173
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
174
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
175
+
176
+ m3 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
177
+
178
+ m4 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
179
+ education_n + income_n + married + female + age +
180
+ white + unemployed + polinterst + religion_attend +
181
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
182
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
183
+
184
+ m5 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
185
+
186
+ m6 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
187
+ education_n + income_n + married + female + age +
188
+ white + unemployed + polinterst + religion_attend +
189
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
190
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
191
+
192
+
193
+ table <- capture.output({stargazer(m1, m2, m3, m4, m5, m6,
194
+ dep.var.caption = "",
195
+ omit.stat=c("adj.rsq","LL","ser","f"),
196
+ omit = c('state_n') ,
197
+ star.cutoffs = c(0.1, .05,.01,.001),
198
+ no.space=TRUE,
199
+ star.char = c("+", "*", "**", "***"),
200
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
201
+ notes.append = F,
202
+ notes.align="l",
203
+ digits=3,
204
+ align = TRUE,
205
+ type= "text")
206
+ })
207
+ table <- gsub("\\begin{tabular}","\\resizebox{1\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
208
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
209
+ cat(table)
210
+
211
+ # --------------------------------------------------------------------------------------------------------------------------------
212
+ # MAIN MANUSCRIPT FIGURE 3 #
213
+ # --------------------------------------------------------------------------------------------------------------------------------
214
+
215
+ load("ssi.rdata")
216
+
217
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
218
+ education_n + income_n + married + female + age +
219
+ white + unemployed + polinterst + religion_attend +
220
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
221
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
222
+
223
+
224
+ t1 <- coef(summary(m2))
225
+
226
+
227
+ # Combined
228
+
229
+ c3 <- numeric(length = 16)
230
+
231
+ c3[16] <- t1[7,1]*sd(ssi$rep)
232
+ c3[15] <- t1[21,1]*sd(ssi$intergenmobility)
233
+ c3[14] <- t1[13,1]*sd(ssi$age)
234
+ c3[13] <- t1[22,1]*sd(ssi$parentsimmigrant, na.rm=T)
235
+ c3[12] <- t1[4,1]*sd(ssi$heavyviewer)
236
+ c3[11] <- t1[3,1]*sd(ssi$frequentviewer)
237
+ c3[10] <- t1[2,1]*sd(ssi$occasionalviewer)
238
+ c3[9] <- t1[14,1]*sd(ssi$white)
239
+ c3[8] <- t1[18,1]*sd(ssi$protestant)
240
+ c3[7] <- t1[23,1]*sd(ssi$absolutemobility, na.rm=T)
241
+ c3[6] <- t1[20,1]*sd(ssi$insecurity, na.rm=T)
242
+ c3[5] <- t1[24,1]*sd(ssi$gini, na.rm=T)
243
+ c3[4] <- t1[8,1]*sd(ssi$dem)
244
+ c3[3] <- t1[10,1]*sd(ssi$income_n)
245
+ c3[2] <- t1[15,1]*sd(ssi$unemployed)
246
+ c3[1] <- t1[9,1]*sd(ssi$education_n)
247
+
248
+ c3 <-as.data.frame((c3))
249
+
250
+ c3[1,c(2)] <- "#24345A"
251
+ c3[2,c(2)] <-"#24345A"
252
+ c3[3,c(2)] <- "#24345A"
253
+ c3[4,c(2)] <- "#24345A"
254
+ c3[5,c(2)] <- "#24345A"
255
+ c3[6,c(2)] <- "#24345A"
256
+ c3[7,c(2)] <- "#24345A"
257
+ c3[8,c(2)] <-"#24345A"
258
+ c3[9,c(2)] <- "#24345A"
259
+ c3[10,c(2)] <- "#2B8D9C"
260
+ c3[11,c(2)] <-"#2B8D9C"
261
+ c3[12,c(2)] <- "#2B8D9C"
262
+ c3[13,c(2)] <- "#24345A"
263
+ c3[14,c(2)] <- "#24345A"
264
+ c3[15,c(2)] <- "#24345A"
265
+ c3[16,c(2)] <- "#24345A"
266
+
267
+
268
+ s3 <- numeric(length = 16)
