diff --git "a/25/replication_package/AJPS_2021_Kim_Manuscript_RMarkdown.html" "b/25/replication_package/AJPS_2021_Kim_Manuscript_RMarkdown.html"
new file mode 100644--- /dev/null
+++ "b/25/replication_package/AJPS_2021_Kim_Manuscript_RMarkdown.html"
@@ -0,0 +1,1302 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
load("nyt.rdata")
+
+search_terms <- paste(c('economic mobility', 'social ladder', 'income ladder', 'social mobility', 'economic ladder',
+ 'rags to riches', 'economic mobility', 'social ladder', 'class mobility', 'socioeconomic mobility',
+ 'intergenerational mobility', 'upward mobility', "meritocracy", "american dream", "land of opportunity",
+ 'rugged individualism', 'horatio alger', 'self-made man', 'self-made woman', 'self-made success'),
+ collapse = '|')
+
+custom_stop_words <- stop_words
+
+cleaned_nyt_text$text <- as.character(cleaned_nyt_text$text)
+
+nyt_words <- cleaned_nyt_text %>%
+ unnest_tokens(word, text) %>%
+ mutate(word = gsub("\u2019", "'", word)) %>%
+ anti_join(custom_stop_words)
+
+bing <- get_sentiments('bing')
+
+nyt_polarity_year <- nyt_words %>%
+ inner_join(bing) %>%
+ count(sentiment, Month_Yr) %>%
+ spread(sentiment, n) %>%
+ mutate(polarity = positive - negative,
+ percent_positive = positive / (positive + negative) * 100) %>%
+ filter(!str_detect(Month_Yr, "2020"))
+
+
+nyt_polarity_year$year<- nyt_polarity_year %>%
+ separate(Month_Yr, into = c("year", "month")) %>%
+ pull("year")
+
+nyt_polarity_year_2000 <- nyt_polarity_year %>% filter(year > 1999)
+
+
+polarity_over_time <- nyt_polarity_year_2000 %>%
+ ggplot(aes(as.Date(paste(Month_Yr, "-01", sep="")),
+ polarity,
+ color = ifelse(polarity >= 0, '#86d7c1', '#0e698b'))) +
+ geom_col(position = "identity",
+ color=ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
+ fill = ifelse(nyt_polarity_year_2000$polarity>= 0,'#86d7c1', '#0e698b'),
+ size = 0.1, show.legend = F) +
+ #theme(plot.title = element_text(size = 11), legend.position = "none") +
+ theme(plot.title = element_text(size = 11), legend.position = "none",
+ panel.background = element_blank(),
+ axis.title.x = element_text(color="black", size=10),
+ axis.title.y = element_text(color="black", size=10)) +
+ theme(axis.text.x = element_text(color="black", size=10),
+ axis.text.y = element_text(color="black", size=10)) +
+ xlab("Year") + ylab("Sentiment Score")
+
+# ggtitle("NYT Word Sentiment Polarity Over Time (positive words - negative words per year)")
+
+polarity_over_time
+

+
#pdf('nytsentiment.pdf',height=4,width=7)
+#polarity_over_time
+#dev.off()
+
+
+# --------------------------------------------------------------------------------------------------------------------------------
+# MAIN MANUSCRIPT TABLE 1 #
+# --------------------------------------------------------------------------------------------------------------------------------
+
