text
stringlengths
7
1.24M
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
519
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Kandinsky 2.1 Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Vladimir Arkhipkin](https://github.com/oriBetelgeuse), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey), and [Denis Dimitrov](https://github.com/denndimitrov). The description from it's GitHub page is: *Kandinsky 2.1 inherits best practicies from Dall-E 2 and Latent diffusion, while introducing some new ideas. As text and image encoder it uses CLIP model and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.* The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2). <Tip> Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting. </Tip> <Tip> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. </Tip> ## KandinskyPriorPipeline [[autodoc]] KandinskyPriorPipeline - all - __call__ - interpolate ## KandinskyPipeline [[autodoc]] KandinskyPipeline - all - __call__ ## KandinskyCombinedPipeline [[autodoc]] KandinskyCombinedPipeline - all - __call__ ## KandinskyImg2ImgPipeline [[autodoc]] KandinskyImg2ImgPipeline - all - __call__ ## KandinskyImg2ImgCombinedPipeline [[autodoc]] KandinskyImg2ImgCombinedPipeline - all - __call__ ## KandinskyInpaintPipeline [[autodoc]] KandinskyInpaintPipeline - all - __call__ ## KandinskyInpaintCombinedPipeline [[autodoc]] KandinskyInpaintCombinedPipeline - all - __call__
diffusers/docs/source/en/api/pipelines/kandinsky.md/0
{ "file_path": "diffusers/docs/source/en/api/pipelines/kandinsky.md", "repo_id": "diffusers", "token_count": 850 }
100
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # InstructPix2Pix [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/papers/2211.09800) is by Tim Brooks, Aleksander Holynski and Alexei A. Efros. The abstract from the paper is: *We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.* You can find additional information about InstructPix2Pix on the [project page](https://www.timothybrooks.com/instruct-pix2pix), [original codebase](https://github.com/timothybrooks/instruct-pix2pix), and try it out in a [demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix). <Tip> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. </Tip> ## StableDiffusionInstructPix2PixPipeline [[autodoc]] StableDiffusionInstructPix2PixPipeline - __call__ - all - load_textual_inversion - load_lora_weights - save_lora_weights ## StableDiffusionXLInstructPix2PixPipeline [[autodoc]] StableDiffusionXLInstructPix2PixPipeline - __call__ - all
diffusers/docs/source/en/api/pipelines/pix2pix.md/0
{ "file_path": "diffusers/docs/source/en/api/pipelines/pix2pix.md", "repo_id": "diffusers", "token_count": 707 }
101
<!--Copyright 2024 The Intel Labs Team Authors and HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text-to-(RGB, depth) LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps. Two checkpoints are available for use: - [ldm3d-original](https://huggingface.co/Intel/ldm3d). The original checkpoint used in the [paper](https://arxiv.org/pdf/2305.10853.pdf) - [ldm3d-4c](https://huggingface.co/Intel/ldm3d-4c). The new version of LDM3D using 4 channels inputs instead of 6-channels inputs and finetuned on higher resolution images. The abstract from the paper is: *This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at [this url](https://t.ly/tdi2).* <Tip> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently! </Tip> ## StableDiffusionLDM3DPipeline [[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline - all - __call__ ## LDM3DPipelineOutput [[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput - all - __call__ # Upscaler [LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D. The abstract from the paper is: *Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods* Two checkpoints are available for use: - [ldm3d-pano](https://huggingface.co/Intel/ldm3d-pano). This checkpoint enables the generation of panoramic images and requires the StableDiffusionLDM3DPipeline pipeline to be used. - [ldm3d-sr](https://huggingface.co/Intel/ldm3d-sr). This checkpoint enables the upscaling of RGB and depth images. Can be used in cascade after the original LDM3D pipeline using the StableDiffusionUpscaleLDM3DPipeline from communauty pipeline.
diffusers/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md/0
{ "file_path": "diffusers/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md", "repo_id": "diffusers", "token_count": 1196 }
102
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Reduce memory usage A barrier to using diffusion models is the large amount of memory required. To overcome this challenge, there are several memory-reducing techniques you can use to run even some of the largest models on free-tier or consumer GPUs. Some of these techniques can even be combined to further reduce memory usage. <Tip> In many cases, optimizing for memory or speed leads to improved performance in the other, so you should try to optimize for both whenever you can. This guide focuses on minimizing memory usage, but you can also learn more about how to [Speed up inference](fp16). </Tip> The results below are obtained from generating a single 512x512 image from the prompt a photo of an astronaut riding a horse on mars with 50 DDIM steps on a Nvidia Titan RTX, demonstrating the speed-up you can expect as a result of reduced memory consumption. | | latency | speed-up | | ---------------- | ------- | ------- | | original | 9.50s | x1 | | fp16 | 3.61s | x2.63 | | channels last | 3.30s | x2.88 | | traced UNet | 3.21s | x2.96 | | memory-efficient attention | 2.63s | x3.61 | ## Sliced VAE Sliced VAE enables decoding large batches of images with limited VRAM or batches with 32 images or more by decoding the batches of latents one image at a time. You'll likely want to couple this with [`~ModelMixin.enable_xformers_memory_efficient_attention`] to reduce memory use further if you have xFormers installed. To use sliced VAE, call [`~StableDiffusionPipeline.enable_vae_slicing`] on your pipeline before inference: ```python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_vae_slicing() #pipe.enable_xformers_memory_efficient_attention() images = pipe([prompt] * 32).images ``` You may see a small performance boost in VAE decoding on multi-image batches, and there should be no performance impact on single-image batches. ## Tiled VAE Tiled VAE processing also enables working with large images on limited VRAM (for example, generating 4k images on 8GB of VRAM) by splitting the image into overlapping tiles, decoding the tiles, and then blending the outputs together to compose the final image. You should also used tiled VAE with [`~ModelMixin.enable_xformers_memory_efficient_attention`] to reduce memory use further if you have xFormers installed. To use tiled VAE processing, call [`~StableDiffusionPipeline.enable_vae_tiling`] on your pipeline before inference: ```python import torch from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "a beautiful landscape photograph" pipe.enable_vae_tiling() #pipe.enable_xformers_memory_efficient_attention() image = pipe([prompt], width=3840, height=2224, num_inference_steps=20).images[0] ``` The output image has some tile-to-tile tone variation because the tiles are decoded separately, but you shouldn't see any sharp and obvious seams between the tiles. Tiling is turned off for images that are 512x512 or smaller. ## CPU offloading Offloading the weights to the CPU and only loading them on the GPU when performing the forward pass can also save memory. Often, this technique can reduce memory consumption to less than 3GB. To perform CPU offloading, call [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]: ```Python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_sequential_cpu_offload() image = pipe(prompt).images[0] ``` CPU offloading works on submodules rather than whole models. This is the best way to minimize memory consumption, but inference is much slower due to the iterative nature of the diffusion process. The UNet component of the pipeline runs several times (as many as `num_inference_steps`); each time, the different UNet submodules are sequentially onloaded and offloaded as needed, resulting in a large number of memory transfers. <Tip> Consider using [model offloading](#model-offloading) if you want to optimize for speed because it is much faster. The tradeoff is your memory savings won't be as large. </Tip> <Tip warning={true}> When using [`~StableDiffusionPipeline.enable_sequential_cpu_offload`], don't move the pipeline to CUDA beforehand or else the gain in memory consumption will only be minimal (see this [issue](https://github.com/huggingface/diffusers/issues/1934) for more information). [`~StableDiffusionPipeline.enable_sequential_cpu_offload`] is a stateful operation that installs hooks on the models. </Tip> ## Model offloading <Tip> Model offloading requires 🤗 Accelerate version 0.17.0 or higher. </Tip> [Sequential CPU offloading](#cpu-offloading) preserves a lot of memory but it makes inference slower because submodules are moved to GPU as needed, and they're immediately returned to the CPU when a new module runs. Full-model offloading is an alternative that moves whole models to the GPU, instead of handling each model's constituent *submodules*. There is a negligible impact on inference time (compared with moving the pipeline to `cuda`), and it still provides some memory savings. During model offloading, only one of the main components of the pipeline (typically the text encoder, UNet and VAE) is placed on the GPU while the others wait on the CPU. Components like the UNet that run for multiple iterations stay on the GPU until they're no longer needed. Enable model offloading by calling [`~StableDiffusionPipeline.enable_model_cpu_offload`] on the pipeline: ```Python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_model_cpu_offload() image = pipe(prompt).images[0] ``` <Tip warning={true}> In order to properly offload models after they're called, it is required to run the entire pipeline and models are called in the pipeline's expected order. Exercise caution if models are reused outside the context of the pipeline after hooks have been installed. See [Removing Hooks](https://huggingface.co/docs/accelerate/en/package_reference/big_modeling#accelerate.hooks.remove_hook_from_module) for more information. [`~StableDiffusionPipeline.enable_model_cpu_offload`] is a stateful operation that installs hooks on the models and state on the pipeline. </Tip> ## Channels-last memory format The channels-last memory format is an alternative way of ordering NCHW tensors in memory to preserve dimension ordering. Channels-last tensors are ordered in such a way that the channels become the densest dimension (storing images pixel-per-pixel). Since not all operators currently support the channels-last format, it may result in worst performance but you should still try and see if it works for your model. For example, to set the pipeline's UNet to use the channels-last format: ```python print(pipe.unet.conv_out.state_dict()["weight"].stride()) # (2880, 9, 3, 1) pipe.unet.to(memory_format=torch.channels_last) # in-place operation print( pipe.unet.conv_out.state_dict()["weight"].stride() ) # (2880, 1, 960, 320) having a stride of 1 for the 2nd dimension proves that it works ``` ## Tracing Tracing runs an example input tensor through the model and captures the operations that are performed on it as that input makes its way through the model's layers. The executable or `ScriptFunction` that is returned is optimized with just-in-time compilation. To trace a UNet: ```python import time import torch from diffusers import StableDiffusionPipeline import functools # torch disable grad torch.set_grad_enabled(False) # set variables n_experiments = 2 unet_runs_per_experiment = 50 # load inputs def generate_inputs(): sample = torch.randn((2, 4, 64, 64), device="cuda", dtype=torch.float16) timestep = torch.rand(1, device="cuda", dtype=torch.float16) * 999 encoder_hidden_states = torch.randn((2, 77, 768), device="cuda", dtype=torch.float16) return sample, timestep, encoder_hidden_states pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") unet = pipe.unet unet.eval() unet.to(memory_format=torch.channels_last) # use channels_last memory format unet.forward = functools.partial(unet.forward, return_dict=False) # set return_dict=False as default # warmup for _ in range(3): with torch.inference_mode(): inputs = generate_inputs() orig_output = unet(*inputs) # trace print("tracing..") unet_traced = torch.jit.trace(unet, inputs) unet_traced.eval() print("done tracing") # warmup and optimize graph for _ in range(5): with torch.inference_mode(): inputs = generate_inputs() orig_output = unet_traced(*inputs) # benchmarking with torch.inference_mode(): for _ in range(n_experiments): torch.cuda.synchronize() start_time = time.time() for _ in range(unet_runs_per_experiment): orig_output = unet_traced(*inputs) torch.cuda.synchronize() print(f"unet traced inference took {time.time() - start_time:.2f} seconds") for _ in range(n_experiments): torch.cuda.synchronize() start_time = time.time() for _ in range(unet_runs_per_experiment): orig_output = unet(*inputs) torch.cuda.synchronize() print(f"unet inference took {time.time() - start_time:.2f} seconds") # save the model unet_traced.save("unet_traced.pt") ``` Replace the `unet` attribute of the pipeline with the traced model: ```python from diffusers import StableDiffusionPipeline import torch from dataclasses import dataclass @dataclass class UNet2DConditionOutput: sample: torch.Tensor pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") # use jitted unet unet_traced = torch.jit.load("unet_traced.pt") # del pipe.unet class TracedUNet(torch.nn.Module): def __init__(self): super().__init__() self.in_channels = pipe.unet.config.in_channels self.device = pipe.unet.device def forward(self, latent_model_input, t, encoder_hidden_states): sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0] return UNet2DConditionOutput(sample=sample) pipe.unet = TracedUNet() with torch.inference_mode(): image = pipe([prompt] * 1, num_inference_steps=50).images[0] ``` ## Memory-efficient attention Recent work on optimizing bandwidth in the attention block has generated huge speed-ups and reductions in GPU memory usage. The most recent type of memory-efficient attention is [Flash Attention](https://arxiv.org/abs/2205.14135) (you can check out the original code at [HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)). <Tip> If you have PyTorch >= 2.0 installed, you should not expect a speed-up for inference when enabling `xformers`. </Tip> To use Flash Attention, install the following: - PyTorch > 1.12 - CUDA available - [xFormers](xformers) Then call [`~ModelMixin.enable_xformers_memory_efficient_attention`] on the pipeline: ```python from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") pipe.enable_xformers_memory_efficient_attention() with torch.inference_mode(): sample = pipe("a small cat") # optional: You can disable it via # pipe.disable_xformers_memory_efficient_attention() ``` The iteration speed when using `xformers` should match the iteration speed of PyTorch 2.0 as described [here](torch2.0).
diffusers/docs/source/en/optimization/memory.md/0
{ "file_path": "diffusers/docs/source/en/optimization/memory.md", "repo_id": "diffusers", "token_count": 4133 }
103
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # DreamBooth [DreamBooth](https://huggingface.co/papers/2208.12242) is a training technique that updates the entire diffusion model by training on just a few images of a subject or style. It works by associating a special word in the prompt with the example images. If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. You should have a GPU with >30GB of memory if you want to train faster with Flax. This guide will explore the [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) script to help you become more familiar with it, and how you can adapt it for your own use-case. Before running the script, make sure you install the library from source: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Navigate to the example folder with the training script and install the required dependencies for the script you're using: <hfoptions id="installation"> <hfoption id="PyTorch"> ```bash cd examples/dreambooth pip install -r requirements.txt ``` </hfoption> <hfoption id="Flax"> ```bash cd examples/dreambooth pip install -r requirements_flax.txt ``` </hfoption> </hfoptions> <Tip> 🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more. </Tip> Initialize an 🤗 Accelerate environment: ```bash accelerate config ``` To setup a default 🤗 Accelerate environment without choosing any configurations: ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell, like a notebook, you can use: ```py from accelerate.utils import write_basic_config write_basic_config() ``` Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script. <Tip> The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) and let us know if you have any questions or concerns. </Tip> ## Script parameters <Tip warning={true}> DreamBooth is very sensitive to training hyperparameters, and it is easy to overfit. Read the [Training Stable Diffusion with Dreambooth using 🧨 Diffusers](https://huggingface.co/blog/dreambooth) blog post for recommended settings for different subjects to help you choose the appropriate hyperparameters. </Tip> The training script offers many parameters for customizing your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L228) function. The parameters are set with default values that should work pretty well out-of-the-box, but you can also set your own values in the training command if you'd like. For example, to train in the bf16 format: ```bash accelerate launch train_dreambooth.py \ --mixed_precision="bf16" ``` Some basic and important parameters to know and specify are: - `--pretrained_model_name_or_path`: the name of the model on the Hub or a local path to the pretrained model - `--instance_data_dir`: path to a folder containing the training dataset (example images) - `--instance_prompt`: the text prompt that contains the special word for the example images - `--train_text_encoder`: whether to also train the text encoder - `--output_dir`: where to save the trained model - `--push_to_hub`: whether to push the trained model to the Hub - `--checkpointing_steps`: frequency of saving a checkpoint as the model trains; this is useful if for some reason training is interrupted, you can continue training from that checkpoint by adding `--resume_from_checkpoint` to your training command ### Min-SNR weighting The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script. Add the `--snr_gamma` parameter and set it to the recommended value of 5.0: ```bash accelerate launch train_dreambooth.py \ --snr_gamma=5.0 ``` ### Prior preservation loss Prior preservation loss is a method that uses a model's own generated samples to help it learn how to generate more diverse images. Because these generated sample images belong to the same class as the images you provided, they help the model retain what it has learned about the class and how it can use what it already knows about the class to make new compositions. - `--with_prior_preservation`: whether to use prior preservation loss - `--prior_loss_weight`: controls the influence of the prior preservation loss on the model - `--class_data_dir`: path to a folder containing the generated class sample images - `--class_prompt`: the text prompt describing the class of the generated sample images ```bash accelerate launch train_dreambooth.py \ --with_prior_preservation \ --prior_loss_weight=1.0 \ --class_data_dir="path/to/class/images" \ --class_prompt="text prompt describing class" ``` ### Train text encoder To improve the quality of the generated outputs, you can also train the text encoder in addition to the UNet. This requires additional memory and you'll need a GPU with at least 24GB of vRAM. If you have the necessary hardware, then training the text encoder produces better results, especially when generating images of faces. Enable this option by: ```bash accelerate launch train_dreambooth.py \ --train_text_encoder ``` ## Training script DreamBooth comes with its own dataset classes: - [`DreamBoothDataset`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L604): preprocesses the images and class images, and tokenizes the prompts for training - [`PromptDataset`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L738): generates the prompt embeddings to generate the class images If you enabled [prior preservation loss](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L842), the class images are generated here: ```py sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images ``` Next is the [`main()`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L799) function which handles setting up the dataset for training and the training loop itself. The script loads the [tokenizer](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L898), [scheduler and models](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L912C1-L912C1): ```py # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) if model_has_vae(args): vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision ) else: vae = None unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) ``` Then, it's time to [create the training dataset](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L1073) and DataLoader from `DreamBoothDataset`: ```py train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, class_num=args.num_class_images, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, encoder_hidden_states=pre_computed_encoder_hidden_states, class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states, tokenizer_max_length=args.tokenizer_max_length, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) ``` Lastly, the [training loop](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L1151) takes care of the remaining steps such as converting images to latent space, adding noise to the input, predicting the noise residual, and calculating the loss. If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process. ## Launch the script You're now ready to launch the training script! 🚀 For this guide, you'll download some images of a [dog](https://huggingface.co/datasets/diffusers/dog-example) and store them in a directory. But remember, you can create and use your own dataset if you want (see the [Create a dataset for training](create_dataset) guide). ```py from huggingface_hub import snapshot_download local_dir = "./dog" snapshot_download( "diffusers/dog-example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", ) ``` Set the environment variable `MODEL_NAME` to a model id on the Hub or a path to a local model, `INSTANCE_DIR` to the path where you just downloaded the dog images to, and `OUTPUT_DIR` to where you want to save the model. You'll use `sks` as the special word to tie the training to. If you're interested in following along with the training process, you can periodically save generated images as training progresses. Add the following parameters to the training command: ```bash --validation_prompt="a photo of a sks dog" --num_validation_images=4 --validation_steps=100 ``` One more thing before you launch the script! Depending on the GPU you have, you may need to enable certain optimizations to train DreamBooth. <hfoptions id="gpu-select"> <hfoption id="16GB"> On a 16GB GPU, you can use bitsandbytes 8-bit optimizer and gradient checkpointing to help you train a DreamBooth model. Install bitsandbytes: ```py pip install bitsandbytes ``` Then, add the following parameter to your training command: ```bash accelerate launch train_dreambooth.py \ --gradient_checkpointing \ --use_8bit_adam \ ``` </hfoption> <hfoption id="12GB"> On a 12GB GPU, you'll need bitsandbytes 8-bit optimizer, gradient checkpointing, xFormers, and set the gradients to `None` instead of zero to reduce your memory-usage. ```bash accelerate launch train_dreambooth.py \ --use_8bit_adam \ --gradient_checkpointing \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none \ ``` </hfoption> <hfoption id="8GB"> On a 8GB GPU, you'll need [DeepSpeed](https://www.deepspeed.ai/) to offload some of the tensors from the vRAM to either the CPU or NVME to allow training with less GPU memory. Run the following command to configure your 🤗 Accelerate environment: ```bash accelerate config ``` During configuration, confirm that you want to use DeepSpeed. Now it should be possible to train on under 8GB vRAM by combining DeepSpeed stage 2, fp16 mixed precision, and offloading the model parameters and the optimizer state to the CPU. The drawback is that this requires more system RAM (~25 GB). See the [DeepSpeed documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more configuration options. You should also change the default Adam optimizer to DeepSpeed’s optimized version of Adam [`deepspeed.ops.adam.DeepSpeedCPUAdam`](https://deepspeed.readthedocs.io/en/latest/optimizers.html#adam-cpu) for a substantial speedup. Enabling `DeepSpeedCPUAdam` requires your system’s CUDA toolchain version to be the same as the one installed with PyTorch. bitsandbytes 8-bit optimizers don’t seem to be compatible with DeepSpeed at the moment. That's it! You don't need to add any additional parameters to your training command. </hfoption> </hfoptions> <hfoptions id="training-inference"> <hfoption id="PyTorch"> ```bash export MODEL_NAME="runwayml/stable-diffusion-v1-5" export INSTANCE_DIR="./dog" export OUTPUT_DIR="path_to_saved_model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=400 \ --push_to_hub ``` </hfoption> <hfoption id="Flax"> ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export INSTANCE_DIR="./dog" export OUTPUT_DIR="path-to-save-model" python train_dreambooth_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=5e-6 \ --max_train_steps=400 \ --push_to_hub ``` </hfoption> </hfoptions> Once training is complete, you can use your newly trained model for inference! <Tip> Can't wait to try your model for inference before training is complete? 🤭 Make sure you have the latest version of 🤗 Accelerate installed. ```py from diffusers import DiffusionPipeline, UNet2DConditionModel from transformers import CLIPTextModel import torch unet = UNet2DConditionModel.from_pretrained("path/to/model/checkpoint-100/unet") # if you have trained with `--args.train_text_encoder` make sure to also load the text encoder text_encoder = CLIPTextModel.from_pretrained("path/to/model/checkpoint-100/checkpoint-100/text_encoder") pipeline = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16, ).to("cuda") image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png") ``` </Tip> <hfoptions id="training-inference"> <hfoption id="PyTorch"> ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("path_to_saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda") image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png") ``` </hfoption> <hfoption id="Flax"> ```py import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path-to-your-trained-model", dtype=jax.numpy.bfloat16) prompt = "A photo of sks dog in a bucket" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) image.save("dog-bucket.png") ``` </hfoption> </hfoptions> ## LoRA LoRA is a training technique for significantly reducing the number of trainable parameters. As a result, training is faster and it is easier to store the resulting weights because they are a lot smaller (~100MBs). Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) script to train with LoRA. The LoRA training script is discussed in more detail in the [LoRA training](lora) guide. ## Stable Diffusion XL Stable Diffusion XL (SDXL) is a powerful text-to-image model that generates high-resolution images, and it adds a second text-encoder to its architecture. Use the [train_dreambooth_lora_sdxl.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py) script to train a SDXL model with LoRA. The SDXL training script is discussed in more detail in the [SDXL training](sdxl) guide. ## DeepFloyd IF DeepFloyd IF is a cascading pixel diffusion model with three stages. The first stage generates a base image and the second and third stages progressively upscales the base image into a high-resolution 1024x1024 image. Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) or [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) scripts to train a DeepFloyd IF model with LoRA or the full model. DeepFloyd IF uses predicted variance, but the Diffusers training scripts uses predicted error so the trained DeepFloyd IF models are switched to a fixed variance schedule. The training scripts will update the scheduler config of the fully trained model for you. However, when you load the saved LoRA weights you must also update the pipeline's scheduler config. ```py from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", use_safetensors=True) pipe.load_lora_weights("<lora weights path>") # Update scheduler config to fixed variance schedule pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small") ``` The stage 2 model requires additional validation images to upscale. You can download and use a downsized version of the training images for this. ```py from huggingface_hub import snapshot_download local_dir = "./dog_downsized" snapshot_download( "diffusers/dog-example-downsized", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", ) ``` The code samples below provide a brief overview of how to train a DeepFloyd IF model with a combination of DreamBooth and LoRA. Some important parameters to note are: * `--resolution=64`, a much smaller resolution is required because DeepFloyd IF is a pixel diffusion model and to work on uncompressed pixels, the input images must be smaller * `--pre_compute_text_embeddings`, compute the text embeddings ahead of time to save memory because the [`~transformers.T5Model`] can take up a lot of memory * `--tokenizer_max_length=77`, you can use a longer default text length with T5 as the text encoder but the default model encoding procedure uses a shorter text length * `--text_encoder_use_attention_mask`, to pass the attention mask to the text encoder <hfoptions id="IF-DreamBooth"> <hfoption id="Stage 1 LoRA DreamBooth"> Training stage 1 of DeepFloyd IF with LoRA and DreamBooth requires ~28GB of memory. ```bash export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0" export INSTANCE_DIR="dog" export OUTPUT_DIR="dreambooth_dog_lora" accelerate launch train_dreambooth_lora.py \ --report_to wandb \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a sks dog" \ --resolution=64 \ --train_batch_size=4 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --scale_lr \ --max_train_steps=1200 \ --validation_prompt="a sks dog" \ --validation_epochs=25 \ --checkpointing_steps=100 \ --pre_compute_text_embeddings \ --tokenizer_max_length=77 \ --text_encoder_use_attention_mask ``` </hfoption> <hfoption id="Stage 2 LoRA DreamBooth"> For stage 2 of DeepFloyd IF with LoRA and DreamBooth, pay attention to these parameters: * `--validation_images`, the images to upscale during validation * `--class_labels_conditioning=timesteps`, to additionally conditional the UNet as needed in stage 2 * `--learning_rate=1e-6`, a lower learning rate is used compared to stage 1 * `--resolution=256`, the expected resolution for the upscaler ```bash export MODEL_NAME="DeepFloyd/IF-II-L-v1.0" export INSTANCE_DIR="dog" export OUTPUT_DIR="dreambooth_dog_upscale" export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png" python train_dreambooth_lora.py \ --report_to wandb \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a sks dog" \ --resolution=256 \ --train_batch_size=4 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-6 \ --max_train_steps=2000 \ --validation_prompt="a sks dog" \ --validation_epochs=100 \ --checkpointing_steps=500 \ --pre_compute_text_embeddings \ --tokenizer_max_length=77 \ --text_encoder_use_attention_mask \ --validation_images $VALIDATION_IMAGES \ --class_labels_conditioning=timesteps ``` </hfoption> <hfoption id="Stage 1 DreamBooth"> For stage 1 of DeepFloyd IF with DreamBooth, pay attention to these parameters: * `--skip_save_text_encoder`, to skip saving the full T5 text encoder with the finetuned model * `--use_8bit_adam`, to use 8-bit Adam optimizer to save memory due to the size of the optimizer state when training the full model * `--learning_rate=1e-7`, a really low learning rate should be used for full model training otherwise the model quality is degraded (you can use a higher learning rate with a larger batch size) Training with 8-bit Adam and a batch size of 4, the full model can be trained with ~48GB of memory. ```bash export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0" export INSTANCE_DIR="dog" export OUTPUT_DIR="dreambooth_if" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=64 \ --train_batch_size=4 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-7 \ --max_train_steps=150 \ --validation_prompt "a photo of sks dog" \ --validation_steps 25 \ --text_encoder_use_attention_mask \ --tokenizer_max_length 77 \ --pre_compute_text_embeddings \ --use_8bit_adam \ --set_grads_to_none \ --skip_save_text_encoder \ --push_to_hub ``` </hfoption> <hfoption id="Stage 2 DreamBooth"> For stage 2 of DeepFloyd IF with DreamBooth, pay attention to these parameters: * `--learning_rate=5e-6`, use a lower learning rate with a smaller effective batch size * `--resolution=256`, the expected resolution for the upscaler * `--train_batch_size=2` and `--gradient_accumulation_steps=6`, to effectively train on images wiht faces requires larger batch sizes ```bash export MODEL_NAME="DeepFloyd/IF-II-L-v1.0" export INSTANCE_DIR="dog" export OUTPUT_DIR="dreambooth_dog_upscale" export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png" accelerate launch train_dreambooth.py \ --report_to wandb \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a sks dog" \ --resolution=256 \ --train_batch_size=2 \ --gradient_accumulation_steps=6 \ --learning_rate=5e-6 \ --max_train_steps=2000 \ --validation_prompt="a sks dog" \ --validation_steps=150 \ --checkpointing_steps=500 \ --pre_compute_text_embeddings \ --tokenizer_max_length=77 \ --text_encoder_use_attention_mask \ --validation_images $VALIDATION_IMAGES \ --class_labels_conditioning timesteps \ --push_to_hub ``` </hfoption> </hfoptions> ### Training tips Training the DeepFloyd IF model can be challenging, but here are some tips that we've found helpful: - LoRA is sufficient for training the stage 1 model because the model's low resolution makes representing finer details difficult regardless. - For common or simple objects, you don't necessarily need to finetune the upscaler. Make sure the prompt passed to the upscaler is adjusted to remove the new token from the instance prompt. For example, if your stage 1 prompt is "a sks dog" then your stage 2 prompt should be "a dog". - For finer details like faces, fully training the stage 2 upscaler is better than training the stage 2 model with LoRA. It also helps to use lower learning rates with larger batch sizes. - Lower learning rates should be used to train the stage 2 model. - The [`DDPMScheduler`] works better than the DPMSolver used in the training scripts. ## Next steps Congratulations on training your DreamBooth model! To learn more about how to use your new model, the following guide may be helpful: - Learn how to [load a DreamBooth](../using-diffusers/loading_adapters) model for inference if you trained your model with LoRA.