269
+
270
+
271
+ s3[16] <- t1[7,2]*sd(ssi$rep)
272
+ s3[15] <- t1[21,2]*sd(ssi$intergenmobility)
273
+ s3[14] <- t1[13,2]*sd(ssi$age)
274
+ s3[13] <- t1[22,2]*sd(ssi$parentsimmigrant, na.rm=T)
275
+ s3[12] <- t1[4,2]*sd(ssi$heavyviewer)
276
+ s3[11] <- t1[3,2]*sd(ssi$frequentviewer)
277
+ s3[10] <- t1[2,2]*sd(ssi$occasionalviewer)
278
+ s3[9] <- t1[14,2]*sd(ssi$white)
279
+ s3[8] <- t1[18,2]*sd(ssi$protestant)
280
+ s3[7] <- t1[23,2]*sd(ssi$absolutemobility, na.rm=T)
281
+ s3[6] <- t1[20,2]*sd(ssi$insecurity, na.rm=T)
282
+ s3[5] <- t1[24,2]*sd(ssi$gini, na.rm=T)
283
+ s3[4] <- t1[8,2]*sd(ssi$dem)
284
+ s3[3] <- t1[10,2]*sd(ssi$income_n)
285
+ s3[2] <- t1[15,2]*sd(ssi$unemployed)
286
+ s3[1] <- t1[9,2]*sd(ssi$education_n)
287
+
288
+ yloc <- c(1, 2, 3, 4,5,6,7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
289
+
290
+
291
+
292
+ # jpeg("SDfigure_AJPS.jpg", units="in", width=10, height=5, res=300)
293
+ p <- recordPlot()
294
+ plot.new()
295
+
296
+ plot(c3$`(c3)`, yloc, pch = 23, col=c3$V2, bg=c3$V2,
297
+ xlim = c(-0.135, 0.14), ylim = c(0,16), xlab = "Impact of Standard Deviation Change",
298
+ ylab = "", yaxt = "n", xaxt = "n", axes=FALSE)
299
+ abline(v = 0, col = "gray")
300
+ grid()
301
+ segments((c3$`(c3)` - (qnorm(0.975) * s3)), yloc, (c3$`(c3)` + (qnorm(0.975) * s3)), yloc, col = c3$V2,
302
+ lwd = 2)
303
+
304
+
305
+ text(-0.05,16,'Republican' ,pos=2, cex=.8, col='grey30')
306
+ text(-0.05,15,'Perceived Personal Mobility',pos=2, cex=.8, col='grey30')
307
+ text(-0.05,14,'Age',pos=2, cex=.8, col='grey30')
308
+ text(-0.05,13,'Have Immigrant Parents',pos=2, cex=.8, col='grey30')
309
+ text(-0.05,12,'Rags-to-Riches TV: Heavy Viewer',pos=2, cex=.8, font=2)
310
+ text(-0.05,11,'Rags-to-Riches TV: Frequent Viewer',pos=2, cex=.8, font=2)
311
+ text(-0.05,10,'Rags-to-Riches TV: Occasional Viewer',pos=2, cex=.8, font=2)
312
+ text(-0.05,9,'White',pos=2, cex=.8, col='grey30')
313
+ text(-0.05,8,'Protestant',pos=2, cex=.8, col='grey30')
314
+ text(-0.05,7,'County-level Intergenerational Mobility Rates' ,pos=2, cex=.8, col='grey30')
315
+ text(-0.05,6,'Personal economic insecurity', ,pos=2, cex=.8, col='grey30')
316
+ text(-0.05,5,'County-level Income Inequality (Gini)',pos=2, cex=.8, col='grey30')
317
+ text(-0.05,4,'Democrat',pos=2, cex=.8, col='grey30')
318
+ text(-0.05,3,'Income',pos=2, cex=.8, col='grey30')
319
+ text(-0.05,2, 'Unemployed', cex=.8,pos=2, col='grey30')
320
+ text(-0.05,1,'Education',cex=.8, pos=2, col='grey30')
321
+
322
+ axis(1, at=c(-0.05, 0, 0.05, 0.1))
323
+
324
+ # dev.off()
325
+
326
+
327
+
328
+
329
+
330
+
25/replication_package/AJPS_2021_Kim_Manuscript_RMarkdown.Rmd ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "AJPS_2021_Kim_Manuscript_Markdown"
3
+ subtitle: "Entertaining Beliefs in Economic Mobility"
4
+ author: "Eunji Kim"
5
+ date: "8/15/2021"
6
+ output: html_document
7
+ ---
8
+
9
+
10
+ ```{r, message=F, warning=F, echo=F}
11
+ # Load libraries
12
+ rm(list=ls())
13
+ library(foreign)
14
+ library(ggplot2)
15
+ library(readstata13)
16
+ library(dplyr)
17
+ library(haven)
18
+ library(xtable)
19
+ library(stargazer)
20
+ library(ggplot2)
21
+ library(dplyr)
22
+ library(tidytext)
23
+ library(stringr)
24
+ library(tidyr)
25
+ library(scales)
26
+ library(tables)
27
+
28
+ library(ggpubr)
29
+
30
+ ```
31
+
32
+
33
+
34
+ ```{r, warning=F, message=F, results="asis"}
35
+
36
+
37
+ load("nyt.rdata")
38
+
39
+ search_terms <- paste(c('economic mobility', 'social ladder', 'income ladder', 'social mobility', 'economic ladder',