+# mturk
+
+load("mturk.rdata")
+
+m1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index, data=msample)
+mr <-lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$rep==1,])
+md <- lm(mperception_combined ~ condition2 + optimism_index + sjs_index, data=msample[msample$dem==1,])
+# interaction model
+mrd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index, data=msample)
+
+# lab in the field
+# main model
+
+load("labinthefield.rdata")
+
+f1 <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
+fr <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$rep==1,])
+fd <-lm(mperception_combined ~ condition2 + rep + dem + optimism_index + sjs_index +
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample[fieldsample$dem==1,])
+frd <-lm(mperception_combined ~ condition2*rep1dem0new + optimism_index + sjs_index +
+ as.factor(surveymode_n) + as.factor(date_n), data=fieldsample)
+
+table <- capture.output({stargazer(m1, mr, md, mrd, f1, fr, fd, frd,
+ dep.var.labels= c(
+ "Mturk Sample",
+ "Lab-in-the-Field Sample"),
+ covariate.labels = c('Rags-to-Riches TV Treatment'),
+ column.labels = c('All', 'Rep', 'Dem', 'Interaction Model','All', 'Rep', 'Dem', 'Interaction Model'),
+ column.separate = c(1,1, 1, 1, 1, 1, 1,1),
+ dep.var.caption = "",
+ omit.stat=c("adj.rsq","LL","ser","f"),
+ omit = c('surveymode_n', 'date_n' ) ,
+ star.cutoffs = c(0.1, .05,.01,.001),
+ no.space=TRUE,
+ star.char = c("+", "*", "**", "***"),
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
+ notes.append = F,
+ notes.align="l",
+ label = "experiment",
+ title = "The Casual Effect of Rags-to-Riches TV",
+ digits=3,
+ align = TRUE,
+ type="html")
+})
+table <- gsub("\\begin{tabular}","\\resizebox{0.8\\textwidth}{!}{\\begin{tabular}", table,fixed=T)
+table <- gsub("\\end{tabular}","\\end{tabular}}", table,fixed=T)
+cat(table)
+
+
+The Casual Effect of Rags-to-Riches TV
+
+
+
+ |
+
+
+
+ |
+
+Mturk Sample
+ |
+
+
+
+ |
+
+All
+ |
+
+Rep
+ |
+
+Dem
+ |
+
+Interaction Model
+ |
+
+All
+ |
+
+Rep
+ |
+
+Dem
+ |
+
+Interaction Model
+ |
+
+
+
+ |
+
+(1)
+ |
+
+(2)
+ |
+
+(3)
+ |
+
+(4)
+ |
+
+(5)
+ |
+
+(6)
+ |
+
+(7)
+ |
+
+(8)
+ |
+
+
+
+ |
+
+
+
+Rags-to-Riches TV Treatment
+ |
+
+0.055***
+ |
+
+0.150***
+ |
+
+0.011
+ |
+
+0.010
+ |
+
+0.068**
+ |
+
+0.085+
+ |
+
+0.061
+ |
+
+0.066+
+ |
+
+
+
+ |
+
+(0.011)
+ |
+
+(0.020)
+ |
+
+(0.017)
+ |
+
+(0.016)
+ |
+
+(0.025)
+ |
+
+(0.047)
+ |
+
+(0.037)
+ |
+
+(0.035)
+ |
+
+
+
+rep
+ |
+
+0.036*
+ |
+
+ |
+
+ |
+
+ |
+
+0.047
+ |
+
+ |
+
+ |
+
+ |
+
+
+
+ |
+
+(0.015)
+ |
+
+ |
+
+ |
+
+ |
+
+(0.038)
+ |
+
+ |
+
+ |
+
+ |
+
+
+
+dem
+ |
+
+-0.015
+ |
+
+ |
+
+ |
+
+ |
+
+-0.057+
+ |
+
+ |
+
+ |
+
+ |
+
+
+
+ |
+
+(0.012)
+ |
+
+ |
+
+ |
+
+ |
+
+(0.034)
+ |
+
+ |
+
+ |
+
+ |
+
+
+
+rep1dem0new
+ |
+
+ |
+
+ |
+
+ |
+
+-0.017
+ |
+
+ |
+
+ |
+
+ |
+
+0.075
+ |
+
+
+
+ |
+
+ |
+
+ |
+