diffusers/docs/source/en/training/dreambooth.md/0
{ "file_path": "diffusers/docs/source/en/training/dreambooth.md", "repo_id": "diffusers", "token_count": 8848 }
104
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Overview Welcome to 🧨 Diffusers! If you're new to diffusion models and generative AI, and want to learn more, then you've come to the right place. These beginner-friendly tutorials are designed to provide a gentle introduction to diffusion models and help you understand the library fundamentals - the core components and how 🧨 Diffusers is meant to be used. You'll learn how to use a pipeline for inference to rapidly generate things, and then deconstruct that pipeline to really understand how to use the library as a modular toolbox for building your own diffusion systems. In the next lesson, you'll learn how to train your own diffusion model to generate what you want. After completing the tutorials, you'll have gained the necessary skills to start exploring the library on your own and see how to use it for your own projects and applications. Feel free to join our community on [Discord](https://discord.com/invite/JfAtkvEtRb) or the [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) to connect and collaborate with other users and developers! Let's start diffusing! 🧨
diffusers/docs/source/en/tutorials/tutorial_overview.md/0
{ "file_path": "diffusers/docs/source/en/tutorials/tutorial_overview.md", "repo_id": "diffusers", "token_count": 412 }
105
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Load pipelines [[open-in-colab]] Diffusion systems consist of multiple components like parameterized models and schedulers that interact in complex ways. That is why we designed the [`DiffusionPipeline`] to wrap the complexity of the entire diffusion system into an easy-to-use API. At the same time, the [`DiffusionPipeline`] is entirely customizable so you can modify each component to build a diffusion system for your use case. This guide will show you how to load: - pipelines from the Hub and locally - different components into a pipeline - multiple pipelines without increasing memory usage - checkpoint variants such as different floating point types or non-exponential mean averaged (EMA) weights ## Load a pipeline > [!TIP] > Skip to the [DiffusionPipeline explained](#diffusionpipeline-explained) section if you're interested in an explanation about how the [`DiffusionPipeline`] class works. There are two ways to load a pipeline for a task: 1. Load the generic [`DiffusionPipeline`] class and allow it to automatically detect the correct pipeline class from the checkpoint. 2. Load a specific pipeline class for a specific task. <hfoptions id="pipelines"> <hfoption id="generic pipeline"> The [`DiffusionPipeline`] class is a simple and generic way to load the latest trending diffusion model from the [Hub](https://huggingface.co/models?library=diffusers&sort=trending). It uses the [`~DiffusionPipeline.from_pretrained`] method to automatically detect the correct pipeline class for a task from the checkpoint, downloads and caches all the required configuration and weight files, and returns a pipeline ready for inference. ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) ``` This same checkpoint can also be used for an image-to-image task. The [`DiffusionPipeline`] class can handle any task as long as you provide the appropriate inputs. For example, for an image-to-image task, you need to pass an initial image to the pipeline. ```py from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png") prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=init_image).images[0] ``` </hfoption> <hfoption id="specific pipeline"> Checkpoints can be loaded by their specific pipeline class if you already know it. For example, to load a Stable Diffusion model, use the [`StableDiffusionPipeline`] class. ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) ``` This same checkpoint may also be used for another task like image-to-image. To differentiate what task you want to use the checkpoint for, you have to use the corresponding task-specific pipeline class. For example, to use the same checkpoint for image-to-image, use the [`StableDiffusionImg2ImgPipeline`] class. ```py from diffusers import StableDiffusionImg2ImgPipeline pipeline = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) ``` </hfoption> </hfoptions> Use the Space below to gauge a pipeline's memory requirements before you download and load it to see if it runs on your hardware. <div class="block dark:hidden"> <iframe src="https://diffusers-compute-pipeline-size.hf.space?__theme=light" width="850" height="1600" ></iframe> </div> <div class="hidden dark:block"> <iframe src="https://diffusers-compute-pipeline-size.hf.space?__theme=dark" width="850" height="1600" ></iframe> </div> ### Local pipeline To load a pipeline locally, use [git-lfs](https://git-lfs.github.com/) to manually download a checkpoint to your local disk. ```bash git-lfs install git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 ``` This creates a local folder, ./stable-diffusion-v1-5, on your disk and you should pass its path to [`~DiffusionPipeline.from_pretrained`]. ```python from diffusers import DiffusionPipeline stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True) ``` The [`~DiffusionPipeline.from_pretrained`] method won't download files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint. ## Customize a pipeline You can customize a pipeline by loading different components into it. This is important because you can: - change to a scheduler with faster generation speed or higher generation quality depending on your needs (call the `scheduler.compatibles` method on your pipeline to see compatible schedulers) - change a default pipeline component to a newer and better performing one For example, let's customize the default [stabilityai/stable-diffusion-xl-base-1.0](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0) checkpoint with: - The [`HeunDiscreteScheduler`] to generate higher quality images at the expense of slower generation speed. You must pass the `subfolder="scheduler"` parameter in [`~HeunDiscreteScheduler.from_pretrained`] to load the scheduler configuration into the correct [subfolder](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/scheduler) of the pipeline repository. - A more stable VAE that runs in fp16. ```py from diffusers import StableDiffusionXLPipeline, HeunDiscreteScheduler, AutoencoderKL import torch scheduler = HeunDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True) ``` Now pass the new scheduler and VAE to the [`StableDiffusionXLPipeline`]. ```py pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", scheduler=scheduler, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") ``` ## Reuse a pipeline When you load multiple pipelines that share the same model components, it makes sense to reuse the shared components instead of reloading everything into memory again, especially if your hardware is memory-constrained. For example: 1. You generated an image with the [`StableDiffusionPipeline`] but you want to improve its quality with the [`StableDiffusionSAGPipeline`]. Both of these pipelines share the same pretrained model, so it'd be a waste of memory to load the same model twice. 2. You want to add a model component, like a [`MotionAdapter`](../api/pipelines/animatediff#animatediffpipeline), to [`AnimateDiffPipeline`] which was instantiated from an existing [`StableDiffusionPipeline`]. Again, both pipelines share the same pretrained model, so it'd be a waste of memory to load an entirely new pipeline again. With the [`DiffusionPipeline.from_pipe`] API, you can switch between multiple pipelines to take advantage of their different features without increasing memory-usage. It is similar to turning on and off a feature in your pipeline. > [!TIP] > To switch between tasks (rather than features), use the [`~DiffusionPipeline.from_pipe`] method with the [AutoPipeline](../api/pipelines/auto_pipeline) class, which automatically identifies the pipeline class based on the task (learn more in the [AutoPipeline](../tutorials/autopipeline) tutorial). Let's start with a [`StableDiffusionPipeline`] and then reuse the loaded model components to create a [`StableDiffusionSAGPipeline`] to increase generation quality. You'll use the [`StableDiffusionPipeline`] with an [IP-Adapter](./ip_adapter) to generate a bear eating pizza. ```python from diffusers import DiffusionPipeline, StableDiffusionSAGPipeline import torch import gc from diffusers.utils import load_image from accelerate.utils import compute_module_sizes image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png") pipe_sd = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", torch_dtype=torch.float16) pipe_sd.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipe_sd.set_ip_adapter_scale(0.6) pipe_sd.to("cuda") generator = torch.Generator(device="cpu").manual_seed(33) out_sd = pipe_sd( prompt="bear eats pizza", negative_prompt="wrong white balance, dark, sketches,worst quality,low quality", ip_adapter_image=image, num_inference_steps=50, generator=generator, ).images[0] out_sd ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sd_0.png"/> </div> For reference, you can check how much memory this process consumed. ```python def bytes_to_giga_bytes(bytes): return bytes / 1024 / 1024 / 1024 print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB") "Max memory allocated: 4.406213283538818 GB" ``` Now, reuse the same pipeline components from [`StableDiffusionPipeline`] in [`StableDiffusionSAGPipeline`] with the [`~DiffusionPipeline.from_pipe`] method. > [!WARNING] > Some pipeline methods may not function properly on new pipelines created with [`~DiffusionPipeline.from_pipe`]. For instance, the [`~DiffusionPipeline.enable_model_cpu_offload`] method installs hooks on the model components based on a unique offloading sequence for each pipeline. If the models are executed in a different order in the new pipeline, the CPU offloading may not work correctly. > > To ensure everything works as expected, we recommend re-applying a pipeline method on a new pipeline created with [`~DiffusionPipeline.from_pipe`]. ```python pipe_sag = StableDiffusionSAGPipeline.from_pipe( pipe_sd ) generator = torch.Generator(device="cpu").manual_seed(33) out_sag = pipe_sag( prompt="bear eats pizza", negative_prompt="wrong white balance, dark, sketches,worst quality,low quality", ip_adapter_image=image, num_inference_steps=50, generator=generator, guidance_scale=1.0, sag_scale=0.75 ).images[0] out_sag ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sag_1.png"/> </div> If you check the memory usage, you'll see it remains the same as before because [`StableDiffusionPipeline`] and [`StableDiffusionSAGPipeline`] are sharing the same pipeline components. This allows you to use them interchangeably without any additional memory overhead. ```py print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB") "Max memory allocated: 4.406213283538818 GB" ``` Let's animate the image with the [`AnimateDiffPipeline`] and also add a [`MotionAdapter`] module to the pipeline. For the [`AnimateDiffPipeline`], you need to unload the IP-Adapter first and reload it *after* you've created your new pipeline (this only applies to the [`AnimateDiffPipeline`]). ```py from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler from diffusers.utils import export_to_gif pipe_sag.unload_ip_adapter() adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16) pipe_animate = AnimateDiffPipeline.from_pipe(pipe_sd, motion_adapter=adapter) pipe_animate.scheduler = DDIMScheduler.from_config(pipe_animate.scheduler.config, beta_schedule="linear") # load IP-Adapter and LoRA weights again pipe_animate.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipe_animate.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out") pipe_animate.to("cuda") generator = torch.Generator(device="cpu").manual_seed(33) pipe_animate.set_adapters("zoom-out", adapter_weights=0.75) out = pipe_animate( prompt="bear eats pizza", num_frames=16, num_inference_steps=50, ip_adapter_image=image, generator=generator, ).frames[0] export_to_gif(out, "out_animate.gif") ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_animate_3.gif"/> </div> The [`AnimateDiffPipeline`] is more memory-intensive and consumes 15GB of memory (see the [Memory-usage of from_pipe](#memory-usage-of-from_pipe) section to learn what this means for your memory-usage). ```py print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB") "Max memory allocated: 15.178664207458496 GB" ``` ### Modify from_pipe components Pipelines loaded with [`~DiffusionPipeline.from_pipe`] can be customized with different model components or methods. However, whenever you modify the *state* of the model components, it affects all the other pipelines that share the same components. For example, if you call [`~diffusers.loaders.IPAdapterMixin.unload_ip_adapter`] on the [`StableDiffusionSAGPipeline`], you won't be able to use IP-Adapter with the [`StableDiffusionPipeline`] because it's been removed from their shared components. ```py pipe.sag_unload_ip_adapter() generator = torch.Generator(device="cpu").manual_seed(33) out_sd = pipe_sd( prompt="bear eats pizza", negative_prompt="wrong white balance, dark, sketches,worst quality,low quality", ip_adapter_image=image, num_inference_steps=50, generator=generator, ).images[0] "AttributeError: 'NoneType' object has no attribute 'image_projection_layers'" ``` ### Memory usage of from_pipe The memory requirement of loading multiple pipelines with [`~DiffusionPipeline.from_pipe`] is determined by the pipeline with the highest memory-usage regardless of the number of pipelines you create. | Pipeline | Memory usage (GB) | |---|---| | StableDiffusionPipeline | 4.400 | | StableDiffusionSAGPipeline | 4.400 | | AnimateDiffPipeline | 15.178 | The [`AnimateDiffPipeline`] has the highest memory requirement, so the *total memory-usage* is based only on the [`AnimateDiffPipeline`]. Your memory-usage will not increase if you create additional pipelines as long as their memory requirements doesn't exceed that of the [`AnimateDiffPipeline`]. Each pipeline can be used interchangeably without any additional memory overhead. ## Safety checker Diffusers implements a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) for Stable Diffusion models which can generate harmful content. The safety checker screens the generated output against known hardcoded not-safe-for-work (NSFW) content. If for whatever reason you'd like to disable the safety checker, pass `safety_checker=None` to the [`~DiffusionPipeline.from_pretrained`] method. ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, use_safetensors=True) """ You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide by the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend keeping the safety filter enabled in all public-facing circumstances, disabling it only for use cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . """ ``` ## Checkpoint variants A checkpoint variant is usually a checkpoint whose weights are: - Stored in a different floating point type, such as [torch.float16](https://pytorch.org/docs/stable/tensors.html#data-types), because it only requires half the bandwidth and storage to download. You can't use this variant if you're continuing training or using a CPU. - Non-exponential mean averaged (EMA) weights which shouldn't be used for inference. You should use this variant to continue finetuning a model. > [!TIP] > When the checkpoints have identical model structures, but they were trained on different datasets and with a different training setup, they should be stored in separate repositories. For example, [stabilityai/stable-diffusion-2](https://hf.co/stabilityai/stable-diffusion-2) and [stabilityai/stable-diffusion-2-1](https://hf.co/stabilityai/stable-diffusion-2-1) are stored in separate repositories. Otherwise, a variant is **identical** to the original checkpoint. They have exactly the same serialization format (like [safetensors](./using_safetensors)), model structure, and their weights have identical tensor shapes. | **checkpoint type** | **weight name** | **argument for loading weights** | |---------------------|---------------------------------------------|----------------------------------| | original | diffusion_pytorch_model.safetensors | | | floating point | diffusion_pytorch_model.fp16.safetensors | `variant`, `torch_dtype` | | non-EMA | diffusion_pytorch_model.non_ema.safetensors | `variant` | There are two important arguments for loading variants: - `torch_dtype` specifies the floating point precision of the loaded checkpoint. For example, if you want to save bandwidth by loading a fp16 variant, you should set `variant="fp16"` and `torch_dtype=torch.float16` to *convert the weights* to fp16. Otherwise, the fp16 weights are converted to the default fp32 precision. If you only set `torch_dtype=torch.float16`, the default fp32 weights are downloaded first and then converted to fp16. - `variant` specifies which files should be loaded from the repository. For example, if you want to load a non-EMA variant of a UNet from [runwayml/stable-diffusion-v1-5](https://hf.co/runwayml/stable-diffusion-v1-5/tree/main/unet), set `variant="non_ema"` to download the `non_ema` file. <hfoptions id="variants"> <hfoption id="fp16"> ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True ) ``` </hfoption> <hfoption id="non-EMA"> ```py pipeline = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True ) ``` </hfoption> </hfoptions> Use the `variant` parameter in the [`DiffusionPipeline.save_pretrained`] method to save a checkpoint as a different floating point type or as a non-EMA variant. You should try save a variant to the same folder as the original checkpoint, so you have the option of loading both from the same folder. <hfoptions id="save"> <hfoption id="fp16"> ```python from diffusers import DiffusionPipeline pipeline.save_pretrained("runwayml/stable-diffusion-v1-5", variant="fp16") ``` </hfoption> <hfoption id="non_ema"> ```py pipeline.save_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema") ``` </hfoption> </hfoptions> If you don't save the variant to an existing folder, you must specify the `variant` argument otherwise it'll throw an `Exception` because it can't find the original checkpoint. ```python # 👎 this won't work pipeline = DiffusionPipeline.from_pretrained( "./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True ) # 👍 this works pipeline = DiffusionPipeline.from_pretrained( "./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True ) ``` ## DiffusionPipeline explained As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things: - Download the latest version of the folder structure required for inference and cache it. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] reuses the cache and won't redownload the files. - Load the cached weights into the correct pipeline [class](../api/pipelines/overview#diffusers-summary) - retrieved from the `model_index.json` file - and return an instance of it. The pipelines' underlying folder structure corresponds directly with their class instances. For example, the [`StableDiffusionPipeline`] corresponds to the folder structure in [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5). ```python from diffusers import DiffusionPipeline repo_id = "runwayml/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True) print(pipeline) ``` You'll see pipeline is an instance of [`StableDiffusionPipeline`], which consists of seven components: - `"feature_extractor"`: a [`~transformers.CLIPImageProcessor`] from 🤗 Transformers. - `"safety_checker"`: a [component](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32) for screening against harmful content. - `"scheduler"`: an instance of [`PNDMScheduler`]. - `"text_encoder"`: a [`~transformers.CLIPTextModel`] from 🤗 Transformers. - `"tokenizer"`: a [`~transformers.CLIPTokenizer`] from 🤗 Transformers. - `"unet"`: an instance of [`UNet2DConditionModel`]. - `"vae"`: an instance of [`AutoencoderKL`]. ```json StableDiffusionPipeline { "feature_extractor": [ "transformers", "CLIPImageProcessor" ], "safety_checker": [ "stable_diffusion", "StableDiffusionSafetyChecker" ], "scheduler": [ "diffusers", "PNDMScheduler" ], "text_encoder": [ "transformers", "CLIPTextModel" ], "tokenizer": [ "transformers", "CLIPTokenizer" ], "unet": [ "diffusers", "UNet2DConditionModel" ], "vae": [ "diffusers", "AutoencoderKL" ] } ``` Compare the components of the pipeline instance to the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main) folder structure, and you'll see there is a separate folder for each of the components in the repository: ``` . ├── feature_extractor │   └── preprocessor_config.json ├── model_index.json ├── safety_checker │   ├── config.json | ├── model.fp16.safetensors │ ├── model.safetensors │ ├── pytorch_model.bin | └── pytorch_model.fp16.bin ├── scheduler │   └── scheduler_config.json ├── text_encoder │   ├── config.json | ├── model.fp16.safetensors │ ├── model.safetensors │ |── pytorch_model.bin | └── pytorch_model.fp16.bin ├── tokenizer │   ├── merges.txt │   ├── special_tokens_map.json │   ├── tokenizer_config.json │   └── vocab.json ├── unet │   ├── config.json │   ├── diffusion_pytorch_model.bin | |── diffusion_pytorch_model.fp16.bin │ |── diffusion_pytorch_model.f16.safetensors │ |── diffusion_pytorch_model.non_ema.bin │ |── diffusion_pytorch_model.non_ema.safetensors │ └── diffusion_pytorch_model.safetensors |── vae . ├── config.json . ├── diffusion_pytorch_model.bin ├── diffusion_pytorch_model.fp16.bin ├── diffusion_pytorch_model.fp16.safetensors └── diffusion_pytorch_model.safetensors ``` You can access each of the components of the pipeline as an attribute to view its configuration: ```py pipeline.tokenizer CLIPTokenizer( name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer", vocab_size=49408, model_max_length=77, is_fast=False, padding_side="right", truncation_side="right", special_tokens={ "bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True), "eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True), "unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True), "pad_token": "<|endoftext|>", }, clean_up_tokenization_spaces=True ) ``` Every pipeline expects a [`model_index.json`](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json) file that tells the [`DiffusionPipeline`]: - which pipeline class to load from `_class_name` - which version of 🧨 Diffusers was used to create the model in `_diffusers_version` - what components from which library are stored in the subfolders (`name` corresponds to the component and subfolder name, `library` corresponds to the name of the library to load the class from, and `class` corresponds to the class name) ```json { "_class_name": "StableDiffusionPipeline", "_diffusers_version": "0.6.0", "feature_extractor": [ "transformers", "CLIPImageProcessor" ], "safety_checker": [ "stable_diffusion", "StableDiffusionSafetyChecker" ], "scheduler": [ "diffusers", "PNDMScheduler" ], "text_encoder": [ "transformers", "CLIPTextModel" ], "tokenizer": [ "transformers", "CLIPTokenizer" ], "unet": [ "diffusers", "UNet2DConditionModel" ], "vae": [ "diffusers", "AutoencoderKL" ] } ```
diffusers/docs/source/en/using-diffusers/loading.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/loading.md", "repo_id": "diffusers", "token_count": 8497 }
106
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # T2I-Adapter [T2I-Adapter](https://hf.co/papers/2302.08453) is a lightweight adapter for controlling and providing more accurate structure guidance for text-to-image models. It works by learning an alignment between the internal knowledge of the text-to-image model and an external control signal, such as edge detection or depth estimation. The T2I-Adapter design is simple, the condition is passed to four feature extraction blocks and three downsample blocks. This makes it fast and easy to train different adapters for different conditions which can be plugged into the text-to-image model. T2I-Adapter is similar to [ControlNet](controlnet) except it is smaller (~77M parameters) and faster because it only runs once during the diffusion process. The downside is that performance may be slightly worse than ControlNet. This guide will show you how to use T2I-Adapter with different Stable Diffusion models and how you can compose multiple T2I-Adapters to impose more than one condition. > [!TIP] > There are several T2I-Adapters available for different conditions, such as color palette, depth, sketch, pose, and > segmentation. Check out the [TencentARC](https://hf.co/TencentARC) repository to try them out! Before you begin, make sure you have the following libraries installed. ```py # uncomment to install the necessary libraries in Colab #!pip install -q diffusers accelerate controlnet-aux==0.0.7 ``` ## Text-to-image Text-to-image models rely on a prompt to generate an image, but sometimes, text alone may not be enough to provide more accurate structural guidance. T2I-Adapter allows you to provide an additional control image to guide the generation process. For example, you can provide a canny image (a white outline of an image on a black background) to guide the model to generate an image with a similar structure. <hfoptions id="stablediffusion"> <hfoption id="Stable Diffusion 1.5"> Create a canny image with the [opencv-library](https://github.com/opencv/opencv-python). ```py import cv2 import numpy as np from PIL import Image from diffusers.utils import load_image image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = Image.fromarray(image) ``` Now load a T2I-Adapter conditioned on [canny images](https://hf.co/TencentARC/t2iadapter_canny_sd15v2) and pass it to the [`StableDiffusionAdapterPipeline`]. ```py import torch from diffusers import StableDiffusionAdapterPipeline, T2IAdapter adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_canny_sd15v2", torch_dtype=torch.float16) pipeline = StableDiffusionAdapterPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", adapter=adapter, torch_dtype=torch.float16, ) pipeline.to("cuda") ``` Finally, pass your prompt and control image to the pipeline. ```py generator = torch.Generator("cuda").manual_seed(0) image = pipeline( prompt="cinematic photo of a plush and soft midcentury style rug on a wooden floor, 35mm photograph, film, professional, 4k, highly detailed", image=image, generator=generator, ).images[0] image ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-sd1.5.png"/> </div> </hfoption> <hfoption id="Stable Diffusion XL"> Create a canny image with the [controlnet-aux](https://github.com/huggingface/controlnet_aux) library. ```py from controlnet_aux.canny import CannyDetector from diffusers.utils import load_image canny_detector = CannyDetector() image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") image = canny_detector(image, detect_resolution=384, image_resolution=1024) ``` Now load a T2I-Adapter conditioned on [canny images](https://hf.co/TencentARC/t2i-adapter-canny-sdxl-1.0) and pass it to the [`StableDiffusionXLAdapterPipeline`]. ```py import torch from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16) pipeline = StableDiffusionXLAdapterPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", adapter=adapter, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, variant="fp16", ) pipeline.to("cuda") ``` Finally, pass your prompt and control image to the pipeline. ```py generator = torch.Generator("cuda").manual_seed(0) image = pipeline( prompt="cinematic photo of a plush and soft midcentury style rug on a wooden floor, 35mm photograph, film, professional, 4k, highly detailed", image=image, generator=generator, ).images[0] image ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-sdxl.png"/> </div> </hfoption> </hfoptions> ## MultiAdapter T2I-Adapters are also composable, allowing you to use more than one adapter to impose multiple control conditions on an image. For example, you can use a pose map to provide structural control and a depth map for depth control. This is enabled by the [`MultiAdapter`] class. Let's condition a text-to-image model with a pose and depth adapter. Create and place your depth and pose image and in a list. ```py from diffusers.utils import load_image pose_image = load_image( "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png" ) depth_image = load_image( "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png" ) cond = [pose_image, depth_image] prompt = ["Santa Claus walking into an office room with a beautiful city view"] ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">depth image</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">pose image</figcaption> </div> </div> Load the corresponding pose and depth adapters as a list in the [`MultiAdapter`] class. ```py import torch from diffusers import StableDiffusionAdapterPipeline, MultiAdapter, T2IAdapter adapters = MultiAdapter( [ T2IAdapter.from_pretrained("TencentARC/t2iadapter_keypose_sd14v1"), T2IAdapter.from_pretrained("TencentARC/t2iadapter_depth_sd14v1"), ] ) adapters = adapters.to(torch.float16) ``` Finally, load a [`StableDiffusionAdapterPipeline`] with the adapters, and pass your prompt and conditioned images to it. Use the [`adapter_conditioning_scale`] to adjust the weight of each adapter on the image. ```py pipeline = StableDiffusionAdapterPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, adapter=adapters, ).to("cuda") image = pipeline(prompt, cond, adapter_conditioning_scale=[0.7, 0.7]).images[0] image ``` <div class="flex justify-center"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-multi.png"/> </div>
diffusers/docs/source/en/using-diffusers/t2i_adapter.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/t2i_adapter.md", "repo_id": "diffusers", "token_count": 2765 }
107
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 🧨 Diffusers의 윤리 지침 [[-diffusers-ethical-guidelines]] ## 서문 [[preamble]] [Diffusers](https://huggingface.co/docs/diffusers/index)는 사전 훈련된 diffusion 모델을 제공하며 추론 및 훈련을 위한 모듈식 툴박스로 사용됩니다. 이 기술의 실제 적용과 사회에 미칠 수 있는 부정적인 영향을 고려하여 Diffusers 라이브러리의 개발, 사용자 기여 및 사용에 윤리 지침을 제공하는 것이 중요하다고 생각합니다. 이이 기술을 사용함에 따른 위험은 여전히 검토 중이지만, 몇 가지 예를 들면: 예술가들에 대한 저작권 문제; 딥 페이크의 악용; 부적절한 맥락에서의 성적 콘텐츠 생성; 동의 없는 사칭; 소수자 집단의 억압을 영속화하는 유해한 사회적 편견 등이 있습니다. 우리는 위험을 지속적으로 추적하고 커뮤니티의 응답과 소중한 피드백에 따라 다음 지침을 조정할 것입니다. ## 범위 [[scope]] Diffusers 커뮤니티는 프로젝트의 개발에 다음과 같은 윤리 지침을 적용하며, 특히 윤리적 문제와 관련된 민감한 주제에 대한 커뮤니티의 기여를 조정하는 데 도움을 줄 것입니다. ## 윤리 지침 [[ethical-guidelines]] 다음 윤리 지침은 일반적으로 적용되지만, 민감한 윤리적 문제와 관련하여 기술적 선택을 할 때 이를 우선적으로 적용할 것입니다. 나아가, 해당 기술의 최신 동향과 관련된 새로운 위험이 발생함에 따라 이러한 윤리 원칙을 조정할 것을 약속드립니다. - **투명성**: 우리는 PR을 관리하고, 사용자에게 우리의 선택을 설명하며, 기술적 의사결정을 내릴 때 투명성을 유지할 것을 약속합니다. - **일관성**: 우리는 프로젝트 관리에서 사용자들에게 동일한 수준의 관심을 보장하고 기술적으로 안정되고 일관된 상태를 유지할 것을 약속합니다. - **간결성**: Diffusers 라이브러리를 사용하고 활용하기 쉽게 만들기 위해, 프로젝트의 목표를 간결하고 일관성 있게 유지할 것을 약속합니다. - **접근성**: Diffusers 프로젝트는 기술적 전문 지식 없어도 프로젝트 운영에 참여할 수 있는 기여자의 진입장벽을 낮춥니다. 이를 통해 연구 결과물이 커뮤니티에 더 잘 접근할 수 있게 됩니다. - **재현성**: 우리는 Diffusers 라이브러리를 통해 제공되는 업스트림(upstream) 코드, 모델 및 데이터셋의 재현성에 대해 투명하게 공개할 것을 목표로 합니다. - **책임**: 우리는 커뮤니티와 팀워크를 통해, 이 기술의 잠재적인 위험과 위험을 예측하고 완화하는 데 대한 공동 책임을 가지고 있습니다. ## 구현 사례: 안전 기능과 메커니즘 [[examples-of-implementations-safety-features-and-mechanisms]] 팀은 diffusion 기술과 관련된 잠재적인 윤리 및 사회적 위험에 대처하기 위한 기술적 및 비기술적 도구를 제공하고자 하고 있습니다. 또한, 커뮤니티의 참여는 이러한 기능의 구현하고 우리와 함께 인식을 높이는 데 매우 중요합니다. - [**커뮤니티 탭**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): 이를 통해 커뮤니티는 프로젝트에 대해 토론하고 더 나은 협력을 할 수 있습니다. - **편향 탐색 및 평가**: Hugging Face 팀은 Stable Diffusion 모델의 편향성을 대화형으로 보여주는 [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)을 제공합니다. 이런 의미에서, 우리는 편향 탐색 및 평가를 지원하고 장려합니다. - **배포에서의 안전 유도** - [**안전한 Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe): 이는 필터되지 않은 웹 크롤링 데이터셋으로 훈련된 Stable Diffusion과 같은 모델이 부적절한 변질에 취약한 문제를 완화합니다. 관련 논문: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://arxiv.org/abs/2211.05105). - [**안전 검사기**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py): 이미지가 생성된 후에 이미자가 임베딩 공간에서 일련의 하드코딩된 유해 개념의 클래스일 확률을 확인하고 비교합니다. 유해 개념은 역공학을 방지하기 위해 의도적으로 숨겨져 있습니다. - **Hub에서의 단계적인 배포**: 특히 민감한 상황에서는 일부 리포지토리에 대한 접근을 제한해야 합니다. 이 단계적인 배포는 중간 단계로, 리포지토리 작성자가 사용에 대한 더 많은 통제력을 갖게 합니다. - **라이선싱**: [OpenRAILs](https://huggingface.co/blog/open_rail)와 같은 새로운 유형의 라이선싱을 통해 자유로운 접근을 보장하면서도 더 책임 있는 사용을 위한 일련의 제한을 둘 수 있습니다.
diffusers/docs/source/ko/conceptual/ethical_guidelines.md/0
{ "file_path": "diffusers/docs/source/ko/conceptual/ethical_guidelines.md", "repo_id": "diffusers", "token_count": 4083 }
108
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 효과적이고 효율적인 Diffusion [[open-in-colab]] 특정 스타일로 이미지를 생성하거나 원하는 내용을 포함하도록[`DiffusionPipeline`]을 설정하는 것은 까다로울 수 있습니다. 종종 만족스러운 이미지를 얻기까지 [`DiffusionPipeline`]을 여러 번 실행해야 하는 경우가 많습니다. 그러나 무에서 유를 창조하는 것은 특히 추론을 반복해서 실행하는 경우 계산 집약적인 프로세스입니다. 그렇기 때문에 파이프라인에서 *계산*(속도) 및 *메모리*(GPU RAM) 효율성을 극대화하여 추론 주기 사이의 시간을 단축하여 더 빠르게 반복할 수 있도록 하는 것이 중요합니다. 이 튜토리얼에서는 [`DiffusionPipeline`]을 사용하여 더 빠르고 효과적으로 생성하는 방법을 안내합니다. [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) 모델을 불러와서 시작합니다: ```python from diffusers import DiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(model_id) ``` 예제 프롬프트는 "portrait of an old warrior chief" 이지만, 자유롭게 자신만의 프롬프트를 사용해도 됩니다: ```python prompt = "portrait photo of a old warrior chief" ``` ## 속도 <Tip> 💡 GPU에 액세스할 수 없는 경우 다음과 같은 GPU 제공업체에서 무료로 사용할 수 있습니다!. [Colab](https://colab.research.google.com/) </Tip> 추론 속도를 높이는 가장 간단한 방법 중 하나는 Pytorch 모듈을 사용할 때와 같은 방식으로 GPU에 파이프라인을 배치하는 것입니다: ```python pipeline = pipeline.to("cuda") ``` 동일한 이미지를 사용하고 개선할 수 있는지 확인하려면 [`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html)를 사용하고 [재현성](./using-diffusers/reusing_seeds)에 대한 시드를 설정하세요: ```python import torch generator = torch.Generator("cuda").manual_seed(0) ``` 이제 이미지를 생성할 수 있습니다: ```python image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png"> </div> 이 프로세스는 T4 GPU에서 약 30초가 소요되었습니다(할당된 GPU가 T4보다 나은 경우 더 빠를 수 있음). 기본적으로 [`DiffusionPipeline`]은 50개의 추론 단계에 대해 전체 `float32` 정밀도로 추론을 실행합니다. `float16`과 같은 더 낮은 정밀도로 전환하거나 추론 단계를 더 적게 실행하여 속도를 높일 수 있습니다. `float16`으로 모델을 로드하고 이미지를 생성해 보겠습니다: ```python import torch pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipeline = pipeline.to("cuda") generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png"> </div> 이번에는 이미지를 생성하는 데 약 11초밖에 걸리지 않아 이전보다 3배 가까이 빨라졌습니다! <Tip> 💡 파이프라인은 항상 `float16`에서 실행할 것을 강력히 권장하며, 지금까지 출력 품질이 저하되는 경우는 거의 없었습니다. </Tip> 또 다른 옵션은 추론 단계의 수를 줄이는 것입니다. 보다 효율적인 스케줄러를 선택하면 출력 품질 저하 없이 단계 수를 줄이는 데 도움이 될 수 있습니다. 현재 모델과 호환되는 스케줄러는 `compatibles` 메서드를 호출하여 [`DiffusionPipeline`]에서 찾을 수 있습니다: ```python pipeline.scheduler.compatibles [ diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler, diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler, diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler, diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler, diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, ] ``` Stable Diffusion 모델은 일반적으로 약 50개의 추론 단계가 필요한 [`PNDMScheduler`]를 기본으로 사용하지만, [`DPMSolverMultistepScheduler`]와 같이 성능이 더 뛰어난 스케줄러는 약 20개 또는 25개의 추론 단계만 필요로 합니다. 새 스케줄러를 로드하려면 [`ConfigMixin.from_config`] 메서드를 사용합니다: ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` `num_inference_steps`를 20으로 설정합니다: ```python generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png"> </div> 추론시간을 4초로 단축할 수 있었습니다! ⚡️ ## 메모리 파이프라인 성능 향상의 또 다른 핵심은 메모리 사용량을 줄이는 것인데, 초당 생성되는 이미지 수를 최대화하려고 하는 경우가 많기 때문에 간접적으로 더 빠른 속도를 의미합니다. 한 번에 생성할 수 있는 이미지 수를 확인하는 가장 쉬운 방법은 `OutOfMemoryError`(OOM)이 발생할 때까지 다양한 배치 크기를 시도해 보는 것입니다. 프롬프트 목록과 `Generators`에서 이미지 배치를 생성하는 함수를 만듭니다. 좋은 결과를 생성하는 경우 재사용할 수 있도록 각 `Generator`에 시드를 할당해야 합니다. ```python def get_inputs(batch_size=1): generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)] prompts = batch_size * [prompt] num_inference_steps = 20 return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps} ``` 또한 각 이미지 배치를 보여주는 기능이 필요합니다: ```python from PIL import Image def image_grid(imgs, rows=2, cols=2): w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid ``` `batch_size=4`부터 시작해 얼마나 많은 메모리를 소비했는지 확인합니다: ```python images = pipeline(**get_inputs(batch_size=4)).images image_grid(images) ``` RAM이 더 많은 GPU가 아니라면 위의 코드에서 `OOM` 오류가 반환되었을 것입니다! 대부분의 메모리는 cross-attention 레이어가 차지합니다. 이 작업을 배치로 실행하는 대신 순차적으로 실행하면 상당한 양의 메모리를 절약할 수 있습니다. 파이프라인을 구성하여 [`~DiffusionPipeline.enable_attention_slicing`] 함수를 사용하기만 하면 됩니다: ```python pipeline.enable_attention_slicing() ``` 이제 `batch_size`를 8로 늘려보세요! ```python images = pipeline(**get_inputs(batch_size=8)).images image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png"> </div> 이전에는 4개의 이미지를 배치로 생성할 수도 없었지만, 이제는 이미지당 약 3.5초 만에 8개의 이미지를 배치로 생성할 수 있습니다! 이는 아마도 품질 저하 없이 T4 GPU에서 가장 빠른 속도일 것입니다. ## 품질 지난 두 섹션에서는 `fp16`을 사용하여 파이프라인의 속도를 최적화하고, 더 성능이 좋은 스케줄러를 사용하여 추론 단계의 수를 줄이고, attention slicing을 활성화하여 메모리 소비를 줄이는 방법을 배웠습니다. 이제 생성된 이미지의 품질을 개선하는 방법에 대해 집중적으로 알아보겠습니다. ### 더 나은 체크포인트 가장 확실한 단계는 더 나은 체크포인트를 사용하는 것입니다. Stable Diffusion 모델은 좋은 출발점이며, 공식 출시 이후 몇 가지 개선된 버전도 출시되었습니다. 하지만 최신 버전을 사용한다고 해서 자동으로 더 나은 결과를 얻을 수 있는 것은 아닙니다. 여전히 다양한 체크포인트를 직접 실험해보고, [negative prompts](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/) 사용 등 약간의 조사를 통해 최상의 결과를 얻어야 합니다. 이 분야가 성장함에 따라 특정 스타일을 연출할 수 있도록 세밀하게 조정된 고품질 체크포인트가 점점 더 많아지고 있습니다. [Hub](https://huggingface.co/models?library=diffusers&sort=downloads)와 [Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery)를 둘러보고 관심 있는 것을 찾아보세요! ### 더 나은 파이프라인 구성 요소 현재 파이프라인 구성 요소를 최신 버전으로 교체해 볼 수도 있습니다. Stability AI의 최신 [autodecoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae)를 파이프라인에 로드하고 몇 가지 이미지를 생성해 보겠습니다: ```python from diffusers import AutoencoderKL vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda") pipeline.vae = vae images = pipeline(**get_inputs(batch_size=8)).images image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png"> </div> ### 더 나은 프롬프트 엔지니어링 이미지를 생성하는 데 사용하는 텍스트 프롬프트는 *prompt engineering*이라고 할 정도로 매우 중요합니다. 프롬프트 엔지니어링 시 고려해야 할 몇 가지 사항은 다음과 같습니다: - 생성하려는 이미지 또는 유사한 이미지가 인터넷에 어떻게 저장되어 있는가? - 내가 원하는 스타일로 모델을 유도하기 위해 어떤 추가 세부 정보를 제공할 수 있는가? 이를 염두에 두고 색상과 더 높은 품질의 디테일을 포함하도록 프롬프트를 개선해 봅시다: ```python prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes" prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta" ``` 새로운 프롬프트로 이미지 배치를 생성합니다: ```python images = pipeline(**get_inputs(batch_size=8)).images image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png"> </div> 꽤 인상적입니다! `1`의 시드를 가진 `Generator`에 해당하는 두 번째 이미지에 피사체의 나이에 대한 텍스트를 추가하여 조금 더 조정해 보겠습니다: ```python prompts = [ "portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", ] generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))] images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images image_grid(images) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png"> </div> ## 다음 단계 이 튜토리얼에서는 계산 및 메모리 효율을 높이고 생성된 출력의 품질을 개선하기 위해 [`DiffusionPipeline`]을 최적화하는 방법을 배웠습니다. 파이프라인을 더 빠르게 만드는 데 관심이 있다면 다음 리소스를 살펴보세요: - [PyTorch 2.0](./optimization/torch2.0) 및 [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html)이 어떻게 추론 속도를 5~300% 향상시킬 수 있는지 알아보세요. A100 GPU에서는 추론 속도가 최대 50%까지 빨라질 수 있습니다! - PyTorch 2를 사용할 수 없는 경우, [xFormers](./optimization/xformers)를 설치하는 것이 좋습니다. 메모리 효율적인 어텐션 메커니즘은 PyTorch 1.13.1과 함께 사용하면 속도가 빨라지고 메모리 소비가 줄어듭니다. - 모델 오프로딩과 같은 다른 최적화 기법은 [이 가이드](./optimization/fp16)에서 다루고 있습니다.