40
+ 'rags to riches', 'economic mobility', 'social ladder', 'class mobility', 'socioeconomic mobility',
41
+ 'intergenerational mobility', 'upward mobility', "meritocracy", "american dream", "land of opportunity",
42
+ 'rugged individualism', 'horatio alger', 'self-made man', 'self-made woman', 'self-made success'),
43
+ collapse = '|')
44
+
45
+ custom_stop_words <- stop_words
46
+
47
+ cleaned_nyt_text$text <- as.character(cleaned_nyt_text$text)
48
+
49
+ nyt_words <- cleaned_nyt_text %>%
50
+ unnest_tokens(word, text) %>%
51
+ mutate(word = gsub("\u2019", "'", word)) %>%
52
+ anti_join(custom_stop_words)
53
+
54
+ bing <- get_sentiments('bing')
55
+
56
+ nyt_polarity_year <- nyt_words %>%
57
+ inner_join(bing) %>%
58
+ count(sentiment, Month_Yr) %>%
59
+ spread(sentiment, n) %>%
60
+ mutate(polarity = positive - negative,
61
+ percent_positive = positive / (positive + negative) * 100) %>%
62
+ filter(!str_detect(Month_Yr, "2020"))
63
+
64
+
65
+ nyt_polarity_year$year<- nyt_polarity_year %>%
66
+ separate(Month_Yr, into = c("year", "month")) %>%
67
+ pull("year")
68
+
69
+ nyt_polarity_year_2000 <- nyt_polarity_year %>% filter(year > 1999)
70
+
71
+
72
+ polarity_over_time <- nyt_polarity_year_2000 %>%
73
+ ggplot(aes(as.Date(paste(Month_Yr, "-01", sep="")),
74
+ polarity,
75
+ color = ifelse(polarity >= 0, '#86d7c1', '#0e698b'))) +
76
+ geom_col(position = "identity",
77
+ color=ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
78
+ fill = ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
79
+ size = 0.1, show.legend = F) +
80
+ #theme(plot.title = element_text(size = 11), legend.position = "none") +
81
+ theme(plot.title = element_text(size = 11), legend.position = "none",
82
+ panel.background = element_blank(),
83
+ axis.title.x = element_text(color="black", size=10),
84
+ axis.title.y = element_text(color="black", size=10)) +
85
+ theme(axis.text.x = element_text(color="black", size=10),
86
+ axis.text.y = element_text(color="black", size=10)) +
87
+ xlab("Year") + ylab("Sentiment Score")
88
+
89
+ # ggtitle("NYT Word Sentiment Polarity Over Time (positive words - negative words per year)")
90
+
91
+ polarity_over_time
92
+
93
+
94
+ #pdf('nytsentiment.pdf',height=4,width=7)
95
+ #polarity_over_time
96
+ #dev.off()
97
+
98
+
99
+ # --------------------------------------------------------------------------------------------------------------------------------
100
+ # MAIN MANUSCRIPT TABLE 1 #
101
+ # --------------------------------------------------------------------------------------------------------------------------------
102
+
103
+ # mturk
104
+
105
+ load("mturk.rdata")
106
+
107
+ m1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index, data=msample)
108
+ mr <-lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$rep==1,])
109
+ md <- lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$dem==1,])
110
+ # interaction model
111
+ mrd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index, data=msample)
112
+
113
+ # lab in the field
114
+ # main model
115
+
116
+ load("labinthefield.rdata")
117
+
118
+ f1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
119
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
120
+ fr <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
121
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$rep==1,])
122
+ fd <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
123
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$dem==1,])
124
+ frd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index +