+ |
+
+(0.020)
+ |
+
+ |
+
+ |
+
+ |
+
+(0.046)
+ |
+
+
+
+optimism_index
+ |
+
+0.025***
+ |
+
+0.032**
+ |
+
+0.020*
+ |
+
+0.024***
+ |
+
+0.048**
+ |
+
+0.019
+ |
+
+0.064*
+ |
+
+0.049*
+ |
+
+
+
+ |
+
+(0.006)
+ |
+
+(0.012)
+ |
+
+(0.009)
+ |
+
+(0.007)
+ |
+
+(0.018)
+ |
+
+(0.030)
+ |
+
+(0.028)
+ |
+
+(0.021)
+ |
+
+
+
+sjs_index
+ |
+
+0.090***
+ |
+
+0.071***
+ |
+
+0.092***
+ |
+
+0.086***
+ |
+
+0.101***
+ |
+
+0.085**
+ |
+
+0.142***
+ |
+
+0.121***
+ |
+
+
+
+ |
+
+(0.007)
+ |
+
+(0.013)
+ |
+
+(0.010)
+ |
+
+(0.008)
+ |
+
+(0.018)
+ |
+
+(0.031)
+ |
+
+(0.028)
+ |
+
+(0.022)
+ |
+
+
+
+condition2:rep1dem0new
+ |
+
+ |
+
+ |
+
+ |
+
+0.140***
+ |
+
+ |
+
+ |
+
+ |
+
+0.035
+ |
+
+
+
+ |
+
+ |
+
+ |
+
+ |
+
+(0.028)
+ |
+
+ |
+
+ |
+
+ |
+
+(0.063)
+ |
+
+
+
+Constant
+ |
+
+0.187***
+ |
+
+0.211***
+ |
+
+0.203***
+ |
+
+0.208***
+ |
+
+0.193*
+ |
+
+0.403*
+ |
+
+-0.037
+ |
+
+0.082
+ |
+
+
+
+ |
+
+(0.024)
+ |
+
+(0.051)
+ |
+
+(0.034)
+ |
+
+(0.028)
+ |
+
+(0.084)
+ |
+
+(0.152)
+ |
+
+(0.127)
+ |
+
+(0.099)
+ |
+
+
+
+ |
+
+
+
+Observations
+ |
+
+763
+ |
+
+161
+ |
+
+348
+ |
+
+509
+ |
+
+203
+ |
+
+50
+ |
+
+109
+ |
+
+159
+ |
+
+
+
+R2
+ |
+
+0.326
+ |
+
+0.443
+ |
+
+0.250
+ |
+
+0.364
+ |
+
+0.311
+ |
+
+0.274
+ |
+
+0.333
+ |
+
+0.348
+ |
+
+
+
+ |
+
+
+
+Note:
+ |
+
+
+- p< 0.1, * p<0.05; ** p<0.01; *** p<0.001
+
|
+
+
+
+
# --------------------------------------------------------------------------------------------------------------------------------
+# MAIN MANUSCRIPT TABLE 2 #
+# --------------------------------------------------------------------------------------------------------------------------------
+
+
+load("ssi.rdata")
+
+m1 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
+
+
+m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
+ education_n + income_n + married + female + age +
+ white + unemployed + polinterst + religion_attend +
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
+
+m3 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
+
+m4 <- lm(internalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
+ education_n + income_n + married + female + age +
+ white + unemployed + polinterst + religion_attend +
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
+
+m5 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer, data=ssi)
+
+m6 <- lm(externalatt_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
+ education_n + income_n + married + female + age +
+ white + unemployed + polinterst + religion_attend +
+ protestant + optimismindex + insecurity + intergenmobility + parentsimmigrant +
+ +absolutemobility + gini + as.factor(state_n), data=ssi)
+
+
+stargazer(m1, m2, m3, m4, m5, m6,
+ dep.var.caption = "",
+ omit.stat=c("adj.rsq","LL","ser","f"),
+ omit = c('state_n', "othertv", "sportstv", "rep", "dem", "education_n",