diffusers/docs/source/ko/stable_diffusion.md/0
{ "file_path": "diffusers/docs/source/ko/stable_diffusion.md", "repo_id": "diffusers", "token_count": 8885 }
109
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 제어된 생성 Diffusion 모델에 의해 생성된 출력을 제어하는 것은 커뮤니티에서 오랫동안 추구해 왔으며 현재 활발한 연구 주제입니다. 널리 사용되는 많은 diffusion 모델에서는 이미지와 텍스트 프롬프트 등 입력의 미묘한 변화로 인해 출력이 크게 달라질 수 있습니다. 이상적인 세계에서는 의미가 유지되고 변경되는 방식을 제어할 수 있기를 원합니다. 의미 보존의 대부분의 예는 입력의 변화를 출력의 변화에 정확하게 매핑하는 것으로 축소됩니다. 즉, 프롬프트에서 피사체에 형용사를 추가하면 전체 이미지가 보존되고 변경된 피사체만 수정됩니다. 또는 특정 피사체의 이미지를 변형하면 피사체의 포즈가 유지됩니다. 추가적으로 생성된 이미지의 품질에는 의미 보존 외에도 영향을 미치고자 하는 품질이 있습니다. 즉, 일반적으로 결과물의 품질이 좋거나 특정 스타일을 고수하거나 사실적이기를 원합니다. diffusion 모델 생성을 제어하기 위해 `diffusers`가 지원하는 몇 가지 기술을 문서화합니다. 많은 부분이 최첨단 연구이며 미묘한 차이가 있을 수 있습니다. 명확한 설명이 필요하거나 제안 사항이 있으면 주저하지 마시고 [포럼](https://discuss.huggingface.co/) 또는 [GitHub 이슈](https://github.com/huggingface/diffusers/issues)에서 토론을 시작하세요. 생성 제어 방법에 대한 개략적인 설명과 기술 개요를 제공합니다. 기술에 대한 자세한 설명은 파이프라인에서 링크된 원본 논문을 참조하는 것이 가장 좋습니다. 사용 사례에 따라 적절한 기술을 선택해야 합니다. 많은 경우 이러한 기법을 결합할 수 있습니다. 예를 들어, 텍스트 반전과 SEGA를 결합하여 텍스트 반전을 사용하여 생성된 출력에 더 많은 의미적 지침을 제공할 수 있습니다. 별도의 언급이 없는 한, 이러한 기법은 기존 모델과 함께 작동하며 자체 가중치가 필요하지 않은 기법입니다. 1. [Instruct Pix2Pix](#instruct-pix2pix) 2. [Pix2Pix Zero](#pix2pixzero) 3. [Attend and Excite](#attend-and-excite) 4. [Semantic Guidance](#semantic-guidance) 5. [Self-attention Guidance](#self-attention-guidance) 6. [Depth2Image](#depth2image) 7. [MultiDiffusion Panorama](#multidiffusion-panorama) 8. [DreamBooth](#dreambooth) 9. [Textual Inversion](#textual-inversion) 10. [ControlNet](#controlnet) 11. [Prompt Weighting](#prompt-weighting) 12. [Custom Diffusion](#custom-diffusion) 13. [Model Editing](#model-editing) 14. [DiffEdit](#diffedit) 15. [T2I-Adapter](#t2i-adapter) 편의를 위해, 추론만 하거나 파인튜닝/학습하는 방법에 대한 표를 제공합니다. | **Method** | **Inference only** | **Requires training /<br> fine-tuning** | **Comments** | | :-------------------------------------------------: | :----------------: | :-------------------------------------: | :---------------------------------------------------------------------------------------------: | | [Instruct Pix2Pix](#instruct-pix2pix) | ✅ | ❌ | Can additionally be<br>fine-tuned for better <br>performance on specific <br>edit instructions. | | [Pix2Pix Zero](#pix2pixzero) | ✅ | ❌ | | | [Attend and Excite](#attend-and-excite) | ✅ | ❌ | | | [Semantic Guidance](#semantic-guidance) | ✅ | ❌ | | | [Self-attention Guidance](#self-attention-guidance) | ✅ | ❌ | | | [Depth2Image](#depth2image) | ✅ | ❌ | | | [MultiDiffusion Panorama](#multidiffusion-panorama) | ✅ | ❌ | | | [DreamBooth](#dreambooth) | ❌ | ✅ | | | [Textual Inversion](#textual-inversion) | ❌ | ✅ | | | [ControlNet](#controlnet) | ✅ | ❌ | A ControlNet can be <br>trained/fine-tuned on<br>a custom conditioning. | | [Prompt Weighting](#prompt-weighting) | ✅ | ❌ | | | [Custom Diffusion](#custom-diffusion) | ❌ | ✅ | | | [Model Editing](#model-editing) | ✅ | ❌ | | | [DiffEdit](#diffedit) | ✅ | ❌ | | | [T2I-Adapter](#t2i-adapter) | ✅ | ❌ | | ## Pix2Pix Instruct [Paper](https://arxiv.org/abs/2211.09800) [Instruct Pix2Pix](../api/pipelines/stable_diffusion/pix2pix) 는 입력 이미지 편집을 지원하기 위해 stable diffusion에서 미세-조정되었습니다. 이미지와 편집을 설명하는 프롬프트를 입력으로 받아 편집된 이미지를 출력합니다. Instruct Pix2Pix는 [InstructGPT](https://openai.com/blog/instruction-following/)와 같은 프롬프트와 잘 작동하도록 명시적으로 훈련되었습니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/pix2pix)를 참조하세요. ## Pix2Pix Zero [Paper](https://arxiv.org/abs/2302.03027) [Pix2Pix Zero](../api/pipelines/stable_diffusion/pix2pix_zero)를 사용하면 일반적인 이미지 의미를 유지하면서 한 개념이나 피사체가 다른 개념이나 피사체로 변환되도록 이미지를 수정할 수 있습니다. 노이즈 제거 프로세스는 한 개념적 임베딩에서 다른 개념적 임베딩으로 안내됩니다. 중간 잠복(intermediate latents)은 디노이징(denoising?) 프로세스 중에 최적화되어 참조 주의 지도(reference attention maps)를 향해 나아갑니다. 참조 주의 지도(reference attention maps)는 입력 이미지의 노이즈 제거(?) 프로세스에서 나온 것으로 의미 보존을 장려하는 데 사용됩니다. Pix2Pix Zero는 합성 이미지와 실제 이미지를 편집하는 데 모두 사용할 수 있습니다. - 합성 이미지를 편집하려면 먼저 캡션이 지정된 이미지를 생성합니다. 다음으로 편집할 컨셉과 새로운 타겟 컨셉에 대한 이미지 캡션을 생성합니다. 이를 위해 [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)와 같은 모델을 사용할 수 있습니다. 그런 다음 텍스트 인코더를 통해 소스 개념과 대상 개념 모두에 대한 "평균" 프롬프트 임베딩을 생성합니다. 마지막으로, 합성 이미지를 편집하기 위해 pix2pix-zero 알고리즘을 사용합니다. - 실제 이미지를 편집하려면 먼저 [BLIP](https://huggingface.co/docs/transformers/model_doc/blip)과 같은 모델을 사용하여 이미지 캡션을 생성합니다. 그런 다음 프롬프트와 이미지에 ddim 반전을 적용하여 "역(inverse)" latents을 생성합니다. 이전과 마찬가지로 소스 및 대상 개념 모두에 대한 "평균(mean)" 프롬프트 임베딩이 생성되고 마지막으로 "역(inverse)" latents와 결합된 pix2pix-zero 알고리즘이 이미지를 편집하는 데 사용됩니다. <Tip> Pix2Pix Zero는 '제로 샷(zero-shot)' 이미지 편집이 가능한 최초의 모델입니다. 즉, 이 모델은 다음과 같이 일반 소비자용 GPU에서 1분 이내에 이미지를 편집할 수 있습니다(../api/pipelines/stable_diffusion/pix2pix_zero#usage-example). </Tip> 위에서 언급했듯이 Pix2Pix Zero에는 특정 개념으로 세대를 유도하기 위해 (UNet, VAE 또는 텍스트 인코더가 아닌) latents을 최적화하는 기능이 포함되어 있습니다.즉, 전체 파이프라인에 표준 [StableDiffusionPipeline](../api/pipelines/stable_diffusion/text2img)보다 더 많은 메모리가 필요할 수 있습니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/pix2pix_zero)를 참조하세요. ## Attend and Excite [Paper](https://arxiv.org/abs/2301.13826) [Attend and Excite](../api/pipelines/stable_diffusion/attend_and_excite)를 사용하면 프롬프트의 피사체가 최종 이미지에 충실하게 표현되도록 할 수 있습니다. 이미지에 존재해야 하는 프롬프트의 피사체에 해당하는 일련의 토큰 인덱스가 입력으로 제공됩니다. 노이즈 제거 중에 각 토큰 인덱스는 이미지의 최소 한 패치 이상에 대해 최소 주의 임계값을 갖도록 보장됩니다. 모든 피사체 토큰에 대해 주의 임계값이 통과될 때까지 노이즈 제거 프로세스 중에 중간 잠복기가 반복적으로 최적화되어 가장 소홀히 취급되는 피사체 토큰의 주의력을 강화합니다. Pix2Pix Zero와 마찬가지로 Attend and Excite 역시 파이프라인에 미니 최적화 루프(사전 학습된 가중치를 그대로 둔 채)가 포함되며, 일반적인 'StableDiffusionPipeline'보다 더 많은 메모리가 필요할 수 있습니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/attend_and_excite)를 참조하세요. ## Semantic Guidance (SEGA) [Paper](https://arxiv.org/abs/2301.12247) 의미유도(SEGA)를 사용하면 이미지에서 하나 이상의 컨셉을 적용하거나 제거할 수 있습니다. 컨셉의 강도도 조절할 수 있습니다. 즉, 스마일 컨셉을 사용하여 인물 사진의 스마일을 점진적으로 늘리거나 줄일 수 있습니다. 분류기 무료 안내(classifier free guidance)가 빈 프롬프트 입력을 통해 안내를 제공하는 방식과 유사하게, SEGA는 개념 프롬프트에 대한 안내를 제공합니다. 이러한 개념 프롬프트는 여러 개를 동시에 적용할 수 있습니다. 각 개념 프롬프트는 안내가 긍정적으로 적용되는지 또는 부정적으로 적용되는지에 따라 해당 개념을 추가하거나 제거할 수 있습니다. Pix2Pix Zero 또는 Attend and Excite와 달리 SEGA는 명시적인 그라데이션 기반 최적화를 수행하는 대신 확산 프로세스와 직접 상호 작용합니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/semantic_stable_diffusion)를 참조하세요. ## Self-attention Guidance (SAG) [Paper](https://arxiv.org/abs/2210.00939) [자기 주의 안내](../api/pipelines/stable_diffusion/self_attention_guidance)는 이미지의 전반적인 품질을 개선합니다. SAG는 고빈도 세부 정보를 기반으로 하지 않은 예측에서 완전히 조건화된 이미지에 이르기까지 가이드를 제공합니다. 고빈도 디테일은 UNet 자기 주의 맵에서 추출됩니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/self_attention_guidance)를 참조하세요. ## Depth2Image [Project](https://huggingface.co/stabilityai/stable-diffusion-2-depth) [Depth2Image](../pipelines/stable_diffusion_2#depthtoimage)는 텍스트 안내 이미지 변화에 대한 시맨틱을 더 잘 보존하도록 안정적 확산에서 미세 조정되었습니다. 원본 이미지의 단안(monocular) 깊이 추정치를 조건으로 합니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion_2#depthtoimage)를 참조하세요. <Tip> InstructPix2Pix와 Pix2Pix Zero와 같은 방법의 중요한 차이점은 전자의 경우 는 사전 학습된 가중치를 미세 조정하는 반면, 후자는 그렇지 않다는 것입니다. 즉, 다음을 수행할 수 있습니다. 사용 가능한 모든 안정적 확산 모델에 Pix2Pix Zero를 적용할 수 있습니다. </Tip> ## MultiDiffusion Panorama [Paper](https://arxiv.org/abs/2302.08113) MultiDiffusion은 사전 학습된 diffusion model을 통해 새로운 생성 프로세스를 정의합니다. 이 프로세스는 고품질의 다양한 이미지를 생성하는 데 쉽게 적용할 수 있는 여러 diffusion 생성 방법을 하나로 묶습니다. 결과는 원하는 종횡비(예: 파노라마) 및 타이트한 분할 마스크에서 바운딩 박스에 이르는 공간 안내 신호와 같은 사용자가 제공한 제어를 준수합니다. [MultiDiffusion 파노라마](../api/pipelines/stable_diffusion/panorama)를 사용하면 임의의 종횡비(예: 파노라마)로 고품질 이미지를 생성할 수 있습니다. 파노라마 이미지를 생성하는 데 사용하는 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/panorama)를 참조하세요. ## 나만의 모델 파인튜닝 사전 학습된 모델 외에도 Diffusers는 사용자가 제공한 데이터에 대해 모델을 파인튜닝할 수 있는 학습 스크립트가 있습니다. ## DreamBooth [DreamBooth](../training/dreambooth)는 모델을 파인튜닝하여 새로운 주제에 대해 가르칩니다. 즉, 한 사람의 사진 몇 장을 사용하여 다양한 스타일로 그 사람의 이미지를 생성할 수 있습니다. 사용 방법에 대한 자세한 내용은 [여기](../training/dreambooth)를 참조하세요. ## Textual Inversion [Textual Inversion](../training/text_inversion)은 모델을 파인튜닝하여 새로운 개념에 대해 학습시킵니다. 즉, 특정 스타일의 아트웍 사진 몇 장을 사용하여 해당 스타일의 이미지를 생성할 수 있습니다. 사용 방법에 대한 자세한 내용은 [여기](../training/text_inversion)를 참조하세요. ## ControlNet [Paper](https://arxiv.org/abs/2302.05543) [ControlNet](../api/pipelines/stable_diffusion/controlnet)은 추가 조건을 추가하는 보조 네트워크입니다. 가장자리 감지, 낙서, 깊이 맵, 의미적 세그먼트와 같은 다양한 조건에 대해 훈련된 8개의 표준 사전 훈련된 ControlNet이 있습니다, 깊이 맵, 시맨틱 세그먼테이션과 같은 다양한 조건으로 훈련된 8개의 표준 제어망이 있습니다. 사용 방법에 대한 자세한 내용은 [여기](../api/pipelines/stable_diffusion/controlnet)를 참조하세요. ## Prompt Weighting 프롬프트 가중치는 텍스트의 특정 부분에 더 많은 관심 가중치를 부여하는 간단한 기법입니다. 입력에 가중치를 부여하는 간단한 기법입니다. 자세한 설명과 예시는 [여기](../using-diffusers/weighted_prompts)를 참조하세요. ## Custom Diffusion [Custom Diffusion](../training/custom_diffusion)은 사전 학습된 text-to-image 간 확산 모델의 교차 관심도 맵만 미세 조정합니다. 또한 textual inversion을 추가로 수행할 수 있습니다. 설계상 다중 개념 훈련을 지원합니다. DreamBooth 및 Textual Inversion 마찬가지로, 사용자 지정 확산은 사전학습된 text-to-image diffusion 모델에 새로운 개념을 학습시켜 관심 있는 개념과 관련된 출력을 생성하는 데에도 사용됩니다. 자세한 설명은 [공식 문서](../training/custom_diffusion)를 참조하세요. ## Model Editing [Paper](https://arxiv.org/abs/2303.08084) [텍스트-이미지 모델 편집 파이프라인](../api/pipelines/model_editing)을 사용하면 사전학습된 text-to-image diffusion 모델이 입력 프롬프트에 있는 피사체에 대해 내릴 수 있는 잘못된 암시적 가정을 완화하는 데 도움이 됩니다. 예를 들어, 안정적 확산에 "A pack of roses"에 대한 이미지를 생성하라는 메시지를 표시하면 생성된 이미지의 장미는 빨간색일 가능성이 높습니다. 이 파이프라인은 이러한 가정을 변경하는 데 도움이 됩니다. 자세한 설명은 [공식 문서](../api/pipelines/model_editing)를 참조하세요. ## DiffEdit [Paper](https://arxiv.org/abs/2210.11427) [DiffEdit](../api/pipelines/diffedit)를 사용하면 원본 입력 이미지를 최대한 보존하면서 입력 프롬프트와 함께 입력 이미지의 의미론적 편집이 가능합니다. 자세한 설명은 [공식 문서](../api/pipelines/diffedit)를 참조하세요. ## T2I-Adapter [Paper](https://arxiv.org/abs/2302.08453) [T2I-어댑터](../api/pipelines/stable_diffusion/adapter)는 추가적인 조건을 추가하는 auxiliary 네트워크입니다. 가장자리 감지, 스케치, depth maps, semantic segmentations와 같은 다양한 조건에 대해 훈련된 8개의 표준 사전훈련된 adapter가 있습니다, [공식 문서](api/pipelines/stable_diffusion/adapter)에서 사용 방법에 대한 정보를 참조하세요.
diffusers/docs/source/ko/using-diffusers/controlling_generation.md/0
{ "file_path": "diffusers/docs/source/ko/using-diffusers/controlling_generation.md", "repo_id": "diffusers", "token_count": 14036 }
110
# Textual inversion [[open-in-colab]] [`StableDiffusionPipeline`]은 textual-inversion을 지원하는데, 이는 몇 개의 샘플 이미지만으로 stable diffusion과 같은 모델이 새로운 컨셉을 학습할 수 있도록 하는 기법입니다. 이를 통해 생성된 이미지를 더 잘 제어하고 특정 컨셉에 맞게 모델을 조정할 수 있습니다. 커뮤니티에서 만들어진 컨셉들의 컬렉션은 [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer)를 통해 빠르게 사용해볼 수 있습니다. 이 가이드에서는 Stable Diffusion Conceptualizer에서 사전학습한 컨셉을 사용하여 textual-inversion으로 추론을 실행하는 방법을 보여드립니다. textual-inversion으로 모델에 새로운 컨셉을 학습시키는 데 관심이 있으시다면, [Textual Inversion](./training/text_inversion) 훈련 가이드를 참조하세요. Hugging Face 계정으로 로그인하세요: ```py from huggingface_hub import notebook_login notebook_login() ``` 필요한 라이브러리를 불러오고 생성된 이미지를 시각화하기 위한 도우미 함수 `image_grid`를 만듭니다: ```py import os import torch import PIL from PIL import Image from diffusers import StableDiffusionPipeline from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid ``` Stable Diffusion과 [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer)에서 사전학습된 컨셉을 선택합니다: ```py pretrained_model_name_or_path = "runwayml/stable-diffusion-v1-5" repo_id_embeds = "sd-concepts-library/cat-toy" ``` 이제 파이프라인을 로드하고 사전학습된 컨셉을 파이프라인에 전달할 수 있습니다: ```py pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16).to("cuda") pipeline.load_textual_inversion(repo_id_embeds) ``` 특별한 placeholder token '`<cat-toy>`'를 사용하여 사전학습된 컨셉으로 프롬프트를 만들고, 생성할 샘플의 수와 이미지 행의 수를 선택합니다: ```py prompt = "a grafitti in a favela wall with a <cat-toy> on it" num_samples = 2 num_rows = 2 ``` 그런 다음 파이프라인을 실행하고, 생성된 이미지들을 저장합니다. 그리고 처음에 만들었던 도우미 함수 `image_grid`를 사용하여 생성 결과들을 시각화합니다. 이 때 `num_inference_steps`와 `guidance_scale`과 같은 매개 변수들을 조정하여, 이것들이 이미지 품질에 어떠한 영향을 미치는지를 자유롭게 확인해보시기 바랍니다. ```py all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images all_images.extend(images) grid = image_grid(all_images, num_samples, num_rows) grid ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/textual_inversion_inference.png"> </div>
diffusers/docs/source/ko/using-diffusers/textual_inversion_inference.md/0
{ "file_path": "diffusers/docs/source/ko/using-diffusers/textual_inversion_inference.md", "repo_id": "diffusers", "token_count": 2018 }
111
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import gc import hashlib import itertools import logging import math import os import re import shutil import warnings from contextlib import nullcontext from pathlib import Path from typing import List, Optional import numpy as np import torch import torch.nn.functional as F # imports of the TokenEmbeddingsHandler class import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from PIL import Image from PIL.ImageOps import exif_transpose from safetensors.torch import load_file, save_file from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.loaders import StableDiffusionLoraLoaderMixin from diffusers.optimization import get_scheduler from diffusers.training_utils import compute_snr from diffusers.utils import ( check_min_version, convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, is_wandb_available, ) from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.31.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, use_dora: bool, images=None, base_model=str, train_text_encoder=False, train_text_encoder_ti=False, token_abstraction_dict=None, instance_prompt=str, validation_prompt=str, repo_folder=None, vae_path=None, ): img_str = "widget:\n" lora = "lora" if not use_dora else "dora" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f""" - text: '{validation_prompt if validation_prompt else ' ' }' output: url: "image_{i}.png" """ if not images: img_str += f""" - text: '{instance_prompt}' """ embeddings_filename = f"{repo_folder}_emb" instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1)) ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt)) if instance_prompt_webui != embeddings_filename: instance_prompt_sentence = f"For example, `{instance_prompt_webui}`" else: instance_prompt_sentence = "" trigger_str = f"You should use {instance_prompt} to trigger the image generation." diffusers_imports_pivotal = "" diffusers_example_pivotal = "" webui_example_pivotal = "" if train_text_encoder_ti: trigger_str = ( "To trigger image generation of trained concept(or concepts) replace each concept identifier " "in you prompt with the new inserted tokens:\n" ) diffusers_imports_pivotal = """from huggingface_hub import hf_hub_download from safetensors.torch import load_file """ diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) """ webui_example_pivotal = f"""- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence} (you need both the LoRA and the embeddings as they were trained together for this LoRA) """ if token_abstraction_dict: for key, value in token_abstraction_dict.items(): tokens = "".join(value) trigger_str += f""" to trigger concept `{key}` → use `{tokens}` in your prompt \n """ yaml = f"""--- tags: - stable-diffusion - stable-diffusion-diffusers - diffusers-training - text-to-image - diffusers - {lora} - template:sd-lora {img_str} base_model: {base_model} instance_prompt: {instance_prompt} license: openrail++ --- """ model_card = f""" # SD1.5 LoRA DreamBooth - {repo_id} <Gallery /> ## Model description ### These are {repo_id} LoRA adaption weights for {base_model}. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). {webui_example_pivotal} ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch {diffusers_imports_pivotal} pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors') {diffusers_example_pivotal} image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words {trigger_str} ## Details All [Files & versions](/{repo_id}/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py). LoRA for the text encoder was enabled. {train_text_encoder}. Pivotal tuning was enabled: {train_text_encoder_ti}. Special VAE used for training: {vae_path}. """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand.To load the custom captions, the training set directory needs to follow the structure of a " "datasets ImageFolder, containing both the images and the corresponding caption for each image. see: " "https://huggingface.co/docs/datasets/image_dataset for more information" ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset. In some cases, a dataset may have more than one configuration (for example " "if it contains different subsets of data within, and you only wish to load a specific subset - in that case specify the desired configuration using --dataset_config_name. Leave as " "None if there's only one config.", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help="A path to local folder containing the training data of instance images. Specify this arg instead of " "--dataset_name if you wish to train using a local folder without custom captions. If you wish to train with custom captions please specify " "--dataset_name instead.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing the target image. By " "default, the standard Image Dataset maps out 'file_name' " "to 'image'.", ) parser.add_argument( "--caption_column", type=str, default=None, help="The column of the dataset containing the instance prompt for each image", ) parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", ) parser.add_argument( "--token_abstraction", type=str, default="TOK", help="identifier specifying the instance(or instances) as used in instance_prompt, validation prompt, " "captions - e.g. TOK. To use multiple identifiers, please specify them in a comma separated string - e.g. " "'TOK,TOK2,TOK3' etc.", ) parser.add_argument( "--num_new_tokens_per_abstraction", type=int, default=2, help="number of new tokens inserted to the tokenizers per token_abstraction identifier when " "--train_text_encoder_ti = True. By default, each --token_abstraction (e.g. TOK) is mapped to 2 new " "tokens - <si><si+1> ", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="lora-dreambooth-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_text_encoder", action="store_true", help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--text_encoder_lr", type=float, default=5e-6, help="Text encoder learning rate to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--train_text_encoder_ti", action="store_true", help=("Whether to use textual inversion"), ) parser.add_argument( "--train_text_encoder_ti_frac", type=float, default=0.5, help=("The percentage of epochs to perform textual inversion"), ) parser.add_argument( "--train_text_encoder_frac", type=float, default=1.0, help=("The percentage of epochs to perform text encoder tuning"), ) parser.add_argument( "--optimizer", type=str, default="adamW", help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", ) parser.add_argument( "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." ) parser.add_argument( "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." ) parser.add_argument( "--prodigy_beta3", type=float, default=None, help="coefficients for computing the Prodigy stepsize using running averages. If set to None, " "uses the value of square root of beta2. Ignored if optimizer is adamW", ) parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") parser.add_argument( "--adam_weight_decay_text_encoder", type=float, default=None, help="Weight decay to use for text_encoder" ) parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer and Prodigy optimizers.", ) parser.add_argument( "--prodigy_use_bias_correction", type=bool, default=True, help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", ) parser.add_argument( "--prodigy_safeguard_warmup", type=bool, default=True, help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " "Ignored if optimizer is adamW", ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--use_dora", action="store_true", default=False, help=( "Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. " "Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`" ), ) parser.add_argument( "--cache_latents", action="store_true", default=False, help="Cache the VAE latents", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.dataset_name is None and args.instance_data_dir is None: raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") if args.dataset_name is not None and args.instance_data_dir is not None: raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") if args.train_text_encoder and args.train_text_encoder_ti: raise ValueError( "Specify only one of `--train_text_encoder` or `--train_text_encoder_ti. " "For full LoRA text encoder training check --train_text_encoder, for textual " "inversion training check `--train_text_encoder_ti`" ) env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") return args # Taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py class TokenEmbeddingsHandler: def __init__(self, text_encoders, tokenizers): self.text_encoders = text_encoders self.tokenizers = tokenizers self.train_ids: Optional[torch.Tensor] = None self.inserting_toks: Optional[List[str]] = None self.embeddings_settings = {} def initialize_new_tokens(self, inserting_toks: List[str]): idx = 0 for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders): assert isinstance(inserting_toks, list), "inserting_toks should be a list of strings." assert all( isinstance(tok, str) for tok in inserting_toks ), "All elements in inserting_toks should be strings." self.inserting_toks = inserting_toks special_tokens_dict = {"additional_special_tokens": self.inserting_toks} tokenizer.add_special_tokens(special_tokens_dict) text_encoder.resize_token_embeddings(len(tokenizer)) self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) # random initialization of new tokens std_token_embedding = text_encoder.text_model.embeddings.token_embedding.weight.data.std() print(f"{idx} text encoder's std_token_embedding: {std_token_embedding}") text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] = ( torch.randn(len(self.train_ids), text_encoder.text_model.config.hidden_size) .to(device=self.device) .to(dtype=self.dtype) * std_token_embedding ) self.embeddings_settings[ f"original_embeddings_{idx}" ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) inu[self.train_ids] = False self.embeddings_settings[f"index_no_updates_{idx}"] = inu print(self.embeddings_settings[f"index_no_updates_{idx}"].shape) idx += 1 # Copied from train_dreambooth_lora_sdxl_advanced.py def save_embeddings(self, file_path: str): assert self.train_ids is not None, "Initialize new tokens before saving embeddings." tensors = {} # text_encoder_0 - CLIP ViT-L/14, text_encoder_1 - CLIP ViT-G/14 - TODO - change for sd idx_to_text_encoder_name = {0: "clip_l", 1: "clip_g"} for idx, text_encoder in enumerate(self.text_encoders): assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[0] == len( self.tokenizers[0] ), "Tokenizers should be the same." new_token_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] # New tokens for each text encoder are saved under "clip_l" (for text_encoder 0), "clip_g" (for # text_encoder 1) to keep compatible with the ecosystem. # Note: When loading with diffusers, any name can work - simply specify in inference tensors[idx_to_text_encoder_name[idx]] = new_token_embeddings # tensors[f"text_encoders_{idx}"] = new_token_embeddings save_file(tensors, file_path) @property def dtype(self): return self.text_encoders[0].dtype @property def device(self): return self.text_encoders[0].device @torch.no_grad() def retract_embeddings(self): for idx, text_encoder in enumerate(self.text_encoders): index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"] text_encoder.text_model.embeddings.token_embedding.weight.data[index_no_updates] = ( self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates] .to(device=text_encoder.device) .to(dtype=text_encoder.dtype) ) # for the parts that were updated, we need to normalize them # to have the same std as before std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"] index_updates = ~index_no_updates new_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] off_ratio = std_token_embedding / new_embeddings.std() new_embeddings = new_embeddings * (off_ratio**0.1) text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] = new_embeddings class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, instance_data_root, instance_prompt, class_prompt, dataset_name, dataset_config_name, cache_dir, image_column, caption_column, train_text_encoder_ti, class_data_root=None, class_num=None, token_abstraction_dict=None, # token mapping for textual inversion size=1024, repeats=1, center_crop=False, ): self.size = size self.center_crop = center_crop self.instance_prompt = instance_prompt self.custom_instance_prompts = None self.class_prompt = class_prompt self.token_abstraction_dict = token_abstraction_dict self.train_text_encoder_ti = train_text_encoder_ti # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory, # we load the training data using load_dataset if dataset_name is not None: try: from datasets import load_dataset except ImportError: raise ImportError( "You are trying to load your data using the datasets library. If you wish to train using custom " "captions please install the datasets library: `pip install datasets`. If you wish to load a " "local folder containing images only, specify --instance_data_dir instead." ) # Downloading and loading a dataset from the hub. # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script dataset = load_dataset( dataset_name, dataset_config_name, cache_dir=cache_dir, ) # Preprocessing the datasets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. if image_column is None: image_column = column_names[0] logger.info(f"image column defaulting to {image_column}") else: if image_column not in column_names: raise ValueError( f"`--image_column` value '{image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) instance_images = dataset["train"][image_column] if caption_column is None: logger.info( "No caption column provided, defaulting to instance_prompt for all images. If your dataset " "contains captions/prompts for the images, make sure to specify the " "column as --caption_column" ) self.custom_instance_prompts = None else: if caption_column not in column_names: raise ValueError( f"`--caption_column` value '{caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) custom_instance_prompts = dataset["train"][caption_column] # create final list of captions according to --repeats self.custom_instance_prompts = [] for caption in custom_instance_prompts: self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) else: self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] self.custom_instance_prompts = None self.instance_images = [] for img in instance_images: self.instance_images.extend(itertools.repeat(img, repeats)) self.num_instance_images = len(self.instance_images) self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = self.instance_images[index % self.num_instance_images] instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if self.custom_instance_prompts: caption = self.custom_instance_prompts[index % self.num_instance_images] if caption: if self.train_text_encoder_ti: # replace instances of --token_abstraction in caption with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in self.token_abstraction_dict.items(): caption = caption.replace(token_abs, "".join(token_replacement)) example["instance_prompt"] = caption else: example["instance_prompt"] = self.instance_prompt else: # custom prompts were provided, but length does not match size of image dataset example["instance_prompt"] = self.instance_prompt if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt"] = self.class_prompt return example def collate_fn(examples, with_prior_preservation=False): pixel_values = [example["instance_images"] for example in examples] prompts = [example["instance_prompt"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: pixel_values += [example["class_images"] for example in examples] prompts += [example["class_prompt"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() batch = {"pixel_values": pixel_values, "prompts": prompts} return batch class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def tokenize_prompt(tokenizer, prompt, add_special_tokens=False): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, add_special_tokens=add_special_tokens, return_tensors="pt", ) text_input_ids = text_inputs.input_ids return text_input_ids # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): for i, text_encoder in enumerate(text_encoders): if tokenizers is not None: tokenizer = tokenizers[i] text_input_ids = tokenize_prompt(tokenizer, prompt) else: assert text_input_ids_list is not None text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) return prompt_embeds[0] def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, revision=args.revision, variant=args.variant, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) model_id = args.hub_model_id or Path(args.output_dir).name repo_id = None if args.push_to_hub: repo_id = create_repo(repo_id=model_id, exist_ok=True, token=args.hub_token).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) vae_scaling_factor = vae.config.scaling_factor unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) if args.train_text_encoder_ti: # we parse the provided token identifier (or identifiers) into a list. s.t. - "TOK" -> ["TOK"], "TOK, # TOK2" -> ["TOK", "TOK2"] etc. token_abstraction_list = "".join(args.token_abstraction.split()).split(",") logger.info(f"list of token identifiers: {token_abstraction_list}") token_abstraction_dict = {} token_idx = 0 for i, token in enumerate(token_abstraction_list): token_abstraction_dict[token] = [ f"<s{token_idx + i + j}>" for j in range(args.num_new_tokens_per_abstraction) ] token_idx += args.num_new_tokens_per_abstraction - 1 # replace instances of --token_abstraction in --instance_prompt with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in token_abstraction_dict.items(): args.instance_prompt = args.instance_prompt.replace(token_abs, "".join(token_replacement)) if args.with_prior_preservation: args.class_prompt = args.class_prompt.replace(token_abs, "".join(token_replacement)) # initialize the new tokens for textual inversion embedding_handler = TokenEmbeddingsHandler([text_encoder_one], [tokenizer_one]) inserting_toks = [] for new_tok in token_abstraction_dict.values(): inserting_toks.extend(new_tok) embedding_handler.initialize_new_tokens(inserting_toks=inserting_toks) # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder_one.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) # The VAE is always in float32 to avoid NaN losses. vae.to(accelerator.device, dtype=torch.float32) text_encoder_one.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, " "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder_one.gradient_checkpointing_enable() # now we will add new LoRA weights to the attention layers unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, use_dora=args.use_dora, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) unet.add_adapter(unet_lora_config) # The text encoder comes from 🤗 transformers, so we cannot directly modify it. # So, instead, we monkey-patch the forward calls of its attention-blocks. if args.train_text_encoder: text_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, use_dora=args.use_dora, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], ) text_encoder_one.add_adapter(text_lora_config) # if we use textual inversion, we freeze all parameters except for the token embeddings # in text encoder elif args.train_text_encoder_ti: text_lora_parameters_one = [] for name, param in text_encoder_one.named_parameters(): if "token_embedding" in name: # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16 param = param.to(dtype=torch.float32) param.requires_grad = True text_lora_parameters_one.append(param) else: param.requires_grad = False # Make sure the trainable params are in float32. if args.mixed_precision == "fp16": models = [unet] if args.train_text_encoder: models.extend([text_encoder_one]) for model in models: for param in model.parameters(): # only upcast trainable parameters (LoRA) into fp32 if param.requires_grad: param.data = param.to(torch.float32) # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None text_encoder_one_lora_layers_to_save = None for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): if args.train_text_encoder: text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers( get_peft_model_state_dict(model) ) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusionPipeline.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_one_lora_layers_to_save, ) if args.train_text_encoder_ti: embedding_handler.save_embeddings(f"{args.output_dir}/{Path(args.output_dir).name}_emb.safetensors") def load_model_hook(models, input_dir): unet_ = None text_encoder_one_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): text_encoder_one_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = StableDiffusionLoraLoaderMixin.lora_state_dict(input_dir) StableDiffusionLoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k} StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_ ) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters())) if args.train_text_encoder: text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters())) # If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti) # Optimization parameters unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate} if not freeze_text_encoder: # different learning rate for text encoder and unet text_lora_parameters_one_with_lr = { "params": text_lora_parameters_one, "weight_decay": args.adam_weight_decay_text_encoder if args.adam_weight_decay_text_encoder else args.adam_weight_decay, "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, } params_to_optimize = [ unet_lora_parameters_with_lr, text_lora_parameters_one_with_lr, ] else: params_to_optimize = [unet_lora_parameters_with_lr] # Optimizer creation if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): logger.warning( f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." "Defaulting to adamW" ) args.optimizer = "adamw" if args.use_8bit_adam and not args.optimizer.lower() == "adamw": logger.warning( f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " f"set to {args.optimizer.lower()}" ) if args.optimizer.lower() == "adamw": if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( params_to_optimize, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) if args.optimizer.lower() == "prodigy": try: import prodigyopt except ImportError: raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") optimizer_class = prodigyopt.Prodigy if args.learning_rate <= 0.1: logger.warning( "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" ) if args.train_text_encoder and args.text_encoder_lr: logger.warning( f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:" f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " f"When using prodigy only learning_rate is used as the initial learning rate." ) # changes the learning rate of text_encoder_parameters_one to be # --learning_rate params_to_optimize[1]["lr"] = args.learning_rate optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), beta3=args.prodigy_beta3, weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, decouple=args.prodigy_decouple, use_bias_correction=args.prodigy_use_bias_correction, safeguard_warmup=args.prodigy_safeguard_warmup, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_prompt=args.class_prompt, dataset_name=args.dataset_name, dataset_config_name=args.dataset_config_name, cache_dir=args.cache_dir, image_column=args.image_column, train_text_encoder_ti=args.train_text_encoder_ti, caption_column=args.caption_column, class_data_root=args.class_data_dir if args.with_prior_preservation else None, token_abstraction_dict=token_abstraction_dict if args.train_text_encoder_ti else None, class_num=args.num_class_images, size=args.resolution, repeats=args.repeats, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) if not args.train_text_encoder: tokenizers = [tokenizer_one] text_encoders = [text_encoder_one] def compute_text_embeddings(prompt, text_encoders, tokenizers): with torch.no_grad(): prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) prompt_embeds = prompt_embeds.to(accelerator.device) return prompt_embeds # If no type of tuning is done on the text_encoder and custom instance prompts are NOT # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid # the redundant encoding. if freeze_text_encoder and not train_dataset.custom_instance_prompts: instance_prompt_hidden_states = compute_text_embeddings(args.instance_prompt, text_encoders, tokenizers) # Handle class prompt for prior-preservation. if args.with_prior_preservation: if freeze_text_encoder: class_prompt_hidden_states = compute_text_embeddings(args.class_prompt, text_encoders, tokenizers) # Clear the memory here if freeze_text_encoder and not train_dataset.custom_instance_prompts: del tokenizers, text_encoders gc.collect() torch.cuda.empty_cache() # if --train_text_encoder_ti we need add_special_tokens to be True for textual inversion add_special_tokens = True if args.train_text_encoder_ti else False if not train_dataset.custom_instance_prompts: if freeze_text_encoder: prompt_embeds = instance_prompt_hidden_states if args.with_prior_preservation: prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0) # if we're optimizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the # batch prompts on all training steps else: tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt, add_special_tokens) if args.with_prior_preservation: class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt, add_special_tokens) tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0) if args.train_text_encoder_ti and args.validation_prompt: # replace instances of --token_abstraction in validation prompt with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in train_dataset.token_abstraction_dict.items(): args.validation_prompt = args.validation_prompt.replace(token_abs, "".join(token_replacement)) print("validation prompt:", args.validation_prompt) if args.cache_latents: latents_cache = [] for batch in tqdm(train_dataloader, desc="Caching latents"): with torch.no_grad(): batch["pixel_values"] = batch["pixel_values"].to( accelerator.device, non_blocking=True, dtype=torch.float32 ) latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist) if args.validation_prompt is None: del vae if torch.cuda.is_available(): torch.cuda.empty_cache() # Scheduler and math around the number of training steps. # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes if args.max_train_steps is None: len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) num_training_steps_for_scheduler = ( args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes ) else: num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=num_warmup_steps_for_scheduler, num_training_steps=num_training_steps_for_scheduler, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if not freeze_text_encoder: unet, text_encoder_one, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder_one, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: logger.warning( f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " f"This inconsistency may result in the learning rate scheduler not functioning properly." ) # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth-lora-sd-15", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) if args.train_text_encoder: num_train_epochs_text_encoder = int(args.train_text_encoder_frac * args.num_train_epochs) elif args.train_text_encoder_ti: # args.train_text_encoder_ti num_train_epochs_text_encoder = int(args.train_text_encoder_ti_frac * args.num_train_epochs) for epoch in range(first_epoch, args.num_train_epochs): # if performing any kind of optimization of text_encoder params if args.train_text_encoder or args.train_text_encoder_ti: if epoch == num_train_epochs_text_encoder: print("PIVOT HALFWAY", epoch) # stopping optimization of text_encoder params # re setting the optimizer to optimize only on unet params optimizer.param_groups[1]["lr"] = 0.0 else: # still optimizng the text encoder text_encoder_one.train() # set top parameter requires_grad = True for gradient checkpointing works if args.train_text_encoder: text_encoder_one.text_model.embeddings.requires_grad_(True) unet.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): prompts = batch["prompts"] # encode batch prompts when custom prompts are provided for each image - if train_dataset.custom_instance_prompts: if freeze_text_encoder: prompt_embeds = compute_text_embeddings(prompts, text_encoders, tokenizers) else: tokens_one = tokenize_prompt(tokenizer_one, prompts, add_special_tokens) if args.cache_latents: model_input = latents_cache[step].sample() else: pixel_values = batch["pixel_values"].to(dtype=vae.dtype) model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae_scaling_factor if args.pretrained_vae_model_name_or_path is None: model_input = model_input.to(weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device ) bsz = model_input.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # Calculate the elements to repeat depending on the use of prior-preservation and custom captions. if not train_dataset.custom_instance_prompts: elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz else: elems_to_repeat_text_embeds = 1 # Predict the noise residual if freeze_text_encoder: prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) model_pred = unet(noisy_model_input, timesteps, prompt_embeds_input).sample else: prompt_embeds = encode_prompt( text_encoders=[text_encoder_one], tokenizers=None, prompt=None, text_input_ids_list=[tokens_one], ) prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) model_pred = unet(noisy_model_input, timesteps, prompt_embeds_input).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. if args.with_prior_preservation: # if we're using prior preservation, we calc snr for instance loss only - # and hence only need timesteps corresponding to instance images snr_timesteps, _ = torch.chunk(timesteps, 2, dim=0) else: snr_timesteps = timesteps snr = compute_snr(noise_scheduler, snr_timesteps) base_weight = ( torch.stack([snr, args.snr_gamma * torch.ones_like(snr_timesteps)], dim=1).min(dim=1)[0] / snr ) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective needs to be floored to an SNR weight of one. mse_loss_weights = base_weight + 1 else: # Epsilon and sample both use the same loss weights. mse_loss_weights = base_weight loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() if args.with_prior_preservation: # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet_lora_parameters, text_lora_parameters_one) if (args.train_text_encoder or args.train_text_encoder_ti) else unet_lora_parameters ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # every step, we reset the embeddings to the original embeddings. if args.train_text_encoder_ti: for idx, text_encoder in enumerate(text_encoders): embedding_handler.retract_embeddings() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline if freeze_text_encoder: text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant, ) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, tokenizer=tokenizer_one, text_encoder=accelerator.unwrap_model(text_encoder_one), unet=accelerator.unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = DPMSolverMultistepScheduler.from_config( pipeline.scheduler.config, **scheduler_args ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} if torch.backends.mps.is_available(): autocast_ctx = nullcontext() else: autocast_ctx = torch.autocast(accelerator.device.type) with autocast_ctx: images = [ pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) unet = unet.to(torch.float32) unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) if args.train_text_encoder: text_encoder_one = accelerator.unwrap_model(text_encoder_one) text_encoder_lora_layers = convert_state_dict_to_diffusers( get_peft_model_state_dict(text_encoder_one.to(torch.float32)) ) else: text_encoder_lora_layers = None StableDiffusionPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers, ) if args.train_text_encoder_ti: embeddings_path = f"{args.output_dir}/{args.output_dir}_emb.safetensors" embedding_handler.save_embeddings(embeddings_path) images = [] if args.validation_prompt and args.num_validation_images > 0: # Final inference # Load previous pipeline vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args) # load attention processors pipeline.load_lora_weights(args.output_dir) # load new tokens if args.train_text_encoder_ti: state_dict = load_file(embeddings_path) all_new_tokens = [] for key, value in token_abstraction_dict.items(): all_new_tokens.extend(value) pipeline.load_textual_inversion( state_dict["clip_l"], token=all_new_tokens, text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer, ) # run inference pipeline = pipeline.to(accelerator.device) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) # Convert to WebUI format lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors") peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict) kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) save_file(kohya_state_dict, f"{args.output_dir}/{Path(args.output_dir).name}.safetensors") save_model_card( model_id if not args.push_to_hub else repo_id, use_dora=args.use_dora, images=images, base_model=args.pretrained_model_name_or_path, train_text_encoder=args.train_text_encoder, train_text_encoder_ti=args.train_text_encoder_ti, token_abstraction_dict=train_dataset.token_abstraction_dict, instance_prompt=args.instance_prompt, validation_prompt=args.validation_prompt, repo_folder=args.output_dir, vae_path=args.pretrained_vae_model_name_or_path, ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py/0
{ "file_path": "diffusers/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py", "repo_id": "diffusers", "token_count": 38517 }
112
import inspect from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn from transformers import AutoModel, AutoTokenizer, CLIPImageProcessor from diffusers import DiffusionPipeline from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import StableDiffusionLoraLoaderMixin from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name class TranslatorBase(nn.Module): def __init__(self, num_tok, dim, dim_out, mult=2): super().__init__() self.dim_in = dim self.dim_out = dim_out self.net_tok = nn.Sequential( nn.Linear(num_tok, int(num_tok * mult)), nn.LayerNorm(int(num_tok * mult)), nn.GELU(), nn.Linear(int(num_tok * mult), int(num_tok * mult)), nn.LayerNorm(int(num_tok * mult)), nn.GELU(), nn.Linear(int(num_tok * mult), num_tok), nn.LayerNorm(num_tok), ) self.net_sen = nn.Sequential( nn.Linear(dim, int(dim * mult)), nn.LayerNorm(int(dim * mult)), nn.GELU(), nn.Linear(int(dim * mult), int(dim * mult)), nn.LayerNorm(int(dim * mult)), nn.GELU(), nn.Linear(int(dim * mult), dim_out), nn.LayerNorm(dim_out), ) def forward(self, x): if self.dim_in == self.dim_out: indentity_0 = x x = self.net_sen(x) x += indentity_0 x = x.transpose(1, 2) indentity_1 = x x = self.net_tok(x) x += indentity_1 x = x.transpose(1, 2) else: x = self.net_sen(x) x = x.transpose(1, 2) x = self.net_tok(x) x = x.transpose(1, 2) return x class TranslatorBaseNoLN(nn.Module): def __init__(self, num_tok, dim, dim_out, mult=2): super().__init__() self.dim_in = dim self.dim_out = dim_out self.net_tok = nn.Sequential( nn.Linear(num_tok, int(num_tok * mult)), nn.GELU(), nn.Linear(int(num_tok * mult), int(num_tok * mult)), nn.GELU(), nn.Linear(int(num_tok * mult), num_tok), ) self.net_sen = nn.Sequential( nn.Linear(dim, int(dim * mult)), nn.GELU(), nn.Linear(int(dim * mult), int(dim * mult)), nn.GELU(), nn.Linear(int(dim * mult), dim_out), ) def forward(self, x): if self.dim_in == self.dim_out: indentity_0 = x x = self.net_sen(x) x += indentity_0 x = x.transpose(1, 2) indentity_1 = x x = self.net_tok(x) x += indentity_1 x = x.transpose(1, 2) else: x = self.net_sen(x) x = x.transpose(1, 2) x = self.net_tok(x) x = x.transpose(1, 2) return x class TranslatorNoLN(nn.Module): def __init__(self, num_tok, dim, dim_out, mult=2, depth=5): super().__init__() self.blocks = nn.ModuleList([TranslatorBase(num_tok, dim, dim, mult=2) for d in range(depth)]) self.gelu = nn.GELU() self.tail = TranslatorBaseNoLN(num_tok, dim, dim_out, mult=2) def forward(self, x): for block in self.blocks: x = block(x) + x x = self.gelu(x) x = self.tail(x) return x def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionLoraLoaderMixin): def __init__( self, vae: AutoencoderKL, text_encoder: AutoModel, tokenizer: AutoTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, language_adapter: TranslatorNoLN = None, tensor_norm: torch.Tensor = None, requires_safety_checker: bool = True, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, language_adapter=language_adapter, tensor_norm=tensor_norm, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) def load_language_adapter( self, model_path: str, num_token: int, dim: int, dim_out: int, tensor_norm: torch.Tensor, mult: int = 2, depth: int = 5, ): device = self._execution_device self.tensor_norm = tensor_norm.to(device) self.language_adapter = TranslatorNoLN(num_tok=num_token, dim=dim, dim_out=dim_out, mult=mult, depth=depth).to( device ) self.language_adapter.load_state_dict(torch.load(model_path)) def _adapt_language(self, prompt_embeds: torch.Tensor): prompt_embeds = prompt_embeds / 3 prompt_embeds = self.language_adapter(prompt_embeds) * (self.tensor_norm / 2) return prompt_embeds def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) elif self.language_adapter is not None: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) # Run prompt language adapter if self.language_adapter is not None: prompt_embeds = self._adapt_language(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] # Run negative prompt language adapter if self.language_adapter is not None: negative_prompt_embeds = self._adapt_language(negative_prompt_embeds) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: timesteps (`torch.Tensor`): generate embedding vectors at these timesteps embedding_dim (`int`, *optional*, defaults to 512): dimension of the embeddings to generate dtype: data type of the generated embeddings Returns: `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # to deal with lora scaling and other possible forward hooks # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/examples/community/gluegen.py/0
{ "file_path": "diffusers/examples/community/gluegen.py", "repo_id": "diffusers", "token_count": 16726 }
113
from typing import Union import torch from PIL import Image from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) class MagicMixPipeline(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], ): super().__init__() self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) # convert PIL image to latents def encode(self, img): with torch.no_grad(): latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) latent = 0.18215 * latent.latent_dist.sample() return latent # convert latents to PIL image def decode(self, latent): latent = (1 / 0.18215) * latent with torch.no_grad(): img = self.vae.decode(latent).sample img = (img / 2 + 0.5).clamp(0, 1) img = img.detach().cpu().permute(0, 2, 3, 1).numpy() img = (img * 255).round().astype("uint8") return Image.fromarray(img[0]) # convert prompt into text embeddings, also unconditional embeddings def prep_text(self, prompt): text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] uncond_input = self.tokenizer( "", padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] return torch.cat([uncond_embedding, text_embedding]) def __call__( self, img: Image.Image, prompt: str, kmin: float = 0.3, kmax: float = 0.6, mix_factor: float = 0.5, seed: int = 42, steps: int = 50, guidance_scale: float = 7.5, ) -> Image.Image: tmin = steps - int(kmin * steps) tmax = steps - int(kmax * steps) text_embeddings = self.prep_text(prompt) self.scheduler.set_timesteps(steps) width, height = img.size encoded = self.encode(img) torch.manual_seed(seed) noise = torch.randn( (1, self.unet.config.in_channels, height // 8, width // 8), ).to(self.device) latents = self.scheduler.add_noise( encoded, noise, timesteps=self.scheduler.timesteps[tmax], ) input = torch.cat([latents] * 2) input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) with torch.no_grad(): pred = self.unet( input, self.scheduler.timesteps[tmax], encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample for i, t in enumerate(tqdm(self.scheduler.timesteps)): if i > tmax: if i < tmin: # layout generation phase orig_latents = self.scheduler.add_noise( encoded, noise, timesteps=t, ) input = ( (mix_factor * latents) + (1 - mix_factor) * orig_latents ) # interpolating between layout noise and conditionally generated noise to preserve layout sematics input = torch.cat([input] * 2) else: # content generation phase input = torch.cat([latents] * 2) input = self.scheduler.scale_model_input(input, t) with torch.no_grad(): pred = self.unet( input, t, encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = self.scheduler.step(pred, t, latents).prev_sample return self.decode(latents)
diffusers/examples/community/magic_mix.py/0
{ "file_path": "diffusers/examples/community/magic_mix.py", "repo_id": "diffusers", "token_count": 2446 }
114
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import warnings from typing import Callable, List, Optional, Union import torch from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser from diffusers import DiffusionPipeline, LMSDiscreteScheduler, StableDiffusionMixin from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class ModelWrapper: def __init__(self, model, alphas_cumprod): self.model = model self.alphas_cumprod = alphas_cumprod def apply_model(self, *args, **kwargs): if len(args) == 3: encoder_hidden_states = args[-1] args = args[:2] if kwargs.get("cond", None) is not None: encoder_hidden_states = kwargs.pop("cond") return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample class StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) # get correct sigmas from LMS scheduler = LMSDiscreteScheduler.from_config(scheduler.config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) model = ModelWrapper(unet, scheduler.alphas_cumprod) if scheduler.config.prediction_type == "v_prediction": self.k_diffusion_model = CompVisVDenoiser(model) else: self.k_diffusion_model = CompVisDenoiser(model) def set_sampler(self, scheduler_type: str): warnings.warn("The `set_sampler` method is deprecated, please use `set_scheduler` instead.") return self.set_scheduler(scheduler_type) def set_scheduler(self, scheduler_type: str): library = importlib.import_module("k_diffusion") sampling = getattr(library, "sampling") self.sampler = getattr(sampling, scheduler_type) def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `list(int)`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids if not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None text_embeddings = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) text_embeddings = text_embeddings[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None uncond_embeddings = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) uncond_embeddings = uncond_embeddings[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) return text_embeddings def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) else: has_nsfw_concept = None return image, has_nsfw_concept def decode_latents(self, latents): latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def check_inputs(self, prompt, height, width, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // 8, width // 8) if latents is None: if device.type == "mps": # randn does not work reproducibly on mps latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) else: latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = True if guidance_scale <= 1.0: raise ValueError("has to use guidance_scale") # 3. Encode input prompt text_embeddings = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=text_embeddings.device) sigmas = self.scheduler.sigmas sigmas = sigmas.to(text_embeddings.dtype) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings.dtype, device, generator, latents, ) latents = latents * sigmas[0] self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device) def model_fn(x, t): latent_model_input = torch.cat([x] * 2) noise_pred = self.k_diffusion_model(latent_model_input, t, cond=text_embeddings) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) return noise_pred latents = self.sampler(model_fn, latents, sigmas) # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) # 10. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/examples/community/sd_text2img_k_diffusion.py/0
{ "file_path": "diffusers/examples/community/sd_text2img_k_diffusion.py", "repo_id": "diffusers", "token_count": 8535 }
115
# Based on stable_diffusion_reference.py from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import PIL.Image import torch from diffusers import StableDiffusionXLPipeline from diffusers.models.attention import BasicTransformerBlock from diffusers.models.unets.unet_2d_blocks import ( CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D, ) from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput from diffusers.utils import PIL_INTERPOLATION, logging from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import UniPCMultistepScheduler >>> from diffusers.utils import load_image >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") >>> pipe = StableDiffusionXLReferencePipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to('cuda:0') >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) >>> result_img = pipe(ref_image=input_image, prompt="1girl", num_inference_steps=20, reference_attn=True, reference_adain=True).images[0] >>> result_img.show() ``` """ def torch_dfs(model: torch.nn.Module): result = [model] for child in model.children(): result += torch_dfs(child) return result # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline): def _default_height_width(self, height, width, image): # NOTE: It is possible that a list of images have different # dimensions for each image, so just checking the first image # is not _exactly_ correct, but it is simple. while isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[2] height = (height // 8) * 8 # round down to nearest multiple of 8 if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[3] width = (width // 8) * 8 return height, width def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): if not isinstance(image, torch.Tensor): if isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): images = [] for image_ in image: image_ = image_.convert("RGB") image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) image_ = np.array(image_) image_ = image_[None, :] images.append(image_) image = images image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = (image - 0.5) / 0.5 image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.stack(image, dim=0) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): refimage = refimage.to(device=device) if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: self.upcast_vae() refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if refimage.dtype != self.vae.dtype: refimage = refimage.to(dtype=self.vae.dtype) # encode the mask image into latents space so we can concatenate it to the latents if isinstance(generator, list): ref_image_latents = [ self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) for i in range(batch_size) ] ref_image_latents = torch.cat(ref_image_latents, dim=0) else: ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) ref_image_latents = self.vae.config.scaling_factor * ref_image_latents # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method if ref_image_latents.shape[0] < batch_size: if not batch_size % ref_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents # aligning device to prevent device errors when concating it with the latent model input ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) return ref_image_latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, ref_image: Union[torch.Tensor, PIL.Image.Image] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, attention_auto_machine_weight: float = 1.0, gn_auto_machine_weight: float = 1.0, style_fidelity: float = 0.5, reference_attn: bool = True, reference_adain: bool = True, ): assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." # 0. Default height and width to unet # height, width = self._default_height_width(height, width, ref_image) height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Preprocess reference image ref_image = self.prepare_image( image=ref_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=prompt_embeds.dtype, ) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Prepare reference latent variables ref_image_latents = self.prepare_ref_latents( ref_image, batch_size * num_images_per_prompt, prompt_embeds.dtype, device, generator, do_classifier_free_guidance, ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Modify self attebtion and group norm MODE = "write" uc_mask = ( torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) .type_as(ref_image_latents) .bool() ) def hacked_basic_transformer_inner_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, ): if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} if self.only_cross_attention: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) else: if MODE == "write": self.bank.append(norm_hidden_states.detach().clone()) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if MODE == "read": if attention_auto_machine_weight > self.attn_weight: attn_output_uc = self.attn1( norm_hidden_states, encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), # attention_mask=attention_mask, **cross_attention_kwargs, ) attn_output_c = attn_output_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: attn_output_c[uc_mask] = self.attn1( norm_hidden_states[uc_mask], encoder_hidden_states=norm_hidden_states[uc_mask], **cross_attention_kwargs, ) attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc self.bank.clear() else: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 2. Cross-Attention attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states def hacked_mid_forward(self, *args, **kwargs): eps = 1e-6 x = self.original_forward(*args, **kwargs) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append(mean) self.var_bank.append(var) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) var_acc = sum(self.var_bank) / float(len(self.var_bank)) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 x_uc = (((x - mean) / std) * std_acc) + mean_acc x_c = x_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: x_c[uc_mask] = x[uc_mask] x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc self.mean_bank = [] self.var_bank = [] return x def hack_CrossAttnDownBlock2D_forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used output_states = () for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc output_states = output_states + (hidden_states,) if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs): eps = 1e-6 output_states = () for i, resnet in enumerate(self.resnets): hidden_states = resnet(hidden_states, temb) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc output_states = output_states + (hidden_states,) if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_CrossAttnUpBlock2D_forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def hacked_UpBlock2D_forward( self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, **kwargs ): eps = 1e-6 for i, resnet in enumerate(self.resnets): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states if reference_attn: attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) for i, module in enumerate(attn_modules): module._original_inner_forward = module.forward module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) module.bank = [] module.attn_weight = float(i) / float(len(attn_modules)) if reference_adain: gn_modules = [self.unet.mid_block] self.unet.mid_block.gn_weight = 0 down_blocks = self.unet.down_blocks for w, module in enumerate(down_blocks): module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) gn_modules.append(module) up_blocks = self.unet.up_blocks for w, module in enumerate(up_blocks): module.gn_weight = float(w) / float(len(up_blocks)) gn_modules.append(module) for i, module in enumerate(gn_modules): if getattr(module, "original_forward", None) is None: module.original_forward = module.forward if i == 0: # mid_block module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) elif isinstance(module, CrossAttnDownBlock2D): module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) elif isinstance(module, DownBlock2D): module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) elif isinstance(module, CrossAttnUpBlock2D): module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) elif isinstance(module, UpBlock2D): module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) module.mean_bank = [] module.var_bank = [] module.gn_weight *= 2 # 10. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) # 11. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # 10.1 Apply denoising_end if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} # ref only part noise = randn_tensor( ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype ) ref_xt = self.scheduler.add_noise( ref_image_latents, noise, t.reshape( 1, ), ) ref_xt = self.scheduler.scale_model_input(ref_xt, t) MODE = "write" self.unet( ref_xt, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, ) # predict the noise residual MODE = "read" noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents return StableDiffusionXLPipelineOutput(images=image) # apply watermark if available if self.watermark is not None: image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image)
diffusers/examples/community/stable_diffusion_xl_reference.py/0
{ "file_path": "diffusers/examples/community/stable_diffusion_xl_reference.py", "repo_id": "diffusers", "token_count": 18953 }
116
# DreamBooth training example for FLUX.1 [dev] [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject. The `train_dreambooth_flux.py` script shows how to implement the training procedure and adapt it for [FLUX.1 [dev]](https://blackforestlabs.ai/announcing-black-forest-labs/). We also provide a LoRA implementation in the `train_dreambooth_lora_flux.py` script. > [!NOTE] > **Memory consumption** > > Flux can be quite expensive to run on consumer hardware devices and as a result finetuning it comes with high memory requirements - > a LoRA with a rank of 16 (w/ all components trained) can exceed 40GB of VRAM for training. > For more tips & guidance on training on a resource-constrained device please visit [`@bghira`'s guide](https://github.com/bghira/SimpleTuner/blob/main/documentation/quickstart/FLUX.md) > [!NOTE] > **Gated model** > > As the model is gated, before using it with diffusers you first need to go to the [FLUX.1 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.1-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in: ```bash huggingface-cli login ``` This will also allow us to push the trained model parameters to the Hugging Face Hub platform. ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the `examples/dreambooth` folder and run ```bash pip install -r requirements_flux.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell (e.g., a notebook) ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment. ### Dog toy example Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example. Let's first download it locally: ```python from huggingface_hub import snapshot_download local_dir = "./dog" snapshot_download( "diffusers/dog-example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", ) ``` This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform. Now, we can launch training using: ```bash export MODEL_NAME="black-forest-labs/FLUX.1-dev" export INSTANCE_DIR="dog" export OUTPUT_DIR="trained-flux" accelerate launch train_dreambooth_flux.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --mixed_precision="bf16" \ --instance_prompt="a photo of sks dog" \ --resolution=1024 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --learning_rate=1e-4 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=500 \ --validation_prompt="A photo of sks dog in a bucket" \ --validation_epochs=25 \ --seed="0" \ --push_to_hub ``` To better track our training experiments, we're using the following flags in the command above: * `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`. * `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected. > [!NOTE] > If you want to train using long prompts with the T5 text encoder, you can use `--max_sequence_length` to set the token limit. The default is 77, but it can be increased to as high as 512. Note that this will use more resources and may slow down the training in some cases. > [!TIP] > You can pass `--use_8bit_adam` to reduce the memory requirements of training. Make sure to install `bitsandbytes` if you want to do so. ## LoRA + DreamBooth [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters. Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment. To perform DreamBooth with LoRA, run: ```bash export MODEL_NAME="black-forest-labs/FLUX.1-dev" export INSTANCE_DIR="dog" export OUTPUT_DIR="trained-flux-lora" accelerate launch train_dreambooth_lora_flux.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --mixed_precision="bf16" \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --learning_rate=1e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=500 \ --validation_prompt="A photo of sks dog in a bucket" \ --validation_epochs=25 \ --seed="0" \ --push_to_hub ``` ### Text Encoder Training Alongside the transformer, fine-tuning of the CLIP text encoder is also supported. To do so, just specify `--train_text_encoder` while launching training. Please keep the following points in mind: > [!NOTE] > FLUX.1 has 2 text encoders (CLIP L/14 and T5-v1.1-XXL). By enabling `--train_text_encoder`, fine-tuning of the **CLIP encoder** is performed. > At the moment, T5 fine-tuning is not supported and weights remain frozen when text encoder training is enabled. To perform DreamBooth LoRA with text-encoder training, run: ```bash export MODEL_NAME="black-forest-labs/FLUX.1-dev" export OUTPUT_DIR="trained-flux-dev-dreambooth-lora" accelerate launch train_dreambooth_lora_flux.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --mixed_precision="bf16" \ --train_text_encoder\ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --learning_rate=1e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=500 \ --validation_prompt="A photo of sks dog in a bucket" \ --seed="0" \ --push_to_hub ``` ## Other notes Thanks to `bghira` for their help with reviewing & insight sharing ♥️
diffusers/examples/dreambooth/README_flux.md/0
{ "file_path": "diffusers/examples/dreambooth/README_flux.md", "repo_id": "diffusers", "token_count": 2350 }
117