125
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
126
+
127
+ table <- capture.output({stargazer(m1, mr, md, mrd, f1, fr, fd, frd,
128
+ dep.var.labels= c(
129
+ "Mturk Sample",
130
+ "Lab-in-the-Field Sample"),
131
+ covariate.labels = c('Rags-to-Riches TV Treatment'),
132
+ column.labels = c('All', 'Rep', 'Dem', 'Interaction Model','All', 'Rep', 'Dem', 'Interaction Model'),
133
+ column.separate = c(1,1, 1, 1, 1, 1, 1,1),
134
+ dep.var.caption = "",
135
+ omit.stat=c("adj.rsq","LL","ser","f"),
136
+ omit = c('surveymode_n', 'date_n' ) ,
137
+ star.cutoffs = c(0.1, .05,.01,.001),
138
+ no.space=TRUE,
139
+ star.char = c("+", "*", "**", "***"),
140
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
141
+ notes.append = F,
142
+ notes.align="l",
143
+ label = "experiment",
144
+ title = "The Casual Effect of Rags-to-Riches TV",
145
+ digits=3,
146
+ align = TRUE,
147
+ type="html")
148
+ })
149
+ table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
150
+ table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
151
+ cat(table)
152
+
153
+
154
+ # --------------------------------------------------------------------------------------------------------------------------------
155
+ # MAIN MANUSCRIPT TABLE 2 #
156
+ # --------------------------------------------------------------------------------------------------------------------------------
157
+
158
+
159
+ load("ssi.rdata")
160
+
161
+ m1 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
162
+
163
+
164
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
165
+ education_n + income_n + married + female + age +
166
+ white + unemployed + polinterst + religion_attend +
167
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
168
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
169
+
170
+ m3 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
171
+
172
+ m4 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
173
+ education_n + income_n + married + female + age +
174
+ white + unemployed + polinterst + religion_attend +
175
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
176
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
177
+
178
+ m5 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
179
+
180
+ m6 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
181
+ education_n + income_n + married + female + age +
182
+ white + unemployed + polinterst + religion_attend +
183
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
184
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
185
+
186
+
187
+ stargazer(m1, m2, m3, m4, m5, m6,
188
+ dep.var.caption = "",
189
+ omit.stat=c("adj.rsq","LL","ser","f"),
190
+ omit = c('state_n', "othertv", "sportstv", "rep", "dem", "education_n",
191
+ "income_n", "married", "female", "age", "white", "unemployed",
192
+ "polinterst", "religion_attend", "protestant", "optimismindex",
193
+ "insecurity", "intergenmobility", "parentsimmigrant", "absolutemobility", "gini", "Constant") ,
194
+ star.cutoffs = c(0.1, .05,.01,.001),
195
+ no.space=TRUE,
196
+ star.char = c("+", "*", "**", "***"),
197
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
198
+ notes.append = F,
199
+ notes.align="l",
200
+ digits=3,
201
+ align = TRUE,
202
+ type= "html")
203
+ # --------------------------------------------------------------------------------------------------------------------------------
204
+ # MAIN MANUSCRIPT FIGURE 3 #
205
+ # --------------------------------------------------------------------------------------------------------------------------------