+ "income_n", "married", "female", "age", "white", "unemployed",
+ "polinterst", "religion_attend", "protestant", "optimismindex",
+ "insecurity", "intergenmobility", "parentsimmigrant", "absolutemobility", "gini", "Constant") ,
+ star.cutoffs = c(0.1, .05,.01,.001),
+ no.space=TRUE,
+ star.char = c("+", "*", "**", "***"),
+ notes = c("+ p< 0.1, * p<0.05; ** p<0.01; *** p<0.001"),
+ notes.append = F,
+ notes.align="l",
+ digits=3,
+ align = TRUE,
+ type= "html")
+
+
+
+ |
+
+
+
+ |
+
+mindex_rsc
+ |
+
+internalatt_rsc
+ |
+
+externalatt_rsc
+ |
+
+
+
+ |
+
+(1)
+ |
+
+(2)
+ |
+
+(3)
+ |
+
+(4)
+ |
+
+(5)
+ |
+
+(6)
+ |
+
+
+
+ |
+
+
+
+occasionalviewer
+ |
+
+0.019
+ |
+
+0.013
+ |
+
+0.006
+ |
+
+0.013
+ |
+
+-0.004
+ |
+
+-0.007
+ |
+
+
+
+ |
+
+(0.012)
+ |
+
+(0.011)
+ |
+
+(0.010)
+ |
+
+(0.010)
+ |
+
+(0.009)
+ |
+
+(0.009)
+ |
+
+
+
+frequentviewer
+ |
+
+0.047***
+ |
+
+0.032**
+ |
+
+0.008
+ |
+
+0.017+
+ |
+
+0.009
+ |
+
+0.005
+ |
+
+
+
+ |
+
+(0.012)
+ |
+
+(0.011)
+ |
+
+(0.010)
+ |
+
+(0.010)
+ |
+
+(0.009)
+ |
+
+(0.010)
+ |
+
+
+
+heavyviewer
+ |
+
+0.076***
+ |
+
+0.040*
+ |
+
+0.052***
+ |
+
+0.052***
+ |
+
+0.039***
+ |
+
+0.014
+ |
+
+
+
+ |
+
+(0.013)
+ |
+
+(0.016)
+ |
+
+(0.011)
+ |
+
+(0.014)
+ |
+
+(0.011)
+ |
+
+(0.013)
+ |
+
+
+
+ |
+
+
+
+Observations
+ |
+
+3,004
+ |
+
+2,998
+ |
+
+3,004
+ |
+
+2,998
+ |
+
+3,004
+ |
+
+2,998
+ |
+
+
+
+R2
+ |
+
+0.013
+ |
+
+0.239
+ |
+
+0.008
+ |
+
+0.143
+ |
+
+0.006
+ |
+
+0.110
+ |
+
+
+
+ |
+
+
+
+Note:
+ |
+
+
+- p< 0.1, * p<0.05; ** p<0.01; *** p<0.001
+
|
+
+
+
+
# --------------------------------------------------------------------------------------------------------------------------------
+# MAIN MANUSCRIPT FIGURE 3 #
+# --------------------------------------------------------------------------------------------------------------------------------
+
+load("ssi.rdata")
+
+m2 <- lm(mindex_rsc ~ occasionalviewer + frequentviewer + heavyviewer + othertv + sportstv + rep + dem +
+ education_n + income_n + married + female + age +
+ white + unemployed + polinterst + religion_attend +
+ protestant + optimismindex +insecurity + intergenmobility + parentsimmigrant +
+ +absolutemobility + gini + as.factor(state_n) , data=ssi)
+
+
+t1 <- coef(summary(m2))
+
+
+# Combined
+
+c3 <- numeric(length = 16)
+
+c3[16] <- t1[7,1]*sd(ssi$rep)
+c3[15] <- t1[21,1]*sd(ssi$intergenmobility)
+c3[14] <- t1[13,1]*sd(ssi$age)
+c3[13] <- t1[22,1]*sd(ssi$parentsimmigrant, na.rm=T)
+c3[12] <- t1[4,1]*sd(ssi$heavyviewer)
+c3[11] <- t1[3,1]*sd(ssi$frequentviewer)
+c3[10] <- t1[2,1]*sd(ssi$occasionalviewer)
+c3[9] <- t1[14,1]*sd(ssi$white)
+c3[8] <- t1[18,1]*sd(ssi$protestant)
+c3[7] <- t1[23,1]*sd(ssi$absolutemobility, na.rm=T)
+c3[6] <- t1[20,1]*sd(ssi$insecurity, na.rm=T)
+c3[5] <- t1[24,1]*sd(ssi$gini, na.rm=T)
+c3[4] <- t1[8,1]*sd(ssi$dem)
+c3[3] <- t1[10,1]*sd(ssi$income_n)