import argparse import logging import math import os from pathlib import Path import jax import jax.numpy as jnp import numpy as np import optax import torch import torch.utils.checkpoint import transformers from flax import jax_utils from flax.training import train_state from flax.training.common_utils import shard from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from jax.experimental.compilation_cache import compilation_cache as cc from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed from diffusers import ( FlaxAutoencoderKL, FlaxDDPMScheduler, FlaxPNDMScheduler, FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker from diffusers.utils import check_min_version # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.31.0.dev0") # Cache compiled models across invocations of this script. cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache")) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_name_or_path", type=str, default=None, help="Path to pretrained vae or vae identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.") parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.instance_data_dir is None: raise ValueError("You must specify a train data directory.") if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, class_num=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def get_params_to_save(params): return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) def main(): args = parse_args() logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() if args.seed is not None: set_seed(args.seed) rng = jax.random.PRNGKey(args.seed) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) total_sample_batch_size = args.sample_batch_size * jax.local_device_count() sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0 ): prompt_ids = pipeline.prepare_inputs(example["prompt"]) prompt_ids = shard(prompt_ids) p_params = jax_utils.replicate(params) rng = jax.random.split(rng)[0] sample_rng = jax.random.split(rng, jax.device_count()) images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) images = pipeline.numpy_to_pil(np.array(images)) for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline # Handle the repository creation if jax.process_index() == 0: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer and add the placeholder token as a additional special token if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) else: raise NotImplementedError("No tokenizer specified!") train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, class_num=args.num_class_images, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad( {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" ).input_ids batch = { "input_ids": input_ids, "pixel_values": pixel_values, } batch = {k: v.numpy() for k, v in batch.items()} return batch total_train_batch_size = args.train_batch_size * jax.local_device_count() if len(train_dataset) < total_train_batch_size: raise ValueError( f"Training batch size is {total_train_batch_size}, but your dataset only contains" f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that" f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that." ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True ) weight_dtype = jnp.float32 if args.mixed_precision == "fp16": weight_dtype = jnp.float16 elif args.mixed_precision == "bf16": weight_dtype = jnp.bfloat16 if args.pretrained_vae_name_or_path: # TODO(patil-suraj): Upload flax weights for the VAE vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True}) else: vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision}) # Load models and create wrapper for stable diffusion text_encoder = FlaxCLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype, revision=args.revision, ) vae, vae_params = FlaxAutoencoderKL.from_pretrained( vae_arg, dtype=weight_dtype, **vae_kwargs, ) unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype, revision=args.revision, ) # Optimization if args.scale_lr: args.learning_rate = args.learning_rate * total_train_batch_size constant_scheduler = optax.constant_schedule(args.learning_rate) adamw = optax.adamw( learning_rate=constant_scheduler, b1=args.adam_beta1, b2=args.adam_beta2, eps=args.adam_epsilon, weight_decay=args.adam_weight_decay, ) optimizer = optax.chain( optax.clip_by_global_norm(args.max_grad_norm), adamw, ) unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer) text_encoder_state = train_state.TrainState.create( apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer ) noise_scheduler = FlaxDDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 ) noise_scheduler_state = noise_scheduler.create_state() # Initialize our training train_rngs = jax.random.split(rng, jax.local_device_count()) def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng): dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) if args.train_text_encoder: params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params} else: params = {"unet": unet_state.params} def compute_loss(params): # Convert images to latent space vae_outputs = vae.apply( {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode ) latents = vae_outputs.latent_dist.sample(sample_rng) # (NHWC) -> (NCHW) latents = jnp.transpose(latents, (0, 3, 1, 2)) latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise_rng, timestep_rng = jax.random.split(sample_rng) noise = jax.random.normal(noise_rng, latents.shape) # Sample a random timestep for each image bsz = latents.shape[0] timesteps = jax.random.randint( timestep_rng, (bsz,), 0, noise_scheduler.config.num_train_timesteps, ) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) # Get the text embedding for conditioning if args.train_text_encoder: encoder_hidden_states = text_encoder_state.apply_fn( batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True )[0] else: encoder_hidden_states = text_encoder( batch["input_ids"], params=text_encoder_state.params, train=False )[0] # Predict the noise residual model_pred = unet.apply( {"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True ).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0) target, target_prior = jnp.split(target, 2, axis=0) # Compute instance loss loss = (target - model_pred) ** 2 loss = loss.mean() # Compute prior loss prior_loss = (target_prior - model_pred_prior) ** 2 prior_loss = prior_loss.mean() # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = (target - model_pred) ** 2 loss = loss.mean() return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(params) grad = jax.lax.pmean(grad, "batch") new_unet_state = unet_state.apply_gradients(grads=grad["unet"]) if args.train_text_encoder: new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"]) else: new_text_encoder_state = text_encoder_state metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_unet_state, new_text_encoder_state, metrics, new_train_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1)) # Replicate the train state on each device unet_state = jax_utils.replicate(unet_state) text_encoder_state = jax_utils.replicate(text_encoder_state) vae_params = jax_utils.replicate(vae_params) # Train! num_update_steps_per_epoch = math.ceil(len(train_dataloader)) # Scheduler and math around the number of training steps. if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") logger.info(f" Total optimization steps = {args.max_train_steps}") def checkpoint(step=None): # Create the pipeline using the trained modules and save it. scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker", from_pt=True ) pipeline = FlaxStableDiffusionPipeline( text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), ) outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir pipeline.save_pretrained( outdir, params={ "text_encoder": get_params_to_save(text_encoder_state.params), "vae": get_params_to_save(vae_params), "unet": get_params_to_save(unet_state.params), "safety_checker": safety_checker.params, }, ) if args.push_to_hub: message = f"checkpoint-{step}" if step is not None else "End of training" upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message=message, ignore_patterns=["step_*", "epoch_*"], ) global_step = 0 epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_metrics = [] steps_per_epoch = len(train_dataset) // total_train_batch_size train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) # train for batch in train_dataloader: batch = shard(batch) unet_state, text_encoder_state, train_metric, train_rngs = p_train_step( unet_state, text_encoder_state, vae_params, batch, train_rngs ) train_metrics.append(train_metric) train_step_progress_bar.update(jax.local_device_count()) global_step += 1 if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0: checkpoint(global_step) if global_step >= args.max_train_steps: break train_metric = jax_utils.unreplicate(train_metric) train_step_progress_bar.close() epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") if jax.process_index() == 0: checkpoint() if __name__ == "__main__": main()
diffusers/examples/dreambooth/train_dreambooth_flax.py/0
{ "file_path": "diffusers/examples/dreambooth/train_dreambooth_flax.py", "repo_id": "diffusers", "token_count": 11967 }
118
# Kandinsky2.2 text-to-image fine-tuning Kandinsky 2.2 includes a prior pipeline that generates image embeddings from text prompts, and a decoder pipeline that generates the output image based on the image embeddings. We provide `train_text_to_image_prior.py` and `train_text_to_image_decoder.py` scripts to show you how to fine-tune the Kandinsky prior and decoder models separately based on your own dataset. To achieve the best results, you should fine-tune **_both_** your prior and decoder models. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparameters to get the best result on your dataset.___ ## Running locally with PyTorch Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the --push_to_hub flag. ___ ### Naruto example For all our examples, we will directly store the trained weights on the Hub, so we need to be logged in and add the `--push_to_hub` flag. In order to do that, you have to be a registered user on the 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to the [User Access Tokens](https://huggingface.co/docs/hub/security-tokens) guide. Run the following command to authenticate your token ```bash huggingface-cli login ``` We also use [Weights and Biases](https://docs.wandb.ai/quickstart) logging by default, because it is really useful to monitor the training progress by regularly generating sample images during training. To install wandb, run ```bash pip install wandb ``` To disable wandb logging, remove the `--report_to=="wandb"` and `--validation_prompts="A robot naruto, 4k photo"` flags from below examples #### Fine-tune decoder <br> <!-- accelerate_snippet_start --> ```bash export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot naruto, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-decoder-naruto-model" ``` <!-- accelerate_snippet_end --> To train on your own training files, prepare the dataset according to the format required by `datasets`. You can find the instructions for how to do that in the [ImageFolder with metadata](https://huggingface.co/docs/datasets/en/image_load#imagefolder-with-metadata) guide. If you wish to use custom loading logic, you should modify the script and we have left pointers for that in the training script. ```bash export TRAIN_DIR="path_to_your_dataset" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \ --train_data_dir=$TRAIN_DIR \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot naruto, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi22-decoder-naruto-model" ``` Once the training is finished the model will be saved in the `output_dir` specified in the command. In this example it's `kandi22-decoder-naruto-model`. To load the fine-tuned model for inference just pass that path to `AutoPipelineForText2Image` ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained(output_dir, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt='A robot naruto, 4k photo' images = pipe(prompt=prompt).images images[0].save("robot-naruto.png") ``` Checkpoints only save the unet, so to run inference from a checkpoint, just load the unet ```python from diffusers import AutoPipelineForText2Image, UNet2DConditionModel model_path = "path_to_saved_model" unet = UNet2DConditionModel.from_pretrained(model_path + "/checkpoint-<N>/unet") pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", unet=unet, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() image = pipe(prompt="A robot naruto, 4k photo").images[0] image.save("robot-naruto.png") ``` #### Fine-tune prior You can fine-tune the Kandinsky prior model with `train_text_to_image_prior.py` script. Note that we currently do not support `--gradient_checkpointing` for prior model fine-tuning. <br> <!-- accelerate_snippet_start --> ```bash export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot naruto, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-prior-naruto-model" ``` <!-- accelerate_snippet_end --> To perform inference with the fine-tuned prior model, you will need to first create a prior pipeline by passing the `output_dir` to `DiffusionPipeline`. Then create a `KandinskyV22CombinedPipeline` from a pretrained or fine-tuned decoder checkpoint along with all the modules of the prior pipeline you just created. ```python from diffusers import AutoPipelineForText2Image, DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained(output_dir, torch_dtype=torch.float16) prior_components = {"prior_" + k: v for k,v in pipe_prior.components.items()} pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", **prior_components, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt='A robot naruto, 4k photo' images = pipe(prompt=prompt, negative_prompt=negative_prompt).images images[0] ``` If you want to use a fine-tuned decoder checkpoint along with your fine-tuned prior checkpoint, you can simply replace the "kandinsky-community/kandinsky-2-2-decoder" in above code with your custom model repo name. Note that in order to be able to create a `KandinskyV22CombinedPipeline`, your model repository need to have a prior tag. If you have created your model repo using our training script, the prior tag is automatically included. #### Training with multiple GPUs `accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch) for running distributed training with `accelerate`. Here is an example command: ```bash export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image_decoder.py \ --dataset_name=$DATASET_NAME \ --resolution=768 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --checkpoints_total_limit=3 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --validation_prompts="A robot naruto, 4k photo" \ --report_to="wandb" \ --push_to_hub \ --output_dir="kandi2-decoder-naruto-model" ``` #### Training with Min-SNR weighting We support training with the Min-SNR weighting strategy proposed in [Efficient Diffusion Training via Min-SNR Weighting Strategy](https://arxiv.org/abs/2303.09556) which helps achieve faster convergence by rebalancing the loss. Enable the `--snr_gamma` argument and set it to the recommended value of 5.0. ## Training with LoRA Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Kandinsky 2.2 on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as explained in the [installation](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) and the [Narutos dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions). #### Train decoder ```bash export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_decoder_lora.py \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=768 \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --rank=4 \ --gradient_checkpointing \ --output_dir="kandi22-decoder-naruto-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub \ ``` #### Train prior ```bash export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_prior_lora.py \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=768 \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --rank=4 \ --output_dir="kandi22-prior-naruto-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" \ --push_to_hub \ ``` **___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run above scripts in consumer GPUs like T4 or V100.___** ### Inference #### Inference using fine-tuned LoRA checkpoint for decoder Once you have trained a Kandinsky decoder model using the above command, inference can be done with the `AutoPipelineForText2Image` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights, which in this case is `kandi22-decoder-naruto-lora`. ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) pipe.unet.load_attn_procs(output_dir) pipe.enable_model_cpu_offload() prompt='A robot naruto, 4k photo' image = pipe(prompt=prompt).images[0] image.save("robot_naruto.png") ``` #### Inference using fine-tuned LoRA checkpoint for prior ```python from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) pipe.prior_prior.load_attn_procs(output_dir) pipe.enable_model_cpu_offload() prompt='A robot naruto, 4k photo' image = pipe(prompt=prompt).images[0] image.save("robot_naruto.png") image ``` ### Training with xFormers: You can enable memory efficient attention by [installing xFormers](https://huggingface.co/docs/diffusers/main/en/optimization/xformers) and passing the `--enable_xformers_memory_efficient_attention` argument to the script. xFormers training is not available for fine-tuning the prior model. **Note**: According to [this issue](https://github.com/huggingface/diffusers/issues/2234#issuecomment-1416931212), xFormers `v0.0.16` cannot be used for training in some GPUs. If you observe that problem, please install a development version as indicated in that comment.
diffusers/examples/kandinsky2_2/text_to_image/README.md/0
{ "file_path": "diffusers/examples/kandinsky2_2/text_to_image/README.md", "repo_id": "diffusers", "token_count": 4393 }
119
import os import random import torch import torchvision.transforms as transforms from PIL import Image def recalculate_box_and_verify_if_valid(x, y, w, h, image_size, original_image_size, min_box_size): scale = image_size / min(original_image_size) crop_y = (original_image_size[1] * scale - image_size) // 2 crop_x = (original_image_size[0] * scale - image_size) // 2 x0 = max(x * scale - crop_x, 0) y0 = max(y * scale - crop_y, 0) x1 = min((x + w) * scale - crop_x, image_size) y1 = min((y + h) * scale - crop_y, image_size) if (x1 - x0) * (y1 - y0) / (image_size * image_size) < min_box_size: return False, (None, None, None, None) return True, (x0, y0, x1, y1) class COCODataset(torch.utils.data.Dataset): def __init__( self, data_path, image_path, image_size=512, min_box_size=0.01, max_boxes_per_data=8, tokenizer=None, ): super().__init__() self.min_box_size = min_box_size self.max_boxes_per_data = max_boxes_per_data self.image_size = image_size self.image_path = image_path self.tokenizer = tokenizer self.transforms = transforms.Compose( [ transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) self.data_list = torch.load(data_path, map_location="cpu") def __getitem__(self, index): if self.max_boxes_per_data > 99: assert False, "Are you sure setting such large number of boxes per image?" out = {} data = self.data_list[index] image = Image.open(os.path.join(self.image_path, data["file_path"])).convert("RGB") original_image_size = image.size out["pixel_values"] = self.transforms(image) annos = data["annos"] areas, valid_annos = [], [] for anno in annos: # x, y, w, h = anno['bbox'] x0, y0, x1, y1 = anno["bbox"] x, y, w, h = x0, y0, x1 - x0, y1 - y0 valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid( x, y, w, h, self.image_size, original_image_size, self.min_box_size ) if valid: anno["bbox"] = [x0, y0, x1, y1] areas.append((x1 - x0) * (y1 - y0)) valid_annos.append(anno) # Sort according to area and choose the largest N objects wanted_idxs = torch.tensor(areas).sort(descending=True)[1] wanted_idxs = wanted_idxs[: self.max_boxes_per_data] valid_annos = [valid_annos[i] for i in wanted_idxs] out["boxes"] = torch.zeros(self.max_boxes_per_data, 4) out["masks"] = torch.zeros(self.max_boxes_per_data) out["text_embeddings_before_projection"] = torch.zeros(self.max_boxes_per_data, 768) for i, anno in enumerate(valid_annos): out["boxes"][i] = torch.tensor(anno["bbox"]) / self.image_size out["masks"][i] = 1 out["text_embeddings_before_projection"][i] = anno["text_embeddings_before_projection"] prob_drop_boxes = 0.1 if random.random() < prob_drop_boxes: out["masks"][:] = 0 caption = random.choice(data["captions"]) prob_drop_captions = 0.5 if random.random() < prob_drop_captions: caption = "" caption = self.tokenizer( caption, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt", ) out["caption"] = caption return out def __len__(self): return len(self.data_list)
diffusers/examples/research_projects/gligen/dataset.py/0
{ "file_path": "diffusers/examples/research_projects/gligen/dataset.py", "repo_id": "diffusers", "token_count": 1897 }
120
import argparse import itertools import math import os import random from pathlib import Path from typing import Iterable import numpy as np import PIL import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from neural_compressor.utils import logger from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.utils import make_image_grid if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path): logger.info("Saving embeddings") learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id] learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} torch.save(learned_embeds_dict, save_path) def parse_args(): parser = argparse.ArgumentParser(description="Example of distillation for quantization on Textual Inversion.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." ) parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--do_quantization", action="store_true", help="Whether or not to do quantization.") parser.add_argument("--do_distillation", action="store_true", help="Whether or not to do distillation.") parser.add_argument( "--verify_loading", action="store_true", help="Whether or not to verify the loading of the quantized model." ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args imagenet_templates_small = [ "a photo of a {}", "a rendering of a {}", "a cropped photo of the {}", "the photo of a {}", "a photo of a clean {}", "a photo of a dirty {}", "a dark photo of the {}", "a photo of my {}", "a photo of the cool {}", "a close-up photo of a {}", "a bright photo of the {}", "a cropped photo of a {}", "a photo of the {}", "a good photo of the {}", "a photo of one {}", "a close-up photo of the {}", "a rendition of the {}", "a photo of the clean {}", "a rendition of a {}", "a photo of a nice {}", "a good photo of a {}", "a photo of the nice {}", "a photo of the small {}", "a photo of the weird {}", "a photo of the large {}", "a photo of a cool {}", "a photo of a small {}", ] imagenet_style_templates_small = [ "a painting in the style of {}", "a rendering in the style of {}", "a cropped painting in the style of {}", "the painting in the style of {}", "a clean painting in the style of {}", "a dirty painting in the style of {}", "a dark painting in the style of {}", "a picture in the style of {}", "a cool painting in the style of {}", "a close-up painting in the style of {}", "a bright painting in the style of {}", "a cropped painting in the style of {}", "a good painting in the style of {}", "a close-up painting in the style of {}", "a rendition in the style of {}", "a nice painting in the style of {}", "a small painting in the style of {}", "a weird painting in the style of {}", "a large painting in the style of {}", ] # Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14 class EMAModel: """ Exponential Moving Average of models weights """ def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999): parameters = list(parameters) self.shadow_params = [p.clone().detach() for p in parameters] self.decay = decay self.optimization_step = 0 def get_decay(self, optimization_step): """ Compute the decay factor for the exponential moving average. """ value = (1 + optimization_step) / (10 + optimization_step) return 1 - min(self.decay, value) @torch.no_grad() def step(self, parameters): parameters = list(parameters) self.optimization_step += 1 self.decay = self.get_decay(self.optimization_step) for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: tmp = self.decay * (s_param - param) s_param.sub_(tmp) else: s_param.copy_(param) torch.cuda.empty_cache() def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = list(parameters) for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.data) def to(self, device=None, dtype=None) -> None: r"""Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` """ # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.shadow_params ] class TextualInversionDataset(Dataset): def __init__( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] self.num_images = len(self.image_paths) self._length = self.num_images if set == "train": self._length = self.num_images * repeats self.interpolation = { "linear": PIL_INTERPOLATION["linear"], "bilinear": PIL_INTERPOLATION["bilinear"], "bicubic": PIL_INTERPOLATION["bicubic"], "lanczos": PIL_INTERPOLATION["lanczos"], }[interpolation] self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token text = random.choice(self.templates).format(placeholder_string) example["input_ids"] = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids[0] # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] image = Image.fromarray(img) image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip_transform(image) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) return example def freeze_params(params): for param in params: param.requires_grad = False def generate_images(pipeline, prompt="", guidance_scale=7.5, num_inference_steps=50, num_images_per_prompt=1, seed=42): generator = torch.Generator(pipeline.device).manual_seed(seed) images = pipeline( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, num_images_per_prompt=num_images_per_prompt, ).images _rows = int(math.sqrt(num_images_per_prompt)) grid = make_image_grid(images, rows=_rows, cols=num_images_per_prompt // _rows) return grid def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_config=accelerator_project_config, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer and add the placeholder token as a additional special token if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load models and create wrapper for stable diffusion noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, ) train_unet = False # Freeze vae and unet freeze_params(vae.parameters()) if not args.do_quantization and not args.do_distillation: # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(args.placeholder_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id = token_ids[0] placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data token_embeds[placeholder_token_id] = token_embeds[initializer_token_id] freeze_params(unet.parameters()) # Freeze all parameters except for the token embeddings in text encoder params_to_freeze = itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), text_encoder.text_model.embeddings.position_embedding.parameters(), ) freeze_params(params_to_freeze) else: train_unet = True freeze_params(text_encoder.parameters()) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( # only optimize the unet or embeddings of text_encoder unet.parameters() if train_unet else text_encoder.get_input_embeddings().parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) train_dataset = TextualInversionDataset( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, learnable_property=args.learnable_property, center_crop=args.center_crop, set="train", ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) if not train_unet: text_encoder = accelerator.prepare(text_encoder) unet.to(accelerator.device) unet.eval() else: unet = accelerator.prepare(unet) text_encoder.to(accelerator.device) text_encoder.eval() optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler) # Move vae to device vae.to(accelerator.device) # Keep vae in eval model as we don't train these vae.eval() compression_manager = None def train_func(model): if train_unet: unet_ = model text_encoder_ = text_encoder else: unet_ = unet text_encoder_ = model # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("textual_inversion", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 if train_unet and args.use_ema: ema_unet = EMAModel(unet_.parameters()) for epoch in range(args.num_train_epochs): model.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(model): # Convert images to latent space latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn(latents.shape).to(latents.device) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ).long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder_(batch["input_ids"])[0] # Predict the noise residual model_pred = unet_(noisy_latents, timesteps, encoder_hidden_states).sample loss = F.mse_loss(model_pred, noise, reduction="none").mean([1, 2, 3]).mean() if train_unet and compression_manager: unet_inputs = { "sample": noisy_latents, "timestep": timesteps, "encoder_hidden_states": encoder_hidden_states, } loss = compression_manager.callbacks.on_after_compute_loss(unet_inputs, model_pred, loss) # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if train_unet: if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet_.parameters(), args.max_grad_norm) else: # Zero out the gradients for all token embeddings except the newly added # embeddings for the concept, as we only want to optimize the concept embeddings if accelerator.num_processes > 1: grads = text_encoder_.module.get_input_embeddings().weight.grad else: grads = text_encoder_.get_input_embeddings().weight.grad # Get the index for tokens that we want to zero the grads for index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if train_unet and args.use_ema: ema_unet.step(unet_.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if not train_unet and global_step % args.save_steps == 0: save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin") save_progress(text_encoder_, placeholder_token_id, accelerator, args, save_path) logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if train_unet and args.use_ema: ema_unet.copy_to(unet_.parameters()) if not train_unet: return text_encoder_ if not train_unet: text_encoder = train_func(text_encoder) else: import copy model = copy.deepcopy(unet) confs = [] if args.do_quantization: from neural_compressor import QuantizationAwareTrainingConfig q_conf = QuantizationAwareTrainingConfig() confs.append(q_conf) if args.do_distillation: teacher_model = copy.deepcopy(model) def attention_fetcher(x): return x.sample layer_mappings = [ [ [ "conv_in", ] ], [ [ "time_embedding", ] ], [["down_blocks.0.attentions.0", attention_fetcher]], [["down_blocks.0.attentions.1", attention_fetcher]], [ [ "down_blocks.0.resnets.0", ] ], [ [ "down_blocks.0.resnets.1", ] ], [ [ "down_blocks.0.downsamplers.0", ] ], [["down_blocks.1.attentions.0", attention_fetcher]], [["down_blocks.1.attentions.1", attention_fetcher]], [ [ "down_blocks.1.resnets.0", ] ], [ [ "down_blocks.1.resnets.1", ] ], [ [ "down_blocks.1.downsamplers.0", ] ], [["down_blocks.2.attentions.0", attention_fetcher]], [["down_blocks.2.attentions.1", attention_fetcher]], [ [ "down_blocks.2.resnets.0", ] ], [ [ "down_blocks.2.resnets.1", ] ], [ [ "down_blocks.2.downsamplers.0", ] ], [ [ "down_blocks.3.resnets.0", ] ], [ [ "down_blocks.3.resnets.1", ] ], [ [ "up_blocks.0.resnets.0", ] ], [ [ "up_blocks.0.resnets.1", ] ], [ [ "up_blocks.0.resnets.2", ] ], [ [ "up_blocks.0.upsamplers.0", ] ], [["up_blocks.1.attentions.0", attention_fetcher]], [["up_blocks.1.attentions.1", attention_fetcher]], [["up_blocks.1.attentions.2", attention_fetcher]], [ [ "up_blocks.1.resnets.0", ] ], [ [ "up_blocks.1.resnets.1", ] ], [ [ "up_blocks.1.resnets.2", ] ], [ [ "up_blocks.1.upsamplers.0", ] ], [["up_blocks.2.attentions.0", attention_fetcher]], [["up_blocks.2.attentions.1", attention_fetcher]], [["up_blocks.2.attentions.2", attention_fetcher]], [ [ "up_blocks.2.resnets.0", ] ], [ [ "up_blocks.2.resnets.1", ] ], [ [ "up_blocks.2.resnets.2", ] ], [ [ "up_blocks.2.upsamplers.0", ] ], [["up_blocks.3.attentions.0", attention_fetcher]], [["up_blocks.3.attentions.1", attention_fetcher]], [["up_blocks.3.attentions.2", attention_fetcher]], [ [ "up_blocks.3.resnets.0", ] ], [ [ "up_blocks.3.resnets.1", ] ], [ [ "up_blocks.3.resnets.2", ] ], [["mid_block.attentions.0", attention_fetcher]], [ [ "mid_block.resnets.0", ] ], [ [ "mid_block.resnets.1", ] ], [ [ "conv_out", ] ], ] layer_names = [layer_mapping[0][0] for layer_mapping in layer_mappings] if not set(layer_names).issubset([n[0] for n in model.named_modules()]): raise ValueError( "Provided model is not compatible with the default layer_mappings, " 'please use the model fine-tuned from "CompVis/stable-diffusion-v1-4", ' "or modify the layer_mappings variable to fit your model." f"\nDefault layer_mappings are as such:\n{layer_mappings}" ) from neural_compressor.config import DistillationConfig, IntermediateLayersKnowledgeDistillationLossConfig distillation_criterion = IntermediateLayersKnowledgeDistillationLossConfig( layer_mappings=layer_mappings, loss_types=["MSE"] * len(layer_mappings), loss_weights=[1.0 / len(layer_mappings)] * len(layer_mappings), add_origin_loss=True, ) d_conf = DistillationConfig(teacher_model=teacher_model, criterion=distillation_criterion) confs.append(d_conf) from neural_compressor.training import prepare_compression compression_manager = prepare_compression(model, confs) compression_manager.callbacks.on_train_begin() model = compression_manager.model train_func(model) compression_manager.callbacks.on_train_end() # Save the resulting model and its corresponding configuration in the given directory model.save(args.output_dir) logger.info(f"Optimized model saved to: {args.output_dir}.") # change to framework model for further use model = model.model # Create the pipeline using using the trained modules and save it. templates = imagenet_style_templates_small if args.learnable_property == "style" else imagenet_templates_small prompt = templates[0].format(args.placeholder_token) if accelerator.is_main_process: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=accelerator.unwrap_model(text_encoder), vae=vae, unet=accelerator.unwrap_model(unet), tokenizer=tokenizer, ) pipeline.save_pretrained(args.output_dir) pipeline = pipeline.to(unet.device) baseline_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) baseline_model_images.save( os.path.join(args.output_dir, "{}_baseline_model.png".format("_".join(prompt.split()))) ) if not train_unet: # Also save the newly trained embeddings save_path = os.path.join(args.output_dir, "learned_embeds.bin") save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path) else: setattr(pipeline, "unet", accelerator.unwrap_model(model)) if args.do_quantization: pipeline = pipeline.to(torch.device("cpu")) optimized_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) optimized_model_images.save( os.path.join(args.output_dir, "{}_optimized_model.png".format("_".join(prompt.split()))) ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if args.do_quantization and args.verify_loading: # Load the model obtained after Intel Neural Compressor quantization from neural_compressor.utils.pytorch import load loaded_model = load(args.output_dir, model=unet) loaded_model.eval() setattr(pipeline, "unet", loaded_model) if args.do_quantization: pipeline = pipeline.to(torch.device("cpu")) loaded_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed) if loaded_model_images != optimized_model_images: logger.info("The quantized model was not successfully loaded.") else: logger.info("The quantized model was successfully loaded.") if __name__ == "__main__": main()
diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/textual_inversion.py/0
{ "file_path": "diffusers/examples/research_projects/intel_opts/textual_inversion_dfq/textual_inversion.py", "repo_id": "diffusers", "token_count": 18301 }
121
## Diffusers examples with ONNXRuntime optimizations **This research project is not actively maintained by the diffusers team. For any questions or comments, please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.** This aims to provide diffusers examples with ONNXRuntime optimizations for training/fine-tuning unconditional image generation, text to image, and textual inversion. Please see individual directories for more details on how to run each task using ONNXRuntime.