206
+
207
+ load("ssi.rdata")
208
+
209
+ m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
210
+ education_n + income_n + married + female + age +
211
+ white + unemployed + polinterst + religion_attend +
212
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
213
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
214
+
215
+
216
+ t1 <- coef(summary(m2))
217
+
218
+
219
+ # Combined
220
+
221
+ c3 <- numeric(length = 16)
222
+
223
+ c3[16] <- t1[7,1]*sd(ssi$rep)
224
+ c3[15] <- t1[21,1]*sd(ssi$intergenmobility)
225
+ c3[14] <- t1[13,1]*sd(ssi$age)
226
+ c3[13] <- t1[22,1]*sd(ssi$parentsimmigrant, na.rm=T)
227
+ c3[12] <- t1[4,1]*sd(ssi$heavyviewer)
228
+ c3[11] <- t1[3,1]*sd(ssi$frequentviewer)
229
+ c3[10] <- t1[2,1]*sd(ssi$occasionalviewer)
230
+ c3[9] <- t1[14,1]*sd(ssi$white)
231
+ c3[8] <- t1[18,1]*sd(ssi$protestant)
232
+ c3[7] <- t1[23,1]*sd(ssi$absolutemobility, na.rm=T)
233
+ c3[6] <- t1[20,1]*sd(ssi$insecurity, na.rm=T)
234
+ c3[5] <- t1[24,1]*sd(ssi$gini, na.rm=T)
235
+ c3[4] <- t1[8,1]*sd(ssi$dem)
236
+ c3[3] <- t1[10,1]*sd(ssi$income_n)
237
+ c3[2] <- t1[15,1]*sd(ssi$unemployed)
238
+ c3[1] <- t1[9,1]*sd(ssi$education_n)
239
+
240
+ c3 <-as.data.frame((c3))
241
+
242
+ c3[1,c(2)] <- "#24345A"
243
+ c3[2,c(2)] <-"#24345A"
244
+ c3[3,c(2)] <- "#24345A"
245
+ c3[4,c(2)] <- "#24345A"
246
+ c3[5,c(2)] <- "#24345A"
247
+ c3[6,c(2)] <- "#24345A"
248
+ c3[7,c(2)] <- "#24345A"
249
+ c3[8,c(2)] <-"#24345A"
250
+ c3[9,c(2)] <- "#24345A"
251
+ c3[10,c(2)] <- "#2B8D9C"
252
+ c3[11,c(2)] <-"#2B8D9C"
253
+ c3[12,c(2)] <- "#2B8D9C"
254
+ c3[13,c(2)] <- "#24345A"
255
+ c3[14,c(2)] <- "#24345A"
256
+ c3[15,c(2)] <- "#24345A"
257
+ c3[16,c(2)] <- "#24345A"
258
+
259
+
260
+ s3 <- numeric(length = 16)
261
+
262
+
263
+ s3[16] <- t1[7,2]*sd(ssi$rep)
264
+ s3[15] <- t1[21,2]*sd(ssi$intergenmobility)
265
+ s3[14] <- t1[13,2]*sd(ssi$age)
266
+ s3[13] <- t1[22,2]*sd(ssi$parentsimmigrant, na.rm=T)
267
+ s3[12] <- t1[4,2]*sd(ssi$heavyviewer)
268
+ s3[11] <- t1[3,2]*sd(ssi$frequentviewer)
269
+ s3[10] <- t1[2,2]*sd(ssi$occasionalviewer)
270
+ s3[9] <- t1[14,2]*sd(ssi$white)
271
+ s3[8] <- t1[18,2]*sd(ssi$protestant)
272
+ s3[7] <- t1[23,2]*sd(ssi$absolutemobility, na.rm=T)
273
+ s3[6] <- t1[20,2]*sd(ssi$insecurity, na.rm=T)
274
+ s3[5] <- t1[24,2]*sd(ssi$gini, na.rm=T)
275
+ s3[4] <- t1[8,2]*sd(ssi$dem)
276
+ s3[3] <- t1[10,2]*sd(ssi$income_n)
277
+ s3[2] <- t1[15,2]*sd(ssi$unemployed)
278
+ s3[1] <- t1[9,2]*sd(ssi$education_n)
279
+
280
+ yloc <- c(1, 2, 3, 4,5,6,7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
281
+
282
+
283
+
284
+ # jpeg("SDfigure_AJPS.jpg", units="in", width=10, height=5, res=300)
285
+ p <- recordPlot()
286
+ plot.new()
287
+
288
+ plot(c3$`(c3)`, yloc, pch = 23, col=c3$V2, bg=c3$V2,
289
+ xlim = c(-0.135, 0.14), ylim = c(0,16), xlab = "Impact of Standard Deviation Change",
290
+ ylab = "", yaxt = "n", xaxt = "n", axes=FALSE)
291
+ abline(v = 0, col = "gray")
292
+ grid()
293
+ segments((c3$`(c3)` - (qnorm(0.975) * s3)), yloc, (c3$`(c3)` + (qnorm(0.975) * s3)), yloc, col = c3$V2,
294
+ lwd = 2)
295
+
296
+
297
+ text(-0.05,16,'Republican' ,pos=2, cex=.8, col='grey30')
298
+ text(-0.05,15,'Perceived Personal Mobility',pos=2, cex=.8, col='grey30')
299
+ text(-0.05,14,'Age',pos=2, cex=.8, col='grey30')
300
+ text(-0.05,13,'Have Immigrant Parents',pos=2, cex=.8, col='grey30')
301
+ text(-0.05,12,'Rags-to-Riches TV: Heavy Viewer',pos=2, cex=.8, font=2)
302
+ text(-0.05,11,'Rags-to-Riches TV: Frequent Viewer',pos=2, cex=.8, font=2)