+c3[2] <- t1[15,1]*sd(ssi$unemployed)
+c3[1] <- t1[9,1]*sd(ssi$education_n)
+
+c3 <-as.data.frame((c3))
+
+c3[1,c(2)] <- "#24345A"
+c3[2,c(2)] <-"#24345A"
+c3[3,c(2)] <- "#24345A"
+c3[4,c(2)] <- "#24345A"
+c3[5,c(2)] <- "#24345A"
+c3[6,c(2)] <- "#24345A"
+c3[7,c(2)] <- "#24345A"
+c3[8,c(2)] <-"#24345A"
+c3[9,c(2)] <- "#24345A"
+c3[10,c(2)] <- "#2B8D9C"
+c3[11,c(2)] <-"#2B8D9C"
+c3[12,c(2)] <- "#2B8D9C"
+c3[13,c(2)] <- "#24345A"
+c3[14,c(2)] <- "#24345A"
+c3[15,c(2)] <- "#24345A"
+c3[16,c(2)] <- "#24345A"
+
+
+s3 <- numeric(length = 16)
+
+
+s3[16] <- t1[7,2]*sd(ssi$rep)
+s3[15] <- t1[21,2]*sd(ssi$intergenmobility)
+s3[14] <- t1[13,2]*sd(ssi$age)
+s3[13] <- t1[22,2]*sd(ssi$parentsimmigrant, na.rm=T)
+s3[12] <- t1[4,2]*sd(ssi$heavyviewer)
+s3[11] <- t1[3,2]*sd(ssi$frequentviewer)
+s3[10] <- t1[2,2]*sd(ssi$occasionalviewer)
+s3[9] <- t1[14,2]*sd(ssi$white)
+s3[8] <- t1[18,2]*sd(ssi$protestant)
+s3[7] <- t1[23,2]*sd(ssi$absolutemobility, na.rm=T)
+s3[6] <- t1[20,2]*sd(ssi$insecurity, na.rm=T)
+s3[5] <- t1[24,2]*sd(ssi$gini, na.rm=T)
+s3[4] <- t1[8,2]*sd(ssi$dem)
+s3[3] <- t1[10,2]*sd(ssi$income_n)
+s3[2] <- t1[15,2]*sd(ssi$unemployed)
+s3[1] <- t1[9,2]*sd(ssi$education_n)
+
+yloc <- c(1, 2, 3, 4,5,6,7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
+
+
+
+# jpeg("SDfigure_AJPS.jpg", units="in", width=10, height=5, res=300)
+p <- recordPlot()
+plot.new()
+
+plot(c3$`(c3)`, yloc, pch = 23, col=c3$V2, bg=c3$V2,
+ xlim = c(-0.135, 0.14), ylim = c(0,16), xlab = "Impact of Standard Deviation Change",
+ ylab = "", yaxt = "n", xaxt = "n", axes=FALSE)
+abline(v = 0, col = "gray")
+grid()
+segments((c3$`(c3)` - (qnorm(0.975) * s3)), yloc, (c3$`(c3)` + (qnorm(0.975) * s3)), yloc, col = c3$V2,
+ lwd = 2)
+
+
+text(-0.05,16,'Republican' ,pos=2, cex=.8, col='grey30')
+text(-0.05,15,'Perceived Personal Mobility',pos=2, cex=.8, col='grey30')
+text(-0.05,14,'Age',pos=2, cex=.8, col='grey30')
+text(-0.05,13,'Have Immigrant Parents',pos=2, cex=.8, col='grey30')
+text(-0.05,12,'Rags-to-Riches TV: Heavy Viewer',pos=2, cex=.8, font=2)
+text(-0.05,11,'Rags-to-Riches TV: Frequent Viewer',pos=2, cex=.8, font=2)
+text(-0.05,10,'Rags-to-Riches TV: Occasional Viewer',pos=2, cex=.8, font=2)
+text(-0.05,9,'White',pos=2, cex=.8, col='grey30')
+text(-0.05,8,'Protestant',pos=2, cex=.8, col='grey30')
+text(-0.05,7,'County-level Intergenerational Mobility Rates' ,pos=2, cex=.8, col='grey30')
+text(-0.05,6,'Personal economic insecurity', ,pos=2, cex=.8, col='grey30')
+text(-0.05,5,'County-level Income Inequality (Gini)',pos=2, cex=.8, col='grey30')
+text(-0.05,4,'Democrat',pos=2, cex=.8, col='grey30')
+text(-0.05,3,'Income',pos=2, cex=.8, col='grey30')
+text(-0.05,2, 'Unemployed', cex=.8,pos=2, col='grey30')
+text(-0.05,1,'Education',cex=.8, pos=2, col='grey30')
+
+axis(1, at=c(-0.05, 0, 0.05, 0.1))
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+