diffusers/examples/research_projects/onnxruntime/README.md/0
{ "file_path": "diffusers/examples/research_projects/onnxruntime/README.md", "repo_id": "diffusers", "token_count": 134 }
122
import os from typing import List import faiss import numpy as np import torch from datasets import Dataset, load_dataset from PIL import Image from transformers import CLIPImageProcessor, CLIPModel, PretrainedConfig from diffusers import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name def normalize_images(images: List[Image.Image]): images = [np.array(image) for image in images] images = [image / 127.5 - 1 for image in images] return images def preprocess_images(images: List[np.array], feature_extractor: CLIPImageProcessor) -> torch.Tensor: """ Preprocesses a list of images into a batch of tensors. Args: images (:obj:`List[Image.Image]`): A list of images to preprocess. Returns: :obj:`torch.Tensor`: A batch of tensors. """ images = [np.array(image) for image in images] images = [(image + 1.0) / 2.0 for image in images] images = feature_extractor(images, return_tensors="pt").pixel_values return images class IndexConfig(PretrainedConfig): def __init__( self, clip_name_or_path="openai/clip-vit-large-patch14", dataset_name="Isamu136/oxford_pets_with_l14_emb", image_column="image", index_name="embeddings", index_path=None, dataset_set="train", metric_type=faiss.METRIC_L2, faiss_device=-1, **kwargs, ): super().__init__(**kwargs) self.clip_name_or_path = clip_name_or_path self.dataset_name = dataset_name self.image_column = image_column self.index_name = index_name self.index_path = index_path self.dataset_set = dataset_set self.metric_type = metric_type self.faiss_device = faiss_device class Index: """ Each index for a retrieval model is specific to the clip model used and the dataset used. """ def __init__(self, config: IndexConfig, dataset: Dataset): self.config = config self.dataset = dataset self.index_initialized = False self.index_name = config.index_name self.index_path = config.index_path self.init_index() def set_index_name(self, index_name: str): self.index_name = index_name def init_index(self): if not self.index_initialized: if self.index_path and self.index_name: try: self.dataset.add_faiss_index( column=self.index_name, metric_type=self.config.metric_type, device=self.config.faiss_device ) self.index_initialized = True except Exception as e: print(e) logger.info("Index not initialized") if self.index_name in self.dataset.features: self.dataset.add_faiss_index(column=self.index_name) self.index_initialized = True def build_index( self, model=None, feature_extractor: CLIPImageProcessor = None, torch_dtype=torch.float32, ): if not self.index_initialized: model = model or CLIPModel.from_pretrained(self.config.clip_name_or_path).to(dtype=torch_dtype) feature_extractor = feature_extractor or CLIPImageProcessor.from_pretrained(self.config.clip_name_or_path) self.dataset = get_dataset_with_emb_from_clip_model( self.dataset, model, feature_extractor, image_column=self.config.image_column, index_name=self.config.index_name, ) self.init_index() def retrieve_imgs(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.get_nearest_examples(self.index_name, vec, k=k) def retrieve_imgs_batch(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.get_nearest_examples_batch(self.index_name, vec, k=k) def retrieve_indices(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.search(self.index_name, vec, k=k) def retrieve_indices_batch(self, vec, k: int = 20): vec = np.array(vec).astype(np.float32) return self.dataset.search_batch(self.index_name, vec, k=k) class Retriever: def __init__( self, config: IndexConfig, index: Index = None, dataset: Dataset = None, model=None, feature_extractor: CLIPImageProcessor = None, ): self.config = config self.index = index or self._build_index(config, dataset, model=model, feature_extractor=feature_extractor) @classmethod def from_pretrained( cls, retriever_name_or_path: str, index: Index = None, dataset: Dataset = None, model=None, feature_extractor: CLIPImageProcessor = None, **kwargs, ): config = kwargs.pop("config", None) or IndexConfig.from_pretrained(retriever_name_or_path, **kwargs) return cls(config, index=index, dataset=dataset, model=model, feature_extractor=feature_extractor) @staticmethod def _build_index( config: IndexConfig, dataset: Dataset = None, model=None, feature_extractor: CLIPImageProcessor = None ): dataset = dataset or load_dataset(config.dataset_name) dataset = dataset[config.dataset_set] index = Index(config, dataset) index.build_index(model=model, feature_extractor=feature_extractor) return index def save_pretrained(self, save_directory): os.makedirs(save_directory, exist_ok=True) if self.config.index_path is None: index_path = os.path.join(save_directory, "hf_dataset_index.faiss") self.index.dataset.get_index(self.config.index_name).save(index_path) self.config.index_path = index_path self.config.save_pretrained(save_directory) def init_retrieval(self): logger.info("initializing retrieval") self.index.init_index() def retrieve_imgs(self, embeddings: np.ndarray, k: int): return self.index.retrieve_imgs(embeddings, k) def retrieve_imgs_batch(self, embeddings: np.ndarray, k: int): return self.index.retrieve_imgs_batch(embeddings, k) def retrieve_indices(self, embeddings: np.ndarray, k: int): return self.index.retrieve_indices(embeddings, k) def retrieve_indices_batch(self, embeddings: np.ndarray, k: int): return self.index.retrieve_indices_batch(embeddings, k) def __call__( self, embeddings, k: int = 20, ): return self.index.retrieve_imgs(embeddings, k) def map_txt_to_clip_feature(clip_model, tokenizer, prompt): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > tokenizer.model_max_length: removed_text = tokenizer.batch_decode(text_input_ids[:, tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : tokenizer.model_max_length] text_embeddings = clip_model.get_text_features(text_input_ids.to(clip_model.device)) text_embeddings = text_embeddings / torch.linalg.norm(text_embeddings, dim=-1, keepdim=True) text_embeddings = text_embeddings[:, None, :] return text_embeddings[0][0].cpu().detach().numpy() def map_img_to_model_feature(model, feature_extractor, imgs, device): for i, image in enumerate(imgs): if not image.mode == "RGB": imgs[i] = image.convert("RGB") imgs = normalize_images(imgs) retrieved_images = preprocess_images(imgs, feature_extractor).to(device) image_embeddings = model(retrieved_images) image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True) image_embeddings = image_embeddings[None, ...] return image_embeddings.cpu().detach().numpy()[0][0] def get_dataset_with_emb_from_model(dataset, model, feature_extractor, image_column="image", index_name="embeddings"): return dataset.map( lambda example: { index_name: map_img_to_model_feature(model, feature_extractor, [example[image_column]], model.device) } ) def get_dataset_with_emb_from_clip_model( dataset, clip_model, feature_extractor, image_column="image", index_name="embeddings" ): return dataset.map( lambda example: { index_name: map_img_to_model_feature( clip_model.get_image_features, feature_extractor, [example[image_column]], clip_model.device ) } )
diffusers/examples/research_projects/rdm/retriever.py/0
{ "file_path": "diffusers/examples/research_projects/rdm/retriever.py", "repo_id": "diffusers", "token_count": 3929 }
123
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import gc import hashlib import logging import math import os import random import shutil from contextlib import nullcontext from pathlib import Path import numpy as np import pandas as pd import torch import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from peft import LoraConfig, set_peft_model_state_dict from peft.utils import get_peft_model_state_dict from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm import diffusers from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline, ) from diffusers.optimization import get_scheduler from diffusers.training_utils import ( cast_training_params, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3, ) from diffusers.utils import ( check_min_version, convert_unet_state_dict_to_peft, is_wandb_available, ) from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.30.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, images=None, base_model: str = None, train_text_encoder=False, instance_prompt=None, validation_prompt=None, repo_folder=None, ): widget_dict = [] if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) widget_dict.append( {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} ) model_description = f""" # SD3 DreamBooth LoRA - {repo_id} <Gallery /> ## Model description These are {repo_id} DreamBooth weights for {base_model}. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: {train_text_encoder}. ## Trigger words You should use {instance_prompt} to trigger the image generation. ## Download model [Download]({repo_id}/tree/main) them in the Files & versions tab. ## License Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE). """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="openrail++", base_model=base_model, prompt=instance_prompt, model_description=model_description, widget=widget_dict, ) tags = [ "text-to-image", "diffusers-training", "diffusers", "lora", "sd3", "sd3-diffusers", "template:sd-lora", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def log_validation( pipeline, args, accelerator, pipeline_args, epoch, is_final_validation=False, ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) pipeline.enable_model_cpu_offload() pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None # autocast_ctx = torch.autocast(accelerator.device.type) if not is_final_validation else nullcontext() autocast_ctx = nullcontext() with autocast_ctx: images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)] for tracker in accelerator.trackers: phase_name = "test" if is_final_validation else "validation" if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { phase_name: [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() return images def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help=("A folder containing the training data. "), ) parser.add_argument( "--data_df_path", type=str, default=None, help=("Path to the parquet file serialized with compute_embeddings.py."), ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", ) parser.add_argument( "--max_sequence_length", type=int, default=77, help="Maximum sequence length to use with with the T5 text encoder", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--output_dir", type=str, default="sd3-dreambooth-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--weighting_scheme", type=str, default="logit_normal", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"], ) parser.add_argument( "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." ) parser.add_argument( "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." ) parser.add_argument( "--mode_scale", type=float, default=1.29, help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", ) parser.add_argument( "--optimizer", type=str, default="AdamW", help=('The optimizer type to use. Choose between ["AdamW"]'), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.instance_data_dir is None: raise ValueError("Specify `instance_data_dir`.") env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, data_df_path, instance_data_root, instance_prompt, size=1024, center_crop=False, ): # Logistics self.size = size self.center_crop = center_crop self.instance_prompt = instance_prompt self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") # Load images. instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] image_hashes = [self.generate_image_hash(path) for path in list(Path(instance_data_root).iterdir())] self.instance_images = instance_images self.image_hashes = image_hashes # Image transformations self.pixel_values = self.apply_image_transformations( instance_images=instance_images, size=size, center_crop=center_crop ) # Map hashes to embeddings. self.data_dict = self.map_image_hash_embedding(data_df_path=data_df_path) self.num_instance_images = len(instance_images) self._length = self.num_instance_images def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = self.pixel_values[index % self.num_instance_images] image_hash = self.image_hashes[index % self.num_instance_images] prompt_embeds, pooled_prompt_embeds = self.data_dict[image_hash] example["instance_images"] = instance_image example["prompt_embeds"] = prompt_embeds example["pooled_prompt_embeds"] = pooled_prompt_embeds return example def apply_image_transformations(self, instance_images, size, center_crop): pixel_values = [] train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) train_flip = transforms.RandomHorizontalFlip(p=1.0) train_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) for image in instance_images: image = exif_transpose(image) if not image.mode == "RGB": image = image.convert("RGB") image = train_resize(image) if args.random_flip and random.random() < 0.5: # flip image = train_flip(image) if args.center_crop: y1 = max(0, int(round((image.height - args.resolution) / 2.0))) x1 = max(0, int(round((image.width - args.resolution) / 2.0))) image = train_crop(image) else: y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) image = crop(image, y1, x1, h, w) image = train_transforms(image) pixel_values.append(image) return pixel_values def convert_to_torch_tensor(self, embeddings: list): prompt_embeds = embeddings[0] pooled_prompt_embeds = embeddings[1] prompt_embeds = np.array(prompt_embeds).reshape(154, 4096) pooled_prompt_embeds = np.array(pooled_prompt_embeds).reshape(2048) return torch.from_numpy(prompt_embeds), torch.from_numpy(pooled_prompt_embeds) def map_image_hash_embedding(self, data_df_path): hashes_df = pd.read_parquet(data_df_path) data_dict = {} for i, row in hashes_df.iterrows(): embeddings = [row["prompt_embeds"], row["pooled_prompt_embeds"]] prompt_embeds, pooled_prompt_embeds = self.convert_to_torch_tensor(embeddings=embeddings) data_dict.update({row["image_hash"]: (prompt_embeds, pooled_prompt_embeds)}) return data_dict def generate_image_hash(self, image_path): with open(image_path, "rb") as f: img_data = f.read() return hashlib.sha256(img_data).hexdigest() def collate_fn(examples): pixel_values = [example["instance_images"] for example in examples] prompt_embeds = [example["prompt_embeds"] for example in examples] pooled_prompt_embeds = [example["pooled_prompt_embeds"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() prompt_embeds = torch.stack(prompt_embeds) pooled_prompt_embeds = torch.stack(pooled_prompt_embeds) batch = { "pixel_values": pixel_values, "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, } return batch def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) if torch.backends.mps.is_available() and args.mixed_precision == "bf16": # due to pytorch#99272, MPS does not yet support bfloat16. raise ValueError( "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) # Disable AMP for MPS. if torch.backends.mps.is_available(): accelerator.native_amp = False if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, ).repo_id # Load scheduler and models noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( args.pretrained_model_name_or_path, subfolder="scheduler" ) noise_scheduler_copy = copy.deepcopy(noise_scheduler) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant, ) transformer = SD3Transformer2DModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant ) transformer.requires_grad_(False) vae.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: # due to pytorch#99272, MPS does not yet support bfloat16. raise ValueError( "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." ) vae.to(accelerator.device, dtype=torch.float32) transformer.to(accelerator.device, dtype=weight_dtype) if args.gradient_checkpointing: transformer.enable_gradient_checkpointing() # now we will add new LoRA weights to the attention layers transformer_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) transformer.add_adapter(transformer_lora_config) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: transformer_lora_layers_to_save = None for model in models: if isinstance(model, type(unwrap_model(transformer))): transformer_lora_layers_to_save = get_peft_model_state_dict(model) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusion3Pipeline.save_lora_weights( output_dir, transformer_lora_layers=transformer_lora_layers_to_save, ) def load_model_hook(models, input_dir): transformer_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(unwrap_model(transformer))): transformer_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict = StableDiffusion3Pipeline.lora_state_dict(input_dir) transformer_state_dict = { f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") } transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") if incompatible_keys is not None: # check only for unexpected keys unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: logger.warning( f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " f" {unexpected_keys}. " ) # Make sure the trainable params are in float32. This is again needed since the base models # are in `weight_dtype`. More details: # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 if args.mixed_precision == "fp16": models = [transformer_] # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32 and torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Make sure the trainable params are in float32. if args.mixed_precision == "fp16": models = [transformer] # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models, dtype=torch.float32) # Optimization parameters transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} params_to_optimize = [transformer_parameters_with_lr] # Optimizer creation if not args.optimizer.lower() == "adamw": logger.warning( f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include [adamW]." "Defaulting to adamW" ) args.optimizer = "adamw" if args.use_8bit_adam and not args.optimizer.lower() == "adamw": logger.warning( f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " f"set to {args.optimizer.lower()}" ) if args.optimizer.lower() == "adamw": if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( params_to_optimize, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( data_df_path=args.data_df_path, instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, size=args.resolution, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples), num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( transformer, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_name = "dreambooth-sd3-lora-miniature" accelerator.init_trackers(tracker_name, config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) timesteps = timesteps.to(accelerator.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < n_dim: sigma = sigma.unsqueeze(-1) return sigma for epoch in range(first_epoch, args.num_train_epochs): transformer.train() for step, batch in enumerate(train_dataloader): models_to_accumulate = [transformer] with accelerator.accumulate(models_to_accumulate): pixel_values = batch["pixel_values"].to(dtype=vae.dtype) # Convert images to latent space model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae.config.scaling_factor model_input = model_input.to(dtype=weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) bsz = model_input.shape[0] # Sample a random timestep for each image # for weighting schemes where we sample timesteps non-uniformly u = compute_density_for_timestep_sampling( weighting_scheme=args.weighting_scheme, batch_size=bsz, logit_mean=args.logit_mean, logit_std=args.logit_std, mode_scale=args.mode_scale, ) indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) # Add noise according to flow matching. sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) noisy_model_input = sigmas * noise + (1.0 - sigmas) * model_input # Predict the noise residual prompt_embeds, pooled_prompt_embeds = batch["prompt_embeds"], batch["pooled_prompt_embeds"] prompt_embeds = prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) pooled_prompt_embeds = pooled_prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) model_pred = transformer( hidden_states=noisy_model_input, timestep=timesteps, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, return_dict=False, )[0] # Follow: Section 5 of https://arxiv.org/abs/2206.00364. # Preconditioning of the model outputs. model_pred = model_pred * (-sigmas) + noisy_model_input # these weighting schemes use a uniform timestep sampling # and instead post-weight the loss weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) # flow matching loss target = model_input # Compute regular loss. loss = torch.mean( (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1, ) loss = loss.mean() accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = transformer_lora_parameters accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: pipeline = StableDiffusion3Pipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, transformer=accelerator.unwrap_model(transformer), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline_args = {"prompt": args.validation_prompt} images = log_validation( pipeline=pipeline, args=args, accelerator=accelerator, pipeline_args=pipeline_args, epoch=epoch, ) torch.cuda.empty_cache() gc.collect() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: transformer = unwrap_model(transformer) transformer = transformer.to(torch.float32) transformer_lora_layers = get_peft_model_state_dict(transformer) StableDiffusion3Pipeline.save_lora_weights( save_directory=args.output_dir, transformer_lora_layers=transformer_lora_layers, ) # Final inference # Load previous pipeline pipeline = StableDiffusion3Pipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # load attention processors pipeline.load_lora_weights(args.output_dir) # run inference images = [] if args.validation_prompt and args.num_validation_images > 0: pipeline_args = {"prompt": args.validation_prompt} images = log_validation( pipeline=pipeline, args=args, accelerator=accelerator, pipeline_args=pipeline_args, epoch=epoch, is_final_validation=True, ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, instance_prompt=args.instance_prompt, validation_prompt=args.validation_prompt, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/research_projects/sd3_lora_colab/train_dreambooth_lora_sd3_miniature.py/0
{ "file_path": "diffusers/examples/research_projects/sd3_lora_colab/train_dreambooth_lora_sd3_miniature.py", "repo_id": "diffusers", "token_count": 19445 }
124
[tool.ruff] line-length = 119 [tool.ruff.lint] # Never enforce `E501` (line length violations). ignore = ["C901", "E501", "E741", "F402", "F823"] select = ["C", "E", "F", "I", "W"] # Ignore import violations in all `__init__.py` files. [tool.ruff.lint.per-file-ignores] "__init__.py" = ["E402", "F401", "F403", "F811"] "src/diffusers/utils/dummy_*.py" = ["F401"] [tool.ruff.lint.isort] lines-after-imports = 2 known-first-party = ["diffusers"] [tool.ruff.format] # Like Black, use double quotes for strings. quote-style = "double" # Like Black, indent with spaces, rather than tabs. indent-style = "space" # Like Black, respect magic trailing commas. skip-magic-trailing-comma = false # Like Black, automatically detect the appropriate line ending. line-ending = "auto"
diffusers/pyproject.toml/0
{ "file_path": "diffusers/pyproject.toml", "repo_id": "diffusers", "token_count": 286 }
125
# Script for converting a Hugging Face Diffusers trained SDXL LoRAs to Kohya format # This means that you can input your diffusers-trained LoRAs and # Get the output to work with WebUIs such as AUTOMATIC1111, ComfyUI, SD.Next and others. # To get started you can find some cool `diffusers` trained LoRAs such as this cute Corgy # https://huggingface.co/ignasbud/corgy_dog_LoRA/, download its `pytorch_lora_weights.safetensors` file # and run the script: # python convert_diffusers_sdxl_lora_to_webui.py --input_lora pytorch_lora_weights.safetensors --output_lora corgy.safetensors # now you can use corgy.safetensors in your WebUI of choice! # To train your own, here are some diffusers training scripts and utils that you can use and then convert: # LoRA Ease - no code SDXL Dreambooth LoRA trainer: https://huggingface.co/spaces/multimodalart/lora-ease # Dreambooth Advanced Training Script - state of the art techniques such as pivotal tuning and prodigy optimizer: # - Script: https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py # - Colab (only on Pro): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb # Canonical diffusers training scripts: # - Script: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py # - Colab (runs on free tier): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb import argparse import os from safetensors.torch import load_file, save_file from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya def convert_and_save(input_lora, output_lora=None): if output_lora is None: base_name = os.path.splitext(input_lora)[0] output_lora = f"{base_name}_webui.safetensors" diffusers_state_dict = load_file(input_lora) peft_state_dict = convert_all_state_dict_to_peft(diffusers_state_dict) kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) save_file(kohya_state_dict, output_lora) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert LoRA model to PEFT and then to Kohya format.") parser.add_argument( "--input_lora", type=str, required=True, help="Path to the input LoRA model file in the diffusers format.", ) parser.add_argument( "--output_lora", type=str, required=False, help="Path for the converted LoRA (safetensors format for AUTOMATIC1111, ComfyUI, etc.). Optional, defaults to input name with a _webui suffix.", ) args = parser.parse_args() convert_and_save(args.input_lora, args.output_lora)
diffusers/scripts/convert_diffusers_sdxl_lora_to_webui.py/0
{ "file_path": "diffusers/scripts/convert_diffusers_sdxl_lora_to_webui.py", "repo_id": "diffusers", "token_count": 1027 }
126
import argparse import os import torch from safetensors.torch import load_file from transformers import AutoModel, AutoTokenizer from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline def main(args): # checkpoint from https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT or https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I all_sd = load_file(args.origin_ckpt_path, device="cpu") converted_state_dict = {} # pad token converted_state_dict["pad_token"] = all_sd["pad_token"] # patch embed converted_state_dict["patch_embedder.weight"] = all_sd["x_embedder.weight"] converted_state_dict["patch_embedder.bias"] = all_sd["x_embedder.bias"] # time and caption embed converted_state_dict["time_caption_embed.timestep_embedder.linear_1.weight"] = all_sd["t_embedder.mlp.0.weight"] converted_state_dict["time_caption_embed.timestep_embedder.linear_1.bias"] = all_sd["t_embedder.mlp.0.bias"] converted_state_dict["time_caption_embed.timestep_embedder.linear_2.weight"] = all_sd["t_embedder.mlp.2.weight"] converted_state_dict["time_caption_embed.timestep_embedder.linear_2.bias"] = all_sd["t_embedder.mlp.2.bias"] converted_state_dict["time_caption_embed.caption_embedder.0.weight"] = all_sd["cap_embedder.0.weight"] converted_state_dict["time_caption_embed.caption_embedder.0.bias"] = all_sd["cap_embedder.0.bias"] converted_state_dict["time_caption_embed.caption_embedder.1.weight"] = all_sd["cap_embedder.1.weight"] converted_state_dict["time_caption_embed.caption_embedder.1.bias"] = all_sd["cap_embedder.1.bias"] for i in range(24): # adaln converted_state_dict[f"layers.{i}.gate"] = all_sd[f"layers.{i}.attention.gate"] converted_state_dict[f"layers.{i}.adaLN_modulation.1.weight"] = all_sd[f"layers.{i}.adaLN_modulation.1.weight"] converted_state_dict[f"layers.{i}.adaLN_modulation.1.bias"] = all_sd[f"layers.{i}.adaLN_modulation.1.bias"] # qkv converted_state_dict[f"layers.{i}.attn1.to_q.weight"] = all_sd[f"layers.{i}.attention.wq.weight"] converted_state_dict[f"layers.{i}.attn1.to_k.weight"] = all_sd[f"layers.{i}.attention.wk.weight"] converted_state_dict[f"layers.{i}.attn1.to_v.weight"] = all_sd[f"layers.{i}.attention.wv.weight"] # cap converted_state_dict[f"layers.{i}.attn2.to_q.weight"] = all_sd[f"layers.{i}.attention.wq.weight"] converted_state_dict[f"layers.{i}.attn2.to_k.weight"] = all_sd[f"layers.{i}.attention.wk_y.weight"] converted_state_dict[f"layers.{i}.attn2.to_v.weight"] = all_sd[f"layers.{i}.attention.wv_y.weight"] # output converted_state_dict[f"layers.{i}.attn2.to_out.0.weight"] = all_sd[f"layers.{i}.attention.wo.weight"] # attention # qk norm converted_state_dict[f"layers.{i}.attn1.norm_q.weight"] = all_sd[f"layers.{i}.attention.q_norm.weight"] converted_state_dict[f"layers.{i}.attn1.norm_q.bias"] = all_sd[f"layers.{i}.attention.q_norm.bias"] converted_state_dict[f"layers.{i}.attn1.norm_k.weight"] = all_sd[f"layers.{i}.attention.k_norm.weight"] converted_state_dict[f"layers.{i}.attn1.norm_k.bias"] = all_sd[f"layers.{i}.attention.k_norm.bias"] converted_state_dict[f"layers.{i}.attn2.norm_q.weight"] = all_sd[f"layers.{i}.attention.q_norm.weight"] converted_state_dict[f"layers.{i}.attn2.norm_q.bias"] = all_sd[f"layers.{i}.attention.q_norm.bias"] converted_state_dict[f"layers.{i}.attn2.norm_k.weight"] = all_sd[f"layers.{i}.attention.ky_norm.weight"] converted_state_dict[f"layers.{i}.attn2.norm_k.bias"] = all_sd[f"layers.{i}.attention.ky_norm.bias"] # attention norm converted_state_dict[f"layers.{i}.attn_norm1.weight"] = all_sd[f"layers.{i}.attention_norm1.weight"] converted_state_dict[f"layers.{i}.attn_norm2.weight"] = all_sd[f"layers.{i}.attention_norm2.weight"] converted_state_dict[f"layers.{i}.norm1_context.weight"] = all_sd[f"layers.{i}.attention_y_norm.weight"] # feed forward converted_state_dict[f"layers.{i}.feed_forward.linear_1.weight"] = all_sd[f"layers.{i}.feed_forward.w1.weight"] converted_state_dict[f"layers.{i}.feed_forward.linear_2.weight"] = all_sd[f"layers.{i}.feed_forward.w2.weight"] converted_state_dict[f"layers.{i}.feed_forward.linear_3.weight"] = all_sd[f"layers.{i}.feed_forward.w3.weight"] # feed forward norm converted_state_dict[f"layers.{i}.ffn_norm1.weight"] = all_sd[f"layers.{i}.ffn_norm1.weight"] converted_state_dict[f"layers.{i}.ffn_norm2.weight"] = all_sd[f"layers.{i}.ffn_norm2.weight"] # final layer converted_state_dict["final_layer.linear.weight"] = all_sd["final_layer.linear.weight"] converted_state_dict["final_layer.linear.bias"] = all_sd["final_layer.linear.bias"] converted_state_dict["final_layer.adaLN_modulation.1.weight"] = all_sd["final_layer.adaLN_modulation.1.weight"] converted_state_dict["final_layer.adaLN_modulation.1.bias"] = all_sd["final_layer.adaLN_modulation.1.bias"] # Lumina-Next-SFT 2B transformer = LuminaNextDiT2DModel( sample_size=128, patch_size=2, in_channels=4, hidden_size=2304, num_layers=24, num_attention_heads=32, num_kv_heads=8, multiple_of=256, ffn_dim_multiplier=None, norm_eps=1e-5, learn_sigma=True, qk_norm=True, cross_attention_dim=2048, scaling_factor=1.0, ) transformer.load_state_dict(converted_state_dict, strict=True) num_model_params = sum(p.numel() for p in transformer.parameters()) print(f"Total number of transformer parameters: {num_model_params}") if args.only_transformer: transformer.save_pretrained(os.path.join(args.dump_path, "transformer")) else: scheduler = FlowMatchEulerDiscreteScheduler() vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.float32) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") text_encoder = AutoModel.from_pretrained("google/gemma-2b") pipeline = LuminaText2ImgPipeline( tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler ) pipeline.save_pretrained(args.dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--origin_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." ) parser.add_argument( "--image_size", default=1024, type=int, choices=[256, 512, 1024], required=False, help="Image size of pretrained model, either 512 or 1024.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") parser.add_argument("--only_transformer", default=True, type=bool, required=True) args = parser.parse_args() main(args)
diffusers/scripts/convert_lumina_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_lumina_to_diffusers.py", "repo_id": "diffusers", "token_count": 3156 }
127
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline. import argparse from contextlib import nullcontext import torch from safetensors.torch import load_file from transformers import ( AutoTokenizer, CLIPConfig, CLIPImageProcessor, CLIPTextModelWithProjection, CLIPVisionModelWithProjection, ) from diffusers import ( DDPMWuerstchenScheduler, StableCascadeCombinedPipeline, StableCascadeDecoderPipeline, StableCascadePriorPipeline, ) from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers from diffusers.models import StableCascadeUNet from diffusers.models.modeling_utils import load_model_dict_into_meta from diffusers.pipelines.wuerstchen import PaellaVQModel from diffusers.utils import is_accelerate_available if is_accelerate_available(): from accelerate import init_empty_weights parser = argparse.ArgumentParser(description="Convert Stable Cascade model weights to a diffusers pipeline") parser.add_argument("--model_path", type=str, help="Location of Stable Cascade weights") parser.add_argument("--stage_c_name", type=str, default="stage_c.safetensors", help="Name of stage c checkpoint file") parser.add_argument("--stage_b_name", type=str, default="stage_b.safetensors", help="Name of stage b checkpoint file") parser.add_argument("--skip_stage_c", action="store_true", help="Skip converting stage c") parser.add_argument("--skip_stage_b", action="store_true", help="Skip converting stage b") parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion") parser.add_argument( "--prior_output_path", default="stable-cascade-prior", type=str, help="Hub organization to save the pipelines to" ) parser.add_argument( "--decoder_output_path", type=str, default="stable-cascade-decoder", help="Hub organization to save the pipelines to", ) parser.add_argument( "--combined_output_path", type=str, default="stable-cascade-combined", help="Hub organization to save the pipelines to", ) parser.add_argument("--save_combined", action="store_true") parser.add_argument("--push_to_hub", action="store_true", help="Push to hub") parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights") args = parser.parse_args() if args.skip_stage_b and args.skip_stage_c: raise ValueError("At least one stage should be converted") if (args.skip_stage_b or args.skip_stage_c) and args.save_combined: raise ValueError("Cannot skip stages when creating a combined pipeline") model_path = args.model_path device = "cpu" if args.variant == "bf16": dtype = torch.bfloat16 else: dtype = torch.float32 # set paths to model weights prior_checkpoint_path = f"{model_path}/{args.stage_c_name}" decoder_checkpoint_path = f"{model_path}/{args.stage_b_name}" # Clip Text encoder and tokenizer config = CLIPConfig.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") config.text_config.projection_dim = config.projection_dim text_encoder = CLIPTextModelWithProjection.from_pretrained( "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", config=config.text_config ) tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") # image processor feature_extractor = CLIPImageProcessor() image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") # scheduler for prior and decoder scheduler = DDPMWuerstchenScheduler() ctx = init_empty_weights if is_accelerate_available() else nullcontext if not args.skip_stage_c: # Prior if args.use_safetensors: prior_orig_state_dict = load_file(prior_checkpoint_path, device=device) else: prior_orig_state_dict = torch.load(prior_checkpoint_path, map_location=device) prior_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(prior_orig_state_dict) with ctx(): prior_model = StableCascadeUNet( in_channels=16, out_channels=16, timestep_ratio_embedding_dim=64, patch_size=1, conditioning_dim=2048, block_out_channels=[2048, 2048], num_attention_heads=[32, 32], down_num_layers_per_block=[8, 24], up_num_layers_per_block=[24, 8], down_blocks_repeat_mappers=[1, 1], up_blocks_repeat_mappers=[1, 1], block_types_per_layer=[ ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], ], clip_text_in_channels=1280, clip_text_pooled_in_channels=1280, clip_image_in_channels=768, clip_seq=4, kernel_size=3, dropout=[0.1, 0.1], self_attn=True, timestep_conditioning_type=["sca", "crp"], switch_level=[False], ) if is_accelerate_available(): load_model_dict_into_meta(prior_model, prior_state_dict) else: prior_model.load_state_dict(prior_state_dict) # Prior pipeline prior_pipeline = StableCascadePriorPipeline( prior=prior_model, tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, scheduler=scheduler, feature_extractor=feature_extractor, ) prior_pipeline.to(dtype).save_pretrained( args.prior_output_path, push_to_hub=args.push_to_hub, variant=args.variant ) if not args.skip_stage_b: # Decoder if args.use_safetensors: decoder_orig_state_dict = load_file(decoder_checkpoint_path, device=device) else: decoder_orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device) decoder_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(decoder_orig_state_dict) with ctx(): decoder = StableCascadeUNet( in_channels=4, out_channels=4, timestep_ratio_embedding_dim=64, patch_size=2, conditioning_dim=1280, block_out_channels=[320, 640, 1280, 1280], down_num_layers_per_block=[2, 6, 28, 6], up_num_layers_per_block=[6, 28, 6, 2], down_blocks_repeat_mappers=[1, 1, 1, 1], up_blocks_repeat_mappers=[3, 3, 2, 2], num_attention_heads=[0, 0, 20, 20], block_types_per_layer=[ ["SDCascadeResBlock", "SDCascadeTimestepBlock"], ["SDCascadeResBlock", "SDCascadeTimestepBlock"], ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], ], clip_text_pooled_in_channels=1280, clip_seq=4, effnet_in_channels=16, pixel_mapper_in_channels=3, kernel_size=3, dropout=[0, 0, 0.1, 0.1], self_attn=True, timestep_conditioning_type=["sca"], ) if is_accelerate_available(): load_model_dict_into_meta(decoder, decoder_state_dict) else: decoder.load_state_dict(decoder_state_dict) # VQGAN from Wuerstchen-V2 vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan") # Decoder pipeline decoder_pipeline = StableCascadeDecoderPipeline( decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler ) decoder_pipeline.to(dtype).save_pretrained( args.decoder_output_path, push_to_hub=args.push_to_hub, variant=args.variant ) if args.save_combined: # Stable Cascade combined pipeline stable_cascade_pipeline = StableCascadeCombinedPipeline( # Decoder text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqmodel, # Prior prior_text_encoder=text_encoder, prior_tokenizer=tokenizer, prior_prior=prior_model, prior_scheduler=scheduler, prior_image_encoder=image_encoder, prior_feature_extractor=feature_extractor, ) stable_cascade_pipeline.to(dtype).save_pretrained( args.combined_output_path, push_to_hub=args.push_to_hub, variant=args.variant )
diffusers/scripts/convert_stable_cascade.py/0
{ "file_path": "diffusers/scripts/convert_stable_cascade.py", "repo_id": "diffusers", "token_count": 3605 }
128
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py To create the package for PyPI. 1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the documentation. If releasing on a special branch, copy the updated README.md on the main branch for the commit you will make for the post-release and run `make fix-copies` on the main branch as well. 2. Unpin specific versions from setup.py that use a git install. 3. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the message: "Release: <RELEASE>" and push. 4. Manually trigger the "Nightly and release tests on main/release branch" workflow from the release branch. Wait for the tests to complete. We can safely ignore the known test failures. 5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs). 6. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for PyPI'" Push the tag to git: git push --tags origin v<RELEASE>-release 7. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). For the wheel, run: "python setup.py bdist_wheel" in the top level directory (This will build a wheel for the Python version you use to build it). For the sources, run: "python setup.py sdist" You should now have a /dist directory with both .whl and .tar.gz source versions. Long story cut short, you need to run both before you can upload the distribution to the test PyPI and the actual PyPI servers: python setup.py bdist_wheel && python setup.py sdist 8. Check that everything looks correct by uploading the package to the PyPI test server: twine upload dist/* -r pypitest (pypi suggests using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi diffusers If you are testing from a Colab Notebook, for instance, then do: pip install diffusers && pip uninstall diffusers pip install -i https://testpypi.python.org/pypi diffusers Check you can run the following commands: python -c "from diffusers import __version__; print(__version__)" python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()" python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')" python -c "from diffusers import *" 9. Upload the final version to the actual PyPI: twine upload dist/* -r pypi 10. Prepare the release notes and publish them on GitHub once everything is looking hunky-dory. You can use the following Space to fetch all the commits applicable for the release: https://huggingface.co/spaces/lysandre/github-release. Repo should be `huggingface/diffusers`. `tag` should be the previous release tag (v0.26.1, for example), and `branch` should be the latest release branch (v0.27.0-release, for example). It denotes all commits that have happened on branch v0.27.0-release after the tag v0.26.1 was created. 11. Run `make post-release` (or, for a patch release, `make post-patch`). If you were on a branch for the release, you need to go back to main before executing this. """ import os import re import sys from setuptools import Command, find_packages, setup # IMPORTANT: # 1. all dependencies should be listed here with their version requirements if any # 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py _deps = [ "Pillow", # keep the PIL.Image.Resampling deprecation away "accelerate>=0.31.0", "compel==0.1.8", "datasets", "filelock", "flax>=0.4.1", "hf-doc-builder>=0.3.0", "huggingface-hub>=0.23.2", "requests-mock==1.10.0", "importlib_metadata", "invisible-watermark>=0.2.0", "isort>=5.5.4", "jax>=0.4.1", "jaxlib>=0.4.1", "Jinja2", "k-diffusion>=0.0.12", "torchsde", "note_seq", "librosa", "numpy", "parameterized", "peft>=0.6.0", "protobuf>=3.20.3,<4", "pytest", "pytest-timeout", "pytest-xdist", "python>=3.8.0", "ruff==0.1.5", "safetensors>=0.3.1", "sentencepiece>=0.1.91,!=0.1.92", "GitPython<3.1.19", "scipy", "onnx", "regex!=2019.12.17", "requests", "tensorboard", "torch>=1.4", "torchvision", "transformers>=4.41.2", "urllib3<=2.0.0", "black", ] # this is a lookup table with items like: # # tokenizers: "huggingface-hub==0.8.0" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps)} # since we save this data in src/diffusers/dependency_versions_table.py it can be easily accessed from # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with: # # python -c 'import sys; from diffusers.dependency_versions_table import deps; \ # print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets # # Just pass the desired package names to that script as it's shown with 2 packages above. # # If diffusers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above # # You can then feed this for example to `pip`: # # pip install -U $(python -c 'import sys; from diffusers.dependency_versions_table import deps; \ # print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets) # def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] class DepsTableUpdateCommand(Command): """ A custom command that updates the dependency table. usage: python setup.py deps_table_update """ description = "build runtime dependency table" user_options = [ # format: (long option, short option, description). ( "dep-table-update", None, "updates src/diffusers/dependency_versions_table.py", ), ] def initialize_options(self): pass def finalize_options(self): pass def run(self): entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()]) content = [ "# THIS FILE HAS BEEN AUTOGENERATED. To update:", "# 1. modify the `_deps` dict in setup.py", "# 2. run `make deps_table_update`", "deps = {", entries, "}", "", ] target = "src/diffusers/dependency_versions_table.py" print(f"updating {target}") with open(target, "w", encoding="utf-8", newline="\n") as f: f.write("\n".join(content)) extras = {} extras["quality"] = deps_list("urllib3", "isort", "ruff", "hf-doc-builder") extras["docs"] = deps_list("hf-doc-builder") extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft") extras["test"] = deps_list( "compel", "GitPython", "datasets", "Jinja2", "invisible-watermark", "k-diffusion", "librosa", "parameterized", "pytest", "pytest-timeout", "pytest-xdist", "requests-mock", "safetensors", "sentencepiece", "scipy", "torchvision", "transformers", ) extras["torch"] = deps_list("torch", "accelerate") if os.name == "nt": # windows extras["flax"] = [] # jax is not supported on windows else: extras["flax"] = deps_list("jax", "jaxlib", "flax") extras["dev"] = ( extras["quality"] + extras["test"] + extras["training"] + extras["docs"] + extras["torch"] + extras["flax"] ) install_requires = [ deps["importlib_metadata"], deps["filelock"], deps["huggingface-hub"], deps["numpy"], deps["regex"], deps["requests"], deps["safetensors"], deps["Pillow"], ] version_range_max = max(sys.version_info[1], 10) + 1 setup( name="diffusers", version="0.31.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) description="State-of-the-art diffusion in PyTorch and JAX.", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="deep learning diffusion jax pytorch stable diffusion audioldm", license="Apache 2.0 License", author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/diffusers/graphs/contributors)", author_email="[email protected]", url="https://github.com/huggingface/diffusers", package_dir={"": "src"}, packages=find_packages("src"), package_data={"diffusers": ["py.typed"]}, include_package_data=True, python_requires=">=3.8.0", install_requires=list(install_requires), extras_require=extras, entry_points={"console_scripts": ["diffusers-cli=diffusers.commands.diffusers_cli:main"]}, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Programming Language :: Python :: 3", ] + [f"Programming Language :: Python :: 3.{i}" for i in range(8, version_range_max)], cmdclass={"deps_table_update": DepsTableUpdateCommand}, )
diffusers/setup.py/0
{ "file_path": "diffusers/setup.py", "repo_id": "diffusers", "token_count": 3910 }
129