303
+ text(-0.05,10,'Rags-to-Riches TV: Occasional Viewer',pos=2, cex=.8, font=2)
304
+ text(-0.05,9,'White',pos=2, cex=.8, col='grey30')
305
+ text(-0.05,8,'Protestant',pos=2, cex=.8, col='grey30')
306
+ text(-0.05,7,'County-level Intergenerational Mobility Rates' ,pos=2, cex=.8, col='grey30')
307
+ text(-0.05,6,'Personal economic insecurity', ,pos=2, cex=.8, col='grey30')
308
+ text(-0.05,5,'County-level Income Inequality (Gini)',pos=2, cex=.8, col='grey30')
309
+ text(-0.05,4,'Democrat',pos=2, cex=.8, col='grey30')
310
+ text(-0.05,3,'Income',pos=2, cex=.8, col='grey30')
311
+ text(-0.05,2, 'Unemployed', cex=.8,pos=2, col='grey30')
312
+ text(-0.05,1,'Education',cex=.8, pos=2, col='grey30')
313
+
314
+ axis(1, at=c(-0.05, 0, 0.05, 0.1))
315
+
316
+
317
+ ```
25/replication_package/AJPS_2021_Kim_Manuscript_RMarkdown.html ADDED
The diff for this file is too large to render. See raw diff
 
25/replication_package/AJPS_Kim_readme.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59fcaa336d3894ee7bbadccc254d726277c9bfbe006960a39806847875f6d343
3
+ size 4931
25/replication_package/AJPS_Replication_Data_Codebook.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f44cac9343bc5ffedf0150d96e600c2ea125c4f5a95981a1394cae8ee17ab8
3
+ size 1483030
25/replication_package/anes2016.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:527002be31f18aecc082c6b46b8f667f53a8f9f452606a3cc9f44adc39283163
3
+ size 50379
25/replication_package/appendix_table_b1.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e4261715fd02b82f4c33dc9c65eeccf75094e661a4e88ce5eac61c9b80a16e
3
+ size 12553
25/replication_package/combined.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b17c3f0d0b724aa36ce88122d669fc2d7079027c8acc411137a13d64ca0e64
3
+ size 7288
25/replication_package/contentanalysis.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6be49781fc57db1417df505aa3675d25f4a72d1afb2fc075e34e9005b8f61c7e
3
+ size 4346
25/replication_package/gss.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ebc4959e5be7c2fe588f1853bc0e9992693cac6b564110a88c31c92f02e91c
3
+ size 145668
25/replication_package/imdb.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8641366e2ee47eefad649d3c61b301129c1c80390196c599d271494a7e022dc
3
+ size 1258
25/replication_package/iscap.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff4d27b1320cd201b95400ea567cd726ed9dd384e2962fcfba59c1e0e4a9903d
3
+ size 15198
25/replication_package/labinthefield.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aead9f14ee03615362c08a8e77ed3b6196397524e2f830860fa1f4b13595e7c
3
+ size 1508
25/replication_package/merit.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81786d5a31141c3bcea13225c2f30ac5dd47764f9516ba7764d1568d514fc82d
3
+ size 1260
25/replication_package/mturk.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:452f6296b8caf93fd2c8b6f76b186933380db580d6df906edbf536dea7f01d93
3
+ size 4073
25/replication_package/nyt.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73cf20cef2cec54a7e2686a53a3e9a20b04593b2d95959d1bf6d8548bc4ee1f1
3
+ size 50906696
25/replication_package/ssi.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a1356fb9edd45adf04c88a81a2317da28bef588f3ba3eb9d97793c6c6ca5b27
3
+ size 78485
25/replication_package/tvcoding.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddf108c30868be42c3ef500e4bd64ae76164528f77d47a3a3c12213761e27cd2
3
+ size 1900
25/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af1591c95e5a486a3c3b7498360035eba147c757722820a6d16d009f832086f0
3
+ size 16