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict, List, Optional, Union import torch import torch.nn.functional as F from huggingface_hub.utils import validate_hf_hub_args from safetensors import safe_open from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict from ..utils import ( USE_PEFT_BACKEND, _get_model_file, is_accelerate_available, is_torch_version, is_transformers_available, logging, ) from .unet_loader_utils import _maybe_expand_lora_scales if is_transformers_available(): from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, ) from ..models.attention_processor import ( AttnProcessor, AttnProcessor2_0, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, ) logger = logging.get_logger(__name__) class IPAdapterMixin: """Mixin for handling IP Adapters.""" @validate_hf_hub_args def load_ip_adapter( self, pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]], subfolder: Union[str, List[str]], weight_name: Union[str, List[str]], image_encoder_folder: Optional[str] = "image_encoder", **kwargs, ): """ Parameters: pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). subfolder (`str` or `List[str]`): The subfolder location of a model file within a larger model repository on the Hub or locally. If a list is passed, it should have the same length as `weight_name`. weight_name (`str` or `List[str]`): The name of the weight file to load. If a list is passed, it should have the same length as `weight_name`. image_encoder_folder (`str`, *optional*, defaults to `image_encoder`): The subfolder location of the image encoder within a larger model repository on the Hub or locally. Pass `None` to not load the image encoder. If the image encoder is located in a folder inside `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g. `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than `subfolder`, you should pass the path to the folder that contains image encoder weights, for example, `image_encoder_folder="different_subfolder/image_encoder"`. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. """ # handle the list inputs for multiple IP Adapters if not isinstance(weight_name, list): weight_name = [weight_name] if not isinstance(pretrained_model_name_or_path_or_dict, list): pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict] if len(pretrained_model_name_or_path_or_dict) == 1: pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name) if not isinstance(subfolder, list): subfolder = [subfolder] if len(subfolder) == 1: subfolder = subfolder * len(weight_name) if len(weight_name) != len(pretrained_model_name_or_path_or_dict): raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.") if len(weight_name) != len(subfolder): raise ValueError("`weight_name` and `subfolder` must have the same length.") # Load the main state dict first. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) if low_cpu_mem_usage and not is_accelerate_available(): low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dicts = [] for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip( pretrained_model_name_or_path_or_dict, weight_name, subfolder ): if not isinstance(pretrained_model_name_or_path_or_dict, dict): model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) if weight_name.endswith(".safetensors"): state_dict = {"image_proj": {}, "ip_adapter": {}} with safe_open(model_file, framework="pt", device="cpu") as f: for key in f.keys(): if key.startswith("image_proj."): state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) elif key.startswith("ip_adapter."): state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) else: state_dict = load_state_dict(model_file) else: state_dict = pretrained_model_name_or_path_or_dict keys = list(state_dict.keys()) if keys != ["image_proj", "ip_adapter"]: raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") state_dicts.append(state_dict) # load CLIP image encoder here if it has not been registered to the pipeline yet if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: if image_encoder_folder is not None: if not isinstance(pretrained_model_name_or_path_or_dict, dict): logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}") if image_encoder_folder.count("/") == 0: image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix() else: image_encoder_subfolder = Path(image_encoder_folder).as_posix() image_encoder = CLIPVisionModelWithProjection.from_pretrained( pretrained_model_name_or_path_or_dict, subfolder=image_encoder_subfolder, low_cpu_mem_usage=low_cpu_mem_usage, cache_dir=cache_dir, local_files_only=local_files_only, ).to(self.device, dtype=self.dtype) self.register_modules(image_encoder=image_encoder) else: raise ValueError( "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict." ) else: logger.warning( "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter." "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead." ) # create feature extractor if it has not been registered to the pipeline yet if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: # FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224 default_clip_size = 224 clip_image_size = ( self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size ) feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size) self.register_modules(feature_extractor=feature_extractor) # load ip-adapter into unet unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) extra_loras = unet._load_ip_adapter_loras(state_dicts) if extra_loras != {}: if not USE_PEFT_BACKEND: logger.warning("PEFT backend is required to load these weights.") else: # apply the IP Adapter Face ID LoRA weights peft_config = getattr(unet, "peft_config", {}) for k, lora in extra_loras.items(): if f"faceid_{k}" not in peft_config: self.load_lora_weights(lora, adapter_name=f"faceid_{k}") self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0]) def set_ip_adapter_scale(self, scale): """ Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for granular control over each IP-Adapter behavior. A config can be a float or a dictionary. Example: ```py # To use original IP-Adapter scale = 1.0 pipeline.set_ip_adapter_scale(scale) # To use style block only scale = { "up": {"block_0": [0.0, 1.0, 0.0]}, } pipeline.set_ip_adapter_scale(scale) # To use style+layout blocks scale = { "down": {"block_2": [0.0, 1.0]}, "up": {"block_0": [0.0, 1.0, 0.0]}, } pipeline.set_ip_adapter_scale(scale) # To use style and layout from 2 reference images scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}] pipeline.set_ip_adapter_scale(scales) ``` """ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet if not isinstance(scale, list): scale = [scale] scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0) for attn_name, attn_processor in unet.attn_processors.items(): if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): if len(scale_configs) != len(attn_processor.scale): raise ValueError( f"Cannot assign {len(scale_configs)} scale_configs to " f"{len(attn_processor.scale)} IP-Adapter." ) elif len(scale_configs) == 1: scale_configs = scale_configs * len(attn_processor.scale) for i, scale_config in enumerate(scale_configs): if isinstance(scale_config, dict): for k, s in scale_config.items(): if attn_name.startswith(k): attn_processor.scale[i] = s else: attn_processor.scale[i] = scale_config def unload_ip_adapter(self): """ Unloads the IP Adapter weights Examples: ```python >>> # Assuming `pipeline` is already loaded with the IP Adapter weights. >>> pipeline.unload_ip_adapter() >>> ... ``` """ # remove CLIP image encoder if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: self.image_encoder = None self.register_to_config(image_encoder=[None, None]) # remove feature extractor only when safety_checker is None as safety_checker uses # the feature_extractor later if not hasattr(self, "safety_checker"): if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: self.feature_extractor = None self.register_to_config(feature_extractor=[None, None]) # remove hidden encoder self.unet.encoder_hid_proj = None self.unet.config.encoder_hid_dim_type = None # Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj` if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None: self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj self.unet.text_encoder_hid_proj = None self.unet.config.encoder_hid_dim_type = "text_proj" # restore original Unet attention processors layers attn_procs = {} for name, value in self.unet.attn_processors.items(): attn_processor_class = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor() ) attn_procs[name] = ( attn_processor_class if isinstance(value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) else value.__class__() ) self.unet.set_attn_processor(attn_procs)
diffusers/src/diffusers/loaders/ip_adapter.py/0
{ "file_path": "diffusers/src/diffusers/loaders/ip_adapter.py", "repo_id": "diffusers", "token_count": 8065 }
130
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn from ..utils import deprecate, logging from ..utils.torch_utils import maybe_allow_in_graph from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU from .attention_processor import Attention, JointAttnProcessor2_0 from .embeddings import SinusoidalPositionalEmbedding from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm logger = logging.get_logger(__name__) def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output @maybe_allow_in_graph class GatedSelfAttentionDense(nn.Module): r""" A gated self-attention dense layer that combines visual features and object features. Parameters: query_dim (`int`): The number of channels in the query. context_dim (`int`): The number of channels in the context. n_heads (`int`): The number of heads to use for attention. d_head (`int`): The number of channels in each head. """ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, activation_fn="geglu") self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) self.enabled = True def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x @maybe_allow_in_graph class JointTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False): super().__init__() self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" self.norm1 = AdaLayerNormZero(dim) if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states @maybe_allow_in_graph class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, *optional*, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*, defaults to `None`): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' norm_eps: float = 1e-5, final_dropout: bool = False, attention_type: str = "default", positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, ada_norm_bias: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if norm_type == "ada_norm": self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_zero": self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm1 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. if norm_type == "ada_norm": self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm2 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none else: if norm_type == "ada_norm_single": # For Latte self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2 = None self.attn2 = None # 3. Feed-forward if norm_type == "ada_norm_continuous": self.norm3 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "layer_norm", ) elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) elif norm_type == "layer_norm_i2vgen": self.norm3 = None self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) # 4. Fuser if attention_type == "gated" or attention_type == "gated-text-image": self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) # 5. Scale-shift for PixArt-Alpha. if norm_type == "ada_norm_single": self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class LuminaFeedForward(nn.Module): r""" A feed-forward layer. Parameters: hidden_size (`int`): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. intermediate_size (`int`): The intermediate dimension of the feedforward layer. multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden dimension. Defaults to None. """ def __init__( self, dim: int, inner_dim: int, multiple_of: Optional[int] = 256, ffn_dim_multiplier: Optional[float] = None, ): super().__init__() inner_dim = int(2 * inner_dim / 3) # custom hidden_size factor multiplier if ffn_dim_multiplier is not None: inner_dim = int(ffn_dim_multiplier * inner_dim) inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) self.linear_1 = nn.Linear( dim, inner_dim, bias=False, ) self.linear_2 = nn.Linear( inner_dim, dim, bias=False, ) self.linear_3 = nn.Linear( dim, inner_dim, bias=False, ) self.silu = FP32SiLU() def forward(self, x): return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x)) @maybe_allow_in_graph class TemporalBasicTransformerBlock(nn.Module): r""" A basic Transformer block for video like data. Parameters: dim (`int`): The number of channels in the input and output. time_mix_inner_dim (`int`): The number of channels for temporal attention. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. """ def __init__( self, dim: int, time_mix_inner_dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: Optional[int] = None, ): super().__init__() self.is_res = dim == time_mix_inner_dim self.norm_in = nn.LayerNorm(dim) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.ff_in = FeedForward( dim, dim_out=time_mix_inner_dim, activation_fn="geglu", ) self.norm1 = nn.LayerNorm(time_mix_inner_dim) self.attn1 = Attention( query_dim=time_mix_inner_dim, heads=num_attention_heads, dim_head=attention_head_dim, cross_attention_dim=None, ) # 2. Cross-Attn if cross_attention_dim is not None: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = nn.LayerNorm(time_mix_inner_dim) self.attn2 = Attention( query_dim=time_mix_inner_dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(time_mix_inner_dim) self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") # let chunk size default to None self._chunk_size = None self._chunk_dim = None def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): # Sets chunk feed-forward self._chunk_size = chunk_size # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off self._chunk_dim = 1 def forward( self, hidden_states: torch.Tensor, num_frames: int, encoder_hidden_states: Optional[torch.Tensor] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] batch_frames, seq_length, channels = hidden_states.shape batch_size = batch_frames // num_frames hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) residual = hidden_states hidden_states = self.norm_in(hidden_states) if self._chunk_size is not None: hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) else: hidden_states = self.ff_in(hidden_states) if self.is_res: hidden_states = hidden_states + residual norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) hidden_states = attn_output + hidden_states # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.is_res: hidden_states = ff_output + hidden_states else: hidden_states = ff_output hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) return hidden_states class SkipFFTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, kv_input_dim: int, kv_input_dim_proj_use_bias: bool, dropout=0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, attention_out_bias: bool = True, ): super().__init__() if kv_input_dim != dim: self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) else: self.kv_mapper = None self.norm1 = RMSNorm(dim, 1e-06) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim, out_bias=attention_out_bias, ) self.norm2 = RMSNorm(dim, 1e-06) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, out_bias=attention_out_bias, ) def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} if self.kv_mapper is not None: encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states return hidden_states @maybe_allow_in_graph class FreeNoiseTransformerBlock(nn.Module): r""" A FreeNoise Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (`int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (`bool`, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, defaults to `False`): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, defaults to `False`): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, defaults to `False`): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. ff_inner_dim (`int`, *optional*): Hidden dimension of feed-forward MLP. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in feed-forward MLP. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in attention output project layer. context_length (`int`, defaults to `16`): The maximum number of frames that the FreeNoise block processes at once. context_stride (`int`, defaults to `4`): The number of frames to be skipped before starting to process a new batch of `context_length` frames. weighting_scheme (`str`, defaults to `"pyramid"`): The weighting scheme to use for weighting averaging of processed latent frames. As described in the Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting used. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", norm_eps: float = 1e-5, final_dropout: bool = False, positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, context_length: int = 16, context_stride: int = 4, weighting_scheme: str = "pyramid", ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention self.set_free_noise_properties(context_length, context_stride, weighting_scheme) # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none # 3. Feed-forward self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]: frame_indices = [] for i in range(0, num_frames - self.context_length + 1, self.context_stride): window_start = i window_end = min(num_frames, i + self.context_length) frame_indices.append((window_start, window_end)) return frame_indices def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]: if weighting_scheme == "flat": weights = [1.0] * num_frames elif weighting_scheme == "pyramid": if num_frames % 2 == 0: # num_frames = 4 => [1, 2, 2, 1] mid = num_frames // 2 weights = list(range(1, mid + 1)) weights = weights + weights[::-1] else: # num_frames = 5 => [1, 2, 3, 2, 1] mid = (num_frames + 1) // 2 weights = list(range(1, mid)) weights = weights + [mid] + weights[::-1] elif weighting_scheme == "delayed_reverse_sawtooth": if num_frames % 2 == 0: # num_frames = 4 => [0.01, 2, 2, 1] mid = num_frames // 2 weights = [0.01] * (mid - 1) + [mid] weights = weights + list(range(mid, 0, -1)) else: # num_frames = 5 => [0.01, 0.01, 3, 2, 1] mid = (num_frames + 1) // 2 weights = [0.01] * mid weights = weights + list(range(mid, 0, -1)) else: raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}") return weights def set_free_noise_properties( self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid" ) -> None: self.context_length = context_length self.context_stride = context_stride self.weighting_scheme = weighting_scheme def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None: # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, *args, **kwargs, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} # hidden_states: [B x H x W, F, C] device = hidden_states.device dtype = hidden_states.dtype num_frames = hidden_states.size(1) frame_indices = self._get_frame_indices(num_frames) frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme) frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1) is_last_frame_batch_complete = frame_indices[-1][1] == num_frames # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges: # [(0, 16), (4, 20), (8, 24), (10, 26)] if not is_last_frame_batch_complete: if num_frames < self.context_length: raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}") last_frame_batch_length = num_frames - frame_indices[-1][1] frame_indices.append((num_frames - self.context_length, num_frames)) num_times_accumulated = torch.zeros((1, num_frames, 1), device=device) accumulated_values = torch.zeros_like(hidden_states) for i, (frame_start, frame_end) in enumerate(frame_indices): # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or # essentially a non-multiple of `context_length`. weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end]) weights *= frame_weights hidden_states_chunk = hidden_states[:, frame_start:frame_end] # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention norm_hidden_states = self.norm1(hidden_states_chunk) if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if hidden_states_chunk.ndim == 4: hidden_states_chunk = hidden_states_chunk.squeeze(1) # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states_chunk) if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if i == len(frame_indices) - 1 and not is_last_frame_batch_complete: accumulated_values[:, -last_frame_batch_length:] += ( hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:] ) num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length] else: accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights num_times_accumulated[:, frame_start:frame_end] += weights hidden_states = torch.where( num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values ).to(dtype) # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states
diffusers/src/diffusers/models/attention.py/0
{ "file_path": "diffusers/src/diffusers/models/attention.py", "repo_id": "diffusers", "token_count": 22931 }
131
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Optional, Union import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import logging from .attention_processor import AttentionProcessor from .controlnet import BaseOutput, Tuple, zero_module from .embeddings import ( HunyuanCombinedTimestepTextSizeStyleEmbedding, PatchEmbed, PixArtAlphaTextProjection, ) from .modeling_utils import ModelMixin from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class HunyuanControlNetOutput(BaseOutput): controlnet_block_samples: Tuple[torch.Tensor] class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, conditioning_channels: int = 3, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, patch_size: Optional[int] = None, activation_fn: str = "gelu-approximate", sample_size=32, hidden_size=1152, transformer_num_layers: int = 40, mlp_ratio: float = 4.0, cross_attention_dim: int = 1024, cross_attention_dim_t5: int = 2048, pooled_projection_dim: int = 1024, text_len: int = 77, text_len_t5: int = 256, use_style_cond_and_image_meta_size: bool = True, ): super().__init__() self.num_heads = num_attention_heads self.inner_dim = num_attention_heads * attention_head_dim self.text_embedder = PixArtAlphaTextProjection( in_features=cross_attention_dim_t5, hidden_size=cross_attention_dim_t5 * 4, out_features=cross_attention_dim, act_fn="silu_fp32", ) self.text_embedding_padding = nn.Parameter( torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) ) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, in_channels=in_channels, embed_dim=hidden_size, patch_size=patch_size, pos_embed_type=None, ) self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( hidden_size, pooled_projection_dim=pooled_projection_dim, seq_len=text_len_t5, cross_attention_dim=cross_attention_dim_t5, use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, ) # controlnet_blocks self.controlnet_blocks = nn.ModuleList([]) # HunyuanDiT Blocks self.blocks = nn.ModuleList( [ HunyuanDiTBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, activation_fn=activation_fn, ff_inner_dim=int(self.inner_dim * mlp_ratio), cross_attention_dim=cross_attention_dim, qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. skip=False, # always False as it is the first half of the model ) for layer in range(transformer_num_layers // 2 - 1) ] ) self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) for _ in range(len(self.blocks)): controlnet_block = nn.Linear(hidden_size, hidden_size) controlnet_block = zero_module(controlnet_block) self.controlnet_blocks.append(controlnet_block) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) @classmethod def from_transformer( cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True ): config = transformer.config activation_fn = config.activation_fn attention_head_dim = config.attention_head_dim cross_attention_dim = config.cross_attention_dim cross_attention_dim_t5 = config.cross_attention_dim_t5 hidden_size = config.hidden_size in_channels = config.in_channels mlp_ratio = config.mlp_ratio num_attention_heads = config.num_attention_heads patch_size = config.patch_size sample_size = config.sample_size text_len = config.text_len text_len_t5 = config.text_len_t5 conditioning_channels = conditioning_channels transformer_num_layers = transformer_num_layers or config.transformer_num_layers controlnet = cls( conditioning_channels=conditioning_channels, transformer_num_layers=transformer_num_layers, activation_fn=activation_fn, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, cross_attention_dim_t5=cross_attention_dim_t5, hidden_size=hidden_size, in_channels=in_channels, mlp_ratio=mlp_ratio, num_attention_heads=num_attention_heads, patch_size=patch_size, sample_size=sample_size, text_len=text_len, text_len_t5=text_len_t5, ) if load_weights_from_transformer: key = controlnet.load_state_dict(transformer.state_dict(), strict=False) logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}") return controlnet def forward( self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True, ): """ The [`HunyuanDiT2DControlNetModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. controlnet_cond ( `torch.Tensor` ): The conditioning input to ControlNet. conditioning_scale ( `float` ): Indicate the conditioning scale. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of `BertModel`. text_embedding_mask: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of `BertModel`. encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. text_embedding_mask_t5: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of T5 Text Encoder. image_meta_size (torch.Tensor): Conditional embedding indicate the image sizes style: torch.Tensor: Conditional embedding indicate the style image_rotary_emb (`torch.Tensor`): The image rotary embeddings to apply on query and key tensors during attention calculation. return_dict: bool Whether to return a dictionary. """ height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C # 2. pre-process hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) temb = self.time_extra_emb( timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype ) # [B, D] # text projection batch_size, sequence_length, _ = encoder_hidden_states_t5.shape encoder_hidden_states_t5 = self.text_embedder( encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) ) encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) block_res_samples = () for layer, block in enumerate(self.blocks): hidden_states = block( hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) # (N, L, D) block_res_samples = block_res_samples + (hidden_states,) controlnet_block_res_samples = () for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): block_res_sample = controlnet_block(block_res_sample) controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) # 6. scaling controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] if not return_dict: return (controlnet_block_res_samples,) return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) class HunyuanDiT2DMultiControlNetModel(ModelMixin): r""" `HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is designed to be compatible with `HunyuanDiT2DControlNetModel`. Args: controlnets (`List[HunyuanDiT2DControlNetModel]`): Provides additional conditioning to the unet during the denoising process. You must set multiple `HunyuanDiT2DControlNetModel` as a list. """ def __init__(self, controlnets): super().__init__() self.nets = nn.ModuleList(controlnets) def forward( self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True, ): """ The [`HunyuanDiT2DControlNetModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. controlnet_cond ( `torch.Tensor` ): The conditioning input to ControlNet. conditioning_scale ( `float` ): Indicate the conditioning scale. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of `BertModel`. text_embedding_mask: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of `BertModel`. encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. text_embedding_mask_t5: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of T5 Text Encoder. image_meta_size (torch.Tensor): Conditional embedding indicate the image sizes style: torch.Tensor: Conditional embedding indicate the style image_rotary_emb (`torch.Tensor`): The image rotary embeddings to apply on query and key tensors during attention calculation. return_dict: bool Whether to return a dictionary. """ for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): block_samples = controlnet( hidden_states=hidden_states, timestep=timestep, controlnet_cond=image, conditioning_scale=scale, encoder_hidden_states=encoder_hidden_states, text_embedding_mask=text_embedding_mask, encoder_hidden_states_t5=encoder_hidden_states_t5, text_embedding_mask_t5=text_embedding_mask_t5, image_meta_size=image_meta_size, style=style, image_rotary_emb=image_rotary_emb, return_dict=return_dict, ) # merge samples if i == 0: control_block_samples = block_samples else: control_block_samples = [ control_block_sample + block_sample for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) ] control_block_samples = (control_block_samples,) return control_block_samples
diffusers/src/diffusers/models/controlnet_hunyuan.py/0
{ "file_path": "diffusers/src/diffusers/models/controlnet_hunyuan.py", "repo_id": "diffusers", "token_count": 7435 }
132
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax import jax.numpy as jnp class FlaxUpsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states class FlaxDownsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), # padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states class FlaxResnetBlock2D(nn.Module): in_channels: int out_channels: int = None dropout_prob: float = 0.0 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.dropout = nn.Dropout(self.dropout_prob) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, temb, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) temb = self.time_emb_proj(nn.swish(temb)) temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual
diffusers/src/diffusers/models/resnet_flax.py/0
{ "file_path": "diffusers/src/diffusers/models/resnet_flax.py", "repo_id": "diffusers", "token_count": 1884 }
133
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, Optional import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import BaseOutput from ..attention import BasicTransformerBlock, TemporalBasicTransformerBlock from ..embeddings import TimestepEmbedding, Timesteps from ..modeling_utils import ModelMixin from ..resnet import AlphaBlender @dataclass class TransformerTemporalModelOutput(BaseOutput): """ The output of [`TransformerTemporalModel`]. Args: sample (`torch.Tensor` of shape `(batch_size x num_frames, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. """ sample: torch.Tensor class TransformerTemporalModel(ModelMixin, ConfigMixin): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. attention_bias (`bool`, *optional*): Configure if the `TransformerBlock` attention should contain a bias parameter. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported activation functions. norm_elementwise_affine (`bool`, *optional*): Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization. double_self_attention (`bool`, *optional*): Configure if each `TransformerBlock` should contain two self-attention layers. positional_embeddings: (`str`, *optional*): The type of positional embeddings to apply to the sequence input before passing use. num_positional_embeddings: (`int`, *optional*): The maximum length of the sequence over which to apply positional embeddings. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, activation_fn: str = "geglu", norm_elementwise_affine: bool = True, double_self_attention: bool = True, positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Linear(in_channels, inner_dim) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, double_self_attention=double_self_attention, norm_elementwise_affine=norm_elementwise_affine, positional_embeddings=positional_embeddings, num_positional_embeddings=num_positional_embeddings, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.LongTensor] = None, timestep: Optional[torch.LongTensor] = None, class_labels: torch.LongTensor = None, num_frames: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> TransformerTemporalModelOutput: """ The [`TransformerTemporal`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous): Input hidden_states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. num_frames (`int`, *optional*, defaults to 1): The number of frames to be processed per batch. This is used to reshape the hidden states. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain tuple. Returns: [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, channel, height, width = hidden_states.shape batch_size = batch_frames // num_frames residual = hidden_states hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) hidden_states = self.norm(hidden_states) hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) hidden_states = self.proj_in(hidden_states) # 2. Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states[None, None, :] .reshape(batch_size, height, width, num_frames, channel) .permute(0, 3, 4, 1, 2) .contiguous() ) hidden_states = hidden_states.reshape(batch_frames, channel, height, width) output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output) class TransformerSpatioTemporalModel(nn.Module): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). out_channels (`int`, *optional*): The number of channels in the output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. """ def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: int = 320, out_channels: Optional[int] = None, num_layers: int = 1, cross_attention_dim: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.inner_dim = inner_dim # 2. Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6) self.proj_in = nn.Linear(in_channels, inner_dim) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for d in range(num_layers) ] ) time_mix_inner_dim = inner_dim self.temporal_transformer_blocks = nn.ModuleList( [ TemporalBasicTransformerBlock( inner_dim, time_mix_inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for _ in range(num_layers) ] ) time_embed_dim = in_channels * 4 self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels) self.time_proj = Timesteps(in_channels, True, 0) self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images") # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels # TODO: should use out_channels for continuous projections self.proj_out = nn.Linear(inner_dim, in_channels) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, image_only_indicator: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states. num_frames (`int`): The number of frames to be processed per batch. This is used to reshape the hidden states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*): A tensor indicating whether the input contains only images. 1 indicates that the input contains only images, 0 indicates that the input contains video frames. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain tuple. Returns: [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, _, height, width = hidden_states.shape num_frames = image_only_indicator.shape[-1] batch_size = batch_frames // num_frames time_context = encoder_hidden_states time_context_first_timestep = time_context[None, :].reshape( batch_size, num_frames, -1, time_context.shape[-1] )[:, 0] time_context = time_context_first_timestep[:, None].broadcast_to( batch_size, height * width, time_context.shape[-2], time_context.shape[-1] ) time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1]) residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) num_frames_emb = torch.arange(num_frames, device=hidden_states.device) num_frames_emb = num_frames_emb.repeat(batch_size, 1) num_frames_emb = num_frames_emb.reshape(-1) t_emb = self.time_proj(num_frames_emb) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_pos_embed(t_emb) emb = emb[:, None, :] # 2. Blocks for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks): if self.training and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( block, hidden_states, None, encoder_hidden_states, None, use_reentrant=False, ) else: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, ) hidden_states_mix = hidden_states hidden_states_mix = hidden_states_mix + emb hidden_states_mix = temporal_block( hidden_states_mix, num_frames=num_frames, encoder_hidden_states=time_context, ) hidden_states = self.time_mixer( x_spatial=hidden_states, x_temporal=hidden_states_mix, image_only_indicator=image_only_indicator, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)
diffusers/src/diffusers/models/transformers/transformer_temporal.py/0
{ "file_path": "diffusers/src/diffusers/models/transformers/transformer_temporal.py", "repo_id": "diffusers", "token_count": 7332 }
134
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Union import torch import torch.nn.functional as F from torch import nn from torch.utils.checkpoint import checkpoint from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ..attention import BasicTransformerBlock, SkipFFTransformerBlock from ..attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from ..embeddings import TimestepEmbedding, get_timestep_embedding from ..modeling_utils import ModelMixin from ..normalization import GlobalResponseNorm, RMSNorm from ..resnet import Downsample2D, Upsample2D class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, # global config hidden_size: int = 1024, use_bias: bool = False, hidden_dropout: float = 0.0, # conditioning dimensions cond_embed_dim: int = 768, micro_cond_encode_dim: int = 256, micro_cond_embed_dim: int = 1280, encoder_hidden_size: int = 768, # num tokens vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded codebook_size: int = 8192, # `UVit2DConvEmbed` in_channels: int = 768, block_out_channels: int = 768, num_res_blocks: int = 3, downsample: bool = False, upsample: bool = False, block_num_heads: int = 12, # `TransformerLayer` num_hidden_layers: int = 22, num_attention_heads: int = 16, # `Attention` attention_dropout: float = 0.0, # `FeedForward` intermediate_size: int = 2816, # `Norm` layer_norm_eps: float = 1e-6, ln_elementwise_affine: bool = True, sample_size: int = 64, ): super().__init__() self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias) self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.embed = UVit2DConvEmbed( in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias ) self.cond_embed = TimestepEmbedding( micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias ) self.down_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample, False, ) self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine) self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias) self.transformer_layers = nn.ModuleList( [ BasicTransformerBlock( dim=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=hidden_size // num_attention_heads, dropout=hidden_dropout, cross_attention_dim=hidden_size, attention_bias=use_bias, norm_type="ada_norm_continuous", ada_norm_continous_conditioning_embedding_dim=hidden_size, norm_elementwise_affine=ln_elementwise_affine, norm_eps=layer_norm_eps, ada_norm_bias=use_bias, ff_inner_dim=intermediate_size, ff_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_hidden_layers) ] ) self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias) self.up_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample=False, upsample=upsample, ) self.mlm_layer = ConvMlmLayer( block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value: bool = False) -> None: pass def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None): encoder_hidden_states = self.encoder_proj(encoder_hidden_states) encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states) micro_cond_embeds = get_timestep_embedding( micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0 ) micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1)) pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1) pooled_text_emb = pooled_text_emb.to(dtype=self.dtype) pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype) hidden_states = self.embed(input_ids) hidden_states = self.down_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels) hidden_states = self.project_to_hidden_norm(hidden_states) hidden_states = self.project_to_hidden(hidden_states) for layer in self.transformer_layers: if self.training and self.gradient_checkpointing: def layer_(*args): return checkpoint(layer, *args) else: layer_ = layer hidden_states = layer_( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs={"pooled_text_emb": pooled_text_emb}, ) hidden_states = self.project_from_hidden_norm(hidden_states) hidden_states = self.project_from_hidden(hidden_states) hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = self.up_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) logits = self.mlm_layer(hidden_states) return logits @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) class UVit2DConvEmbed(nn.Module): def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias): super().__init__() self.embeddings = nn.Embedding(vocab_size, in_channels) self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine) self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias) def forward(self, input_ids): embeddings = self.embeddings(input_ids) embeddings = self.layer_norm(embeddings) embeddings = embeddings.permute(0, 3, 1, 2) embeddings = self.conv(embeddings) return embeddings class UVitBlock(nn.Module): def __init__( self, channels, num_res_blocks: int, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample: bool, upsample: bool, ): super().__init__() if downsample: self.downsample = Downsample2D( channels, use_conv=True, padding=0, name="Conv2d_0", kernel_size=2, norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, ) else: self.downsample = None self.res_blocks = nn.ModuleList( [ ConvNextBlock( channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, ) for i in range(num_res_blocks) ] ) self.attention_blocks = nn.ModuleList( [ SkipFFTransformerBlock( channels, block_num_heads, channels // block_num_heads, hidden_size, use_bias, attention_dropout, channels, attention_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_res_blocks) ] ) if upsample: self.upsample = Upsample2D( channels, use_conv_transpose=True, kernel_size=2, padding=0, name="conv", norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, interpolate=False, ) else: self.upsample = None def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs): if self.downsample is not None: x = self.downsample(x) for res_block, attention_block in zip(self.res_blocks, self.attention_blocks): x = res_block(x, pooled_text_emb) batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height * width).permute(0, 2, 1) x = attention_block( x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs ) x = x.permute(0, 2, 1).view(batch_size, channels, height, width) if self.upsample is not None: x = self.upsample(x) return x class ConvNextBlock(nn.Module): def __init__( self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4 ): super().__init__() self.depthwise = nn.Conv2d( channels, channels, kernel_size=3, padding=1, groups=channels, bias=use_bias, ) self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine) self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias) self.channelwise_act = nn.GELU() self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor)) self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias) self.channelwise_dropout = nn.Dropout(hidden_dropout) self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias) def forward(self, x, cond_embeds): x_res = x x = self.depthwise(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.channelwise_linear_1(x) x = self.channelwise_act(x) x = self.channelwise_norm(x) x = self.channelwise_linear_2(x) x = self.channelwise_dropout(x) x = x.permute(0, 3, 1, 2) x = x + x_res scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1) x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None] return x class ConvMlmLayer(nn.Module): def __init__( self, block_out_channels: int, in_channels: int, use_bias: bool, ln_elementwise_affine: bool, layer_norm_eps: float, codebook_size: int, ): super().__init__() self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias) self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine) self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias) def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) logits = self.conv2(hidden_states) return logits
diffusers/src/diffusers/models/unets/uvit_2d.py/0
{ "file_path": "diffusers/src/diffusers/models/unets/uvit_2d.py", "repo_id": "diffusers", "token_count": 8280 }
135
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple, Union import torch from transformers import T5EncoderModel, T5Tokenizer from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed from ...pipelines.pipeline_utils import DiffusionPipeline from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler from ...utils import BaseOutput, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ...video_processor import VideoProcessor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```python >>> import torch >>> from diffusers import CogVideoXPipeline >>> from diffusers.utils import export_to_video >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b" >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda") >>> prompt = ( ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. " ... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other " ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, " ... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. " ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical " ... "atmosphere of this unique musical performance." ... ) >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0] >>> export_to_video(video, "output.mp4", fps=8) ``` """ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): tw = tgt_width th = tgt_height h, w = src r = h / w if r > (th / tw): resize_height = th resize_width = int(round(th / h * w)) else: resize_width = tw resize_height = int(round(tw / w * h)) crop_top = int(round((th - resize_height) / 2.0)) crop_left = int(round((tw - resize_width) / 2.0)) return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps @dataclass class CogVideoXPipelineOutput(BaseOutput): r""" Output class for CogVideo pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor class CogVideoXPipeline(DiffusionPipeline): r""" Pipeline for text-to-video generation using CogVideoX. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`CogVideoXTransformer3DModel`]): A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """ _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 ) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): shape = ( batch_size, (num_frames - 1) // self.vae_scale_factor_temporal + 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae.config.scaling_factor * latents frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs def check_inputs( self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def fuse_qkv_projections(self) -> None: r"""Enables fused QKV projections.""" self.fusing_transformer = True self.transformer.fuse_qkv_projections() def unfuse_qkv_projections(self) -> None: r"""Disable QKV projection fusion if enabled.""" if not self.fusing_transformer: logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") else: self.transformer.unfuse_qkv_projections() self.fusing_transformer = False def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, ) freqs_cos = freqs_cos.to(device=device) freqs_sin = freqs_sin.to(device=device) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 480, width: int = 720, num_frames: int = 49, num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 6, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, ) -> Union[CogVideoXPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_frames (`int`, defaults to `48`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. Examples: Returns: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if num_frames > 49: raise ValueError( "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, negative_prompt, do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) self._num_timesteps = len(timesteps) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, return_dict=False, )[0] noise_pred = noise_pred.float() # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if not isinstance(self.scheduler, CogVideoXDPMScheduler): latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] else: latents, old_pred_original_sample = self.scheduler.step( noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False, ) latents = latents.to(prompt_embeds.dtype) # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if not output_type == "latent": video = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return CogVideoXPipelineOutput(frames=video)
diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py", "repo_id": "diffusers", "token_count": 15644 }
136
from typing import TYPE_CHECKING from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule _import_structure = {"pipeline_latent_diffusion_uncond": ["LDMPipeline"]} if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: from .pipeline_latent_diffusion_uncond import LDMPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, )
diffusers/src/diffusers/pipelines/deprecated/latent_diffusion_uncond/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/latent_diffusion_uncond/__init__.py", "repo_id": "diffusers", "token_count": 190 }
137
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch from packaging import version from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from ....configuration_utils import FrozenDict from ....image_processor import VaeImageProcessor from ....loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin from ....models import AutoencoderKL, UNet2DConditionModel from ....models.lora import adjust_lora_scale_text_encoder from ....schedulers import KarrasDiffusionSchedulers from ....utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers from ....utils.torch_utils import randn_tensor from ...pipeline_utils import DiffusionPipeline from ...stable_diffusion import StableDiffusionPipelineOutput from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) def preprocess_image(image, batch_size): w, h = image.size w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) image = np.array(image).astype(np.float32) / 255.0 image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size) image = torch.from_numpy(image) return 2.0 * image - 1.0 def preprocess_mask(mask, batch_size, scale_factor=8): if not isinstance(mask, torch.Tensor): mask = mask.convert("L") w, h = mask.size w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) mask = np.array(mask).astype(np.float32) / 255.0 mask = np.tile(mask, (4, 1, 1)) mask = np.vstack([mask[None]] * batch_size) mask = 1 - mask # repaint white, keep black mask = torch.from_numpy(mask) return mask else: valid_mask_channel_sizes = [1, 3] # if mask channel is fourth tensor dimension, permute dimensions to pytorch standard (B, C, H, W) if mask.shape[3] in valid_mask_channel_sizes: mask = mask.permute(0, 3, 1, 2) elif mask.shape[1] not in valid_mask_channel_sizes: raise ValueError( f"Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension," f" but received mask of shape {tuple(mask.shape)}" ) # (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape mask = mask.mean(dim=1, keepdim=True) h, w = mask.shape[-2:] h, w = (x - x % 8 for x in (h, w)) # resize to integer multiple of 8 mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor)) return mask class StableDiffusionInpaintPipelineLegacy( DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin ): r""" Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) In addition the pipeline inherits the following loading methods: - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] - *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] as well as the following saving methods: - *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() deprecation_message = ( f"The class {self.__class__} is deprecated and will be removed in v1.0.0. You can achieve exactly the same functionality" "by loading your model into `StableDiffusionInpaintPipeline` instead. See https://github.com/huggingface/diffusers/pull/3533" "for more information." ) deprecate("legacy is outdated", "1.0.0", deprecation_message, standard_warn=False) if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, num_images_per_prompt, dtype, device, generator): image = image.to(device=device, dtype=dtype) init_latent_dist = self.vae.encode(image).latent_dist init_latents = init_latent_dist.sample(generator=generator) init_latents = self.vae.config.scaling_factor * init_latents # Expand init_latents for batch_size and num_images_per_prompt init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0) init_latents_orig = init_latents # add noise to latents using the timesteps noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents, init_latents_orig, noise @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.Tensor, PIL.Image.Image] = None, mask_image: Union[torch.Tensor, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, add_predicted_noise: Optional[bool] = False, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.Tensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`torch.Tensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If mask is a tensor, the expected shape should be either `(B, H, W, C)` or `(B, C, H, W)`, where C is 1 or 3. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` is 1, the denoising process will be run on the masked area for the full number of iterations specified in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. num_inference_steps (`int`, *optional*, defaults to 50): The reference number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`, as explained above. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. add_predicted_noise (`bool`, *optional*, defaults to True): Use predicted noise instead of random noise when constructing noisy versions of the original image in the reverse diffusion process eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 1. Check inputs self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Preprocess image and mask if not isinstance(image, torch.Tensor): image = preprocess_image(image, batch_size) mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor) # 5. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables # encode the init image into latents and scale the latents latents, init_latents_orig, noise = self.prepare_latents( image, latent_timestep, num_images_per_prompt, prompt_embeds.dtype, device, generator ) # 7. Prepare mask latent mask = mask_image.to(device=device, dtype=latents.dtype) mask = torch.cat([mask] * num_images_per_prompt) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # masking if add_predicted_noise: init_latents_proper = self.scheduler.add_noise( init_latents_orig, noise_pred_uncond, torch.tensor([t]) ) else: init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # use original latents corresponding to unmasked portions of the image latents = (init_latents_orig * mask) + (latents * (1 - mask)) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py", "repo_id": "diffusers", "token_count": 18152 }
138
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class MCLIPConfig(XLMRobertaConfig): model_type = "M-CLIP" def __init__(self, transformerDimSize=1024, imageDimSize=768, **kwargs): self.transformerDimensions = transformerDimSize self.numDims = imageDimSize super().__init__(**kwargs) class MultilingualCLIP(PreTrainedModel): config_class = MCLIPConfig def __init__(self, config, *args, **kwargs): super().__init__(config, *args, **kwargs) self.transformer = XLMRobertaModel(config) self.LinearTransformation = torch.nn.Linear( in_features=config.transformerDimensions, out_features=config.numDims ) def forward(self, input_ids, attention_mask): embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0] embs2 = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(embs2), embs
diffusers/src/diffusers/pipelines/kandinsky/text_encoder.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/kandinsky/text_encoder.py", "repo_id": "diffusers", "token_count": 405 }
139
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import html import inspect import re import urllib.parse as ul from typing import Callable, List, Optional, Tuple, Union import torch from transformers import T5EncoderModel, T5Tokenizer from ...image_processor import PixArtImageProcessor from ...models import AutoencoderKL, PixArtTransformer2DModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput from ..pixart_alpha.pipeline_pixart_alpha import ( ASPECT_RATIO_256_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN, ) from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN from .pag_utils import PAGMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import AutoPipelineForText2Image >>> pipe = AutoPipelineForText2Image.from_pretrained( ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", ... torch_dtype=torch.float16, ... pag_applied_layers=["blocks.14"], ... enable_pag=True, ... ) >>> pipe = pipe.to("cuda") >>> prompt = "A small cactus with a happy face in the Sahara desert" >>> image = pipe(prompt, pag_scale=4.0, guidance_scale=1.0).images[0] ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class PixArtSigmaPAGPipeline(DiffusionPipeline, PAGMixin): r""" [PAG pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag) for text-to-image generation using PixArt-Sigma. """ bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder"] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: PixArtTransformer2DModel, scheduler: KarrasDiffusionSchedulers, pag_applied_layers: Union[str, List[str]] = "blocks.1", # 1st transformer block ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) self.set_pag_applied_layers(pag_applied_layers) # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300 def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, clean_caption: bool = False, max_sequence_length: int = 300, **kwargs, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" string. clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. """ if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # See Section 3.1. of the paper. max_length = max_sequence_length if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because T5 can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device) prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) else: negative_prompt_embeds = None negative_prompt_attention_mask = None return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs def check_inputs( self, prompt, height, width, negative_prompt, callback_steps, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = None, width: Optional[int] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, clean_caption: bool = True, use_resolution_binning: bool = True, max_sequence_length: int = 300, pag_scale: float = 3.0, pag_adaptive_scale: float = 0.0, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. use_resolution_binning (`bool` defaults to `True`): If set to `True`, the requested height and width are first mapped to the closest resolutions using `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images. max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`. pag_scale (`float`, *optional*, defaults to 3.0): The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention guidance will not be used. pag_adaptive_scale (`float`, *optional*, defaults to 0.0): The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is used. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor if use_resolution_binning: if self.transformer.config.sample_size == 256: aspect_ratio_bin = ASPECT_RATIO_2048_BIN elif self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_512_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_256_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) self.check_inputs( prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) self._pag_scale = pag_scale self._pag_adaptive_scale = pag_adaptive_scale # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, ) if self.do_perturbed_attention_guidance: prompt_embeds = self._prepare_perturbed_attention_guidance( prompt_embeds, negative_prompt_embeds, do_classifier_free_guidance ) prompt_attention_mask = self._prepare_perturbed_attention_guidance( prompt_attention_mask, negative_prompt_attention_mask, do_classifier_free_guidance ) elif do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) if self.do_perturbed_attention_guidance: original_attn_proc = self.transformer.attn_processors self._set_pag_attn_processor( pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=do_classifier_free_guidance, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Prepare micro-conditions. added_cond_kwargs = {"resolution": None, "aspect_ratio": None} # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_perturbed_attention_guidance: noise_pred = self._apply_perturbed_attention_guidance( noise_pred, do_classifier_free_guidance, guidance_scale, current_timestep ) elif do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) else: image = latents if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if self.do_perturbed_attention_guidance: self.transformer.set_attn_processor(original_attn_proc) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
diffusers/src/diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py", "repo_id": "diffusers", "token_count": 19029 }
140
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from math import ceil from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from ...models import StableCascadeUNet from ...schedulers import DDPMWuerstchenScheduler from ...utils import BaseOutput, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableCascadePriorPipeline >>> prior_pipe = StableCascadePriorPipeline.from_pretrained( ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16 ... ).to("cuda") >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" >>> prior_output = pipe(prompt) ``` """ @dataclass class StableCascadePriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt prompt_embeds (`torch.Tensor`): Text embeddings for the prompt. negative_prompt_embeds (`torch.Tensor`): Text embeddings for the negative prompt. """ image_embeddings: Union[torch.Tensor, np.ndarray] prompt_embeds: Union[torch.Tensor, np.ndarray] prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] negative_prompt_embeds: Union[torch.Tensor, np.ndarray] negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] class StableCascadePriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`StableCascadeUNet`]): The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """ unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "image_encoder->text_encoder->prior" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float = 42.67, feature_extractor: Optional[CLIPImageProcessor] = None, image_encoder: Optional[CLIPVisionModelWithProjection] = None, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler, ) self.register_to_config(resolution_multiple=resolution_multiple) def prepare_latents( self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler ): latent_shape = ( num_images_per_prompt * batch_size, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple), ) if latents is None: latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latent_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): image_embeds = [] for image in images: image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) image_embeds.append(image_embed) image_embeds = torch.cat(image_embeds, dim=1) image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) negative_image_embeds = torch.zeros_like(image_embeds) return image_embeds, negative_image_embeds def check_inputs( self, prompt, images=None, image_embeds=None, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and prompt_embeds_pooled is None: raise ValueError( "If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: raise ValueError( "`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed" f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=" f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}." ) if image_embeds is not None and images is not None: raise ValueError( f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to" " only forward one of the two." ) if images: for i, image in enumerate(images): if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image): raise TypeError( f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got" f"{type(image)} for image number {i}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 20, timesteps: List[float] = None, guidance_scale: float = 4.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If not provided, image embeddings will be generated from `image` input argument if existing. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = next(self.prior.parameters()).dtype self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, images=images, image_embeds=image_embeds, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) # 2. Encode caption + images ( prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, ) if images is not None: image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image( images=images, device=device, dtype=dtype, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, ) elif image_embeds is not None: image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) else: image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) uncond_image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) if self.do_classifier_free_guidance: image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) else: image_embeds = image_embeds_pooled # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_encoder_hidden_states = ( torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds ) text_encoder_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if negative_prompt_embeds is not None else prompt_embeds_pooled ) # 4. Prepare and set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] else: if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample: self.scheduler.config.clip_sample = False # disample sample clipping logger.warning(" set `clip_sample` to be False") # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise image embeddings predicted_image_embedding = self.prior( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=text_encoder_pooled, clip_text=text_encoder_hidden_states, clip_img=image_embeds, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) predicted_image_embedding = torch.lerp( predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale ) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # Offload all models self.maybe_free_model_hooks() if output_type == "np": latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work negative_prompt_embeds = ( negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None ) # float() as bfloat16-> numpy doesnt work if not return_dict: return ( latents, prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) return StableCascadePriorPipelineOutput( image_embeddings=latents, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, )
diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py", "repo_id": "diffusers", "token_count": 14212 }
141
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch.nn import functional as F from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from ...image_processor import VaeImageProcessor from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.attention_processor import Attention from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin from ..stable_diffusion import StableDiffusionPipelineOutput from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableDiffusionAttendAndExcitePipeline >>> pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained( ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ... ).to("cuda") >>> prompt = "a cat and a frog" >>> # use get_indices function to find out indices of the tokens you want to alter >>> pipe.get_indices(prompt) {0: '<|startoftext|>', 1: 'a</w>', 2: 'cat</w>', 3: 'and</w>', 4: 'a</w>', 5: 'frog</w>', 6: '<|endoftext|>'} >>> token_indices = [2, 5] >>> seed = 6141 >>> generator = torch.Generator("cuda").manual_seed(seed) >>> images = pipe( ... prompt=prompt, ... token_indices=token_indices, ... guidance_scale=7.5, ... generator=generator, ... num_inference_steps=50, ... max_iter_to_alter=25, ... ).images >>> image = images[0] >>> image.save(f"../images/{prompt}_{seed}.png") ``` """ class AttentionStore: @staticmethod def get_empty_store(): return {"down": [], "mid": [], "up": []} def __call__(self, attn, is_cross: bool, place_in_unet: str): if self.cur_att_layer >= 0 and is_cross: if attn.shape[1] == np.prod(self.attn_res): self.step_store[place_in_unet].append(attn) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers: self.cur_att_layer = 0 self.between_steps() def between_steps(self): self.attention_store = self.step_store self.step_store = self.get_empty_store() def get_average_attention(self): average_attention = self.attention_store return average_attention def aggregate_attention(self, from_where: List[str]) -> torch.Tensor: """Aggregates the attention across the different layers and heads at the specified resolution.""" out = [] attention_maps = self.get_average_attention() for location in from_where: for item in attention_maps[location]: cross_maps = item.reshape(-1, self.attn_res[0], self.attn_res[1], item.shape[-1]) out.append(cross_maps) out = torch.cat(out, dim=0) out = out.sum(0) / out.shape[0] return out def reset(self): self.cur_att_layer = 0 self.step_store = self.get_empty_store() self.attention_store = {} def __init__(self, attn_res): """ Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion process """ self.num_att_layers = -1 self.cur_att_layer = 0 self.step_store = self.get_empty_store() self.attention_store = {} self.curr_step_index = 0 self.attn_res = attn_res class AttendExciteAttnProcessor: def __init__(self, attnstore, place_in_unet): super().__init__() self.attnstore = attnstore self.place_in_unet = place_in_unet def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) is_cross = encoder_hidden_states is not None encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) # only need to store attention maps during the Attend and Excite process if attention_probs.requires_grad: self.attnstore(attention_probs, is_cross, self.place_in_unet) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin): r""" Pipeline for text-to-image generation using Stable Diffusion and Attend-and-Excite. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, indices, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) indices_is_list_ints = isinstance(indices, list) and isinstance(indices[0], int) indices_is_list_list_ints = ( isinstance(indices, list) and isinstance(indices[0], list) and isinstance(indices[0][0], int) ) if not indices_is_list_ints and not indices_is_list_list_ints: raise TypeError("`indices` must be a list of ints or a list of a list of ints") if indices_is_list_ints: indices_batch_size = 1 elif indices_is_list_list_ints: indices_batch_size = len(indices) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if indices_batch_size != prompt_batch_size: raise ValueError( f"indices batch size must be same as prompt batch size. indices batch size: {indices_batch_size}, prompt batch size: {prompt_batch_size}" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @staticmethod def _compute_max_attention_per_index( attention_maps: torch.Tensor, indices: List[int], ) -> List[torch.Tensor]: """Computes the maximum attention value for each of the tokens we wish to alter.""" attention_for_text = attention_maps[:, :, 1:-1] attention_for_text *= 100 attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1) # Shift indices since we removed the first token indices = [index - 1 for index in indices] # Extract the maximum values max_indices_list = [] for i in indices: image = attention_for_text[:, :, i] smoothing = GaussianSmoothing().to(attention_maps.device) input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect") image = smoothing(input).squeeze(0).squeeze(0) max_indices_list.append(image.max()) return max_indices_list def _aggregate_and_get_max_attention_per_token( self, indices: List[int], ): """Aggregates the attention for each token and computes the max activation value for each token to alter.""" attention_maps = self.attention_store.aggregate_attention( from_where=("up", "down", "mid"), ) max_attention_per_index = self._compute_max_attention_per_index( attention_maps=attention_maps, indices=indices, ) return max_attention_per_index @staticmethod def _compute_loss(max_attention_per_index: List[torch.Tensor]) -> torch.Tensor: """Computes the attend-and-excite loss using the maximum attention value for each token.""" losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index] loss = max(losses) return loss @staticmethod def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor: """Update the latent according to the computed loss.""" grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0] latents = latents - step_size * grad_cond return latents def _perform_iterative_refinement_step( self, latents: torch.Tensor, indices: List[int], loss: torch.Tensor, threshold: float, text_embeddings: torch.Tensor, step_size: float, t: int, max_refinement_steps: int = 20, ): """ Performs the iterative latent refinement introduced in the paper. Here, we continuously update the latent code according to our loss objective until the given threshold is reached for all tokens. """ iteration = 0 target_loss = max(0, 1.0 - threshold) while loss > target_loss: iteration += 1 latents = latents.clone().detach().requires_grad_(True) self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) if loss != 0: latents = self._update_latent(latents, loss, step_size) logger.info(f"\t Try {iteration}. loss: {loss}") if iteration >= max_refinement_steps: logger.info(f"\t Exceeded max number of iterations ({max_refinement_steps})! ") break # Run one more time but don't compute gradients and update the latents. # We just need to compute the new loss - the grad update will occur below latents = latents.clone().detach().requires_grad_(True) _ = self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) logger.info(f"\t Finished with loss of: {loss}") return loss, latents, max_attention_per_index def register_attention_control(self): attn_procs = {} cross_att_count = 0 for name in self.unet.attn_processors.keys(): if name.startswith("mid_block"): place_in_unet = "mid" elif name.startswith("up_blocks"): place_in_unet = "up" elif name.startswith("down_blocks"): place_in_unet = "down" else: continue cross_att_count += 1 attn_procs[name] = AttendExciteAttnProcessor(attnstore=self.attention_store, place_in_unet=place_in_unet) self.unet.set_attn_processor(attn_procs) self.attention_store.num_att_layers = cross_att_count def get_indices(self, prompt: str) -> Dict[str, int]: """Utility function to list the indices of the tokens you wish to alte""" ids = self.tokenizer(prompt).input_ids indices = {i: tok for tok, i in zip(self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)))} return indices @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], token_indices: Union[List[int], List[List[int]]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, max_iter_to_alter: int = 25, thresholds: dict = {0: 0.05, 10: 0.5, 20: 0.8}, scale_factor: int = 20, attn_res: Optional[Tuple[int]] = (16, 16), clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. token_indices (`List[int]`): The token indices to alter with attend-and-excite. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). max_iter_to_alter (`int`, *optional*, defaults to `25`): Number of denoising steps to apply attend-and-excite. The `max_iter_to_alter` denoising steps are when attend-and-excite is applied. For example, if `max_iter_to_alter` is `25` and there are a total of `30` denoising steps, the first `25` denoising steps applies attend-and-excite and the last `5` will not. thresholds (`dict`, *optional*, defaults to `{0: 0.05, 10: 0.5, 20: 0.8}`): Dictionary defining the iterations and desired thresholds to apply iterative latent refinement in. scale_factor (`int`, *optional*, default to 20): Scale factor to control the step size of each attend-and-excite update. attn_res (`tuple`, *optional*, default computed from width and height): The 2D resolution of the semantic attention map. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, token_indices, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) if attn_res is None: attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32)) self.attention_store = AttentionStore(attn_res) original_attn_proc = self.unet.attn_processors self.register_attention_control() # default config for step size from original repo scale_range = np.linspace(1.0, 0.5, len(self.scheduler.timesteps)) step_size = scale_factor * np.sqrt(scale_range) text_embeddings = ( prompt_embeds[batch_size * num_images_per_prompt :] if do_classifier_free_guidance else prompt_embeds ) if isinstance(token_indices[0], int): token_indices = [token_indices] indices = [] for ind in token_indices: indices = indices + [ind] * num_images_per_prompt # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Attend and excite process with torch.enable_grad(): latents = latents.clone().detach().requires_grad_(True) updated_latents = [] for latent, index, text_embedding in zip(latents, indices, text_embeddings): # Forward pass of denoising with text conditioning latent = latent.unsqueeze(0) text_embedding = text_embedding.unsqueeze(0) self.unet( latent, t, encoder_hidden_states=text_embedding, cross_attention_kwargs=cross_attention_kwargs, ).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=index, ) loss = self._compute_loss(max_attention_per_index=max_attention_per_index) # If this is an iterative refinement step, verify we have reached the desired threshold for all if i in thresholds.keys() and loss > 1.0 - thresholds[i]: loss, latent, max_attention_per_index = self._perform_iterative_refinement_step( latents=latent, indices=index, loss=loss, threshold=thresholds[i], text_embeddings=text_embedding, step_size=step_size[i], t=t, ) # Perform gradient update if i < max_iter_to_alter: if loss != 0: latent = self._update_latent( latents=latent, loss=loss, step_size=step_size[i], ) logger.info(f"Iteration {i} | Loss: {loss:0.4f}") updated_latents.append(latent) latents = torch.cat(updated_latents, dim=0) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() # make sure to set the original attention processors back self.unet.set_attn_processor(original_attn_proc) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) class GaussianSmoothing(torch.nn.Module): """ Arguments: Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ # channels=1, kernel_size=kernel_size, sigma=sigma, dim=2 def __init__( self, channels: int = 1, kernel_size: int = 3, sigma: float = 0.5, dim: int = 2, ): super().__init__() if isinstance(kernel_size, int): kernel_size = [kernel_size] * dim if isinstance(sigma, float): sigma = [sigma] * dim # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer("weight", kernel) self.groups = channels if dim == 1: self.conv = F.conv1d elif dim == 2: self.conv = F.conv2d elif dim == 3: self.conv = F.conv3d else: raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) def forward(self, input): """ Arguments: Apply gaussian filter to input. input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)
diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py", "repo_id": "diffusers", "token_count": 22761 }
142
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging logger = logging.get_logger(__name__) def cosine_distance(image_embeds, text_embeds): normalized_image_embeds = nn.functional.normalize(image_embeds) normalized_text_embeds = nn.functional.normalize(text_embeds) return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) class SafeStableDiffusionSafetyChecker(PreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
diffusers/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py", "repo_id": "diffusers", "token_count": 1962 }
143
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_output"] = ["TextToVideoSDPipelineOutput"] _import_structure["pipeline_text_to_video_synth"] = ["TextToVideoSDPipeline"] _import_structure["pipeline_text_to_video_synth_img2img"] = ["VideoToVideoSDPipeline"] _import_structure["pipeline_text_to_video_zero"] = ["TextToVideoZeroPipeline"] _import_structure["pipeline_text_to_video_zero_sdxl"] = ["TextToVideoZeroSDXLPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_output import TextToVideoSDPipelineOutput from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline from .pipeline_text_to_video_zero import TextToVideoZeroPipeline from .pipeline_text_to_video_zero_sdxl import TextToVideoZeroSDXLPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/text_to_video_synthesis/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/text_to_video_synthesis/__init__.py", "repo_id": "diffusers", "token_count": 788 }
144
import torch import torch.nn as nn from ...models.attention_processor import Attention class WuerstchenLayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): x = x.permute(0, 2, 3, 1) x = super().forward(x) return x.permute(0, 3, 1, 2) class TimestepBlock(nn.Module): def __init__(self, c, c_timestep): super().__init__() self.mapper = nn.Linear(c_timestep, c * 2) def forward(self, x, t): a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1) return x * (1 + a) + b class ResBlock(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): super().__init__() self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( nn.Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c) ) def forward(self, x, x_skip=None): x_res = x if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1) x = self.channelwise(x).permute(0, 3, 1, 2) return x + x_res # from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 class GlobalResponseNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * stand_div_norm) + self.beta + x class AttnBlock(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c)) def forward(self, x, kv): kv = self.kv_mapper(kv) norm_x = self.norm(x) if self.self_attn: batch_size, channel, _, _ = x.shape kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) x = x + self.attention(norm_x, encoder_hidden_states=kv) return x
diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py", "repo_id": "diffusers", "token_count": 1322 }
145
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from ..utils.torch_utils import randn_tensor from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class DDIMSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) def rescale_zero_terminal_snr(betas): """ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) Args: betas (`torch.Tensor`): the betas that the scheduler is being initialized with. Returns: `torch.Tensor`: rescaled betas with zero terminal SNR """ # Convert betas to alphas_bar_sqrt alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_bar_sqrt = alphas_cumprod.sqrt() # Store old values. alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() # Shift so the last timestep is zero. alphas_bar_sqrt -= alphas_bar_sqrt_T # Scale so the first timestep is back to the old value. alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) # Convert alphas_bar_sqrt to betas alphas_bar = alphas_bar_sqrt**2 # Revert sqrt alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod alphas = torch.cat([alphas_bar[0:1], alphas]) betas = 1 - alphas return betas class DDIMScheduler(SchedulerMixin, ConfigMixin): """ `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. clip_sample (`bool`, defaults to `True`): Clip the predicted sample for numerical stability. clip_sample_range (`float`, defaults to 1.0): The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. set_alpha_to_one (`bool`, defaults to `True`): Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the alpha value at step 0. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True`. timestep_spacing (`str`, defaults to `"leading"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, steps_offset: int = 0, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, clip_sample_range: float = 1.0, sample_max_value: float = 1.0, timestep_spacing: str = "leading", rescale_betas_zero_snr: bool = False, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") # Rescale for zero SNR if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample def _get_variance(self, timestep, prev_timestep): alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. """ if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = ( np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) .round()[::-1] .copy() .astype(np.int64) ) elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." ) self.timesteps = torch.from_numpy(timesteps).to(device) def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, variance_noise: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[DDIMSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. eta (`float`): The weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`, defaults to `False`): If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide with the one provided as input and `use_clipped_model_output` has no effect. generator (`torch.Generator`, *optional*): A random number generator. variance_noise (`torch.Tensor`): Alternative to generating noise with `generator` by directly providing the noise for the variance itself. Useful for methods such as [`CycleDiffusion`]. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_epsilon = model_output elif self.config.prediction_type == "sample": pred_original_sample = model_output pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.thresholding: pred_original_sample = self._threshold_sample(pred_original_sample) elif self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) if use_clipped_model_output: # the pred_epsilon is always re-derived from the clipped x_0 in Glide pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if eta > 0: if variance_noise is not None and generator is not None: raise ValueError( "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" " `variance_noise` stays `None`." ) if variance_noise is None: variance_noise = randn_tensor( model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype ) variance = std_dev_t * variance_noise prev_sample = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement # for the subsequent add_noise calls self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as sample self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) timesteps = timesteps.to(sample.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_ddim.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_ddim.py", "repo_id": "diffusers", "token_count": 10394 }
146
# Copyright 2024 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, ) @flax.struct.dataclass class PNDMSchedulerState: common: CommonSchedulerState final_alpha_cumprod: jnp.ndarray # setable values init_noise_sigma: jnp.ndarray timesteps: jnp.ndarray num_inference_steps: Optional[int] = None prk_timesteps: Optional[jnp.ndarray] = None plms_timesteps: Optional[jnp.ndarray] = None # running values cur_model_output: Optional[jnp.ndarray] = None counter: Optional[jnp.int32] = None cur_sample: Optional[jnp.ndarray] = None ets: Optional[jnp.ndarray] = None @classmethod def create( cls, common: CommonSchedulerState, final_alpha_cumprod: jnp.ndarray, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, ): return cls( common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps, ) @dataclass class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput): state: PNDMSchedulerState class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin): """ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, namely Runge-Kutta method and a linear multi-step method. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2202.09778 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. skip_prk_steps (`bool`): allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required before plms steps; defaults to `False`. set_alpha_to_one (`bool`, default `False`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): An offset added to the inference steps, as required by some model families. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] dtype: jnp.dtype pndm_order: int @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, steps_offset: int = 0, prediction_type: str = "epsilon", dtype: jnp.dtype = jnp.float32, ): self.dtype = dtype # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 def create_state(self, common: Optional[CommonSchedulerState] = None) -> PNDMSchedulerState: if common is None: common = CommonSchedulerState.create(self) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. final_alpha_cumprod = ( jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0] ) # standard deviation of the initial noise distribution init_noise_sigma = jnp.array(1.0, dtype=self.dtype) timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] return PNDMSchedulerState.create( common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps, ) def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. shape (`Tuple`): the shape of the samples to be generated. """ step_ratio = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + self.config.steps_offset if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 prk_timesteps = jnp.array([], dtype=jnp.int32) plms_timesteps = jnp.concatenate([_timesteps[:-1], _timesteps[-2:-1], _timesteps[-1:]])[::-1] else: prk_timesteps = _timesteps[-self.pndm_order :].repeat(2) + jnp.tile( jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2], dtype=jnp.int32), self.pndm_order, ) prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1] plms_timesteps = _timesteps[:-3][::-1] timesteps = jnp.concatenate([prk_timesteps, plms_timesteps]) # initial running values cur_model_output = jnp.zeros(shape, dtype=self.dtype) counter = jnp.int32(0) cur_sample = jnp.zeros(shape, dtype=self.dtype) ets = jnp.zeros((4,) + shape, dtype=self.dtype) return state.replace( timesteps=timesteps, num_inference_steps=num_inference_steps, prk_timesteps=prk_timesteps, plms_timesteps=plms_timesteps, cur_model_output=cur_model_output, counter=counter, cur_sample=cur_sample, ets=ets, ) def scale_model_input( self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None ) -> jnp.ndarray: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. sample (`jnp.ndarray`): input sample timestep (`int`, optional): current timestep Returns: `jnp.ndarray`: scaled input sample """ return sample def step( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.config.skip_prk_steps: prev_sample, state = self.step_plms(state, model_output, timestep, sample) else: prk_prev_sample, prk_state = self.step_prk(state, model_output, timestep, sample) plms_prev_sample, plms_state = self.step_plms(state, model_output, timestep, sample) cond = state.counter < len(state.prk_timesteps) prev_sample = jax.lax.select(cond, prk_prev_sample, plms_prev_sample) state = state.replace( cur_model_output=jax.lax.select(cond, prk_state.cur_model_output, plms_state.cur_model_output), ets=jax.lax.select(cond, prk_state.ets, plms_state.ets), cur_sample=jax.lax.select(cond, prk_state.cur_sample, plms_state.cur_sample), counter=jax.lax.select(cond, prk_state.counter, plms_state.counter), ) if not return_dict: return (prev_sample, state) return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state) def step_prk( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) diff_to_prev = jnp.where( state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2 ) prev_timestep = timestep - diff_to_prev timestep = state.prk_timesteps[state.counter // 4 * 4] model_output = jax.lax.select( (state.counter % 4) != 3, model_output, # remainder 0, 1, 2 state.cur_model_output + 1 / 6 * model_output, # remainder 3 ) state = state.replace( cur_model_output=jax.lax.select_n( state.counter % 4, state.cur_model_output + 1 / 6 * model_output, # remainder 0 state.cur_model_output + 1 / 3 * model_output, # remainder 1 state.cur_model_output + 1 / 3 * model_output, # remainder 2 jnp.zeros_like(state.cur_model_output), # remainder 3 ), ets=jax.lax.select( (state.counter % 4) == 0, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # remainder 0 state.ets, # remainder 1, 2, 3 ), cur_sample=jax.lax.select( (state.counter % 4) == 0, sample, # remainder 0 state.cur_sample, # remainder 1, 2, 3 ), ) cur_sample = state.cur_sample prev_sample = self._get_prev_sample(state, cur_sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def step_plms( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # NOTE: There is no way to check in the jitted runtime if the prk mode was ran before prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0) # Reference: # if state.counter != 1: # state.ets.append(model_output) # else: # prev_timestep = timestep # timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep) timestep = jnp.where( state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep ) # Reference: # if len(state.ets) == 1 and state.counter == 0: # model_output = model_output # state.cur_sample = sample # elif len(state.ets) == 1 and state.counter == 1: # model_output = (model_output + state.ets[-1]) / 2 # sample = state.cur_sample # state.cur_sample = None # elif len(state.ets) == 2: # model_output = (3 * state.ets[-1] - state.ets[-2]) / 2 # elif len(state.ets) == 3: # model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12 # else: # model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]) state = state.replace( ets=jax.lax.select( state.counter != 1, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # counter != 1 state.ets, # counter 1 ), cur_sample=jax.lax.select( state.counter != 1, sample, # counter != 1 state.cur_sample, # counter 1 ), ) state = state.replace( cur_model_output=jax.lax.select_n( jnp.clip(state.counter, 0, 4), model_output, # counter 0 (model_output + state.ets[-1]) / 2, # counter 1 (3 * state.ets[-1] - state.ets[-2]) / 2, # counter 2 (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12, # counter 3 (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]), # counter >= 4 ), ) sample = state.cur_sample model_output = state.cur_model_output prev_sample = self._get_prev_sample(state, sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def _get_prev_sample(self, state: PNDMSchedulerState, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation (<variable name> -> <name in paper> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = state.common.alphas_cumprod[timestep] alpha_prod_t_prev = jnp.where( prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod ) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if self.config.prediction_type == "v_prediction": model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample elif self.config.prediction_type != "epsilon": raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`" ) # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def add_noise( self, state: PNDMSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: return add_noise_common(state.common, original_samples, noise, timesteps) def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py", "repo_id": "diffusers", "token_count": 9597 }
147
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Doc utilities: Utilities related to documentation """ import re def replace_example_docstring(example_docstring): def docstring_decorator(fn): func_doc = fn.__doc__ lines = func_doc.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None: i += 1 if i < len(lines): lines[i] = example_docstring func_doc = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, " f"current docstring is:\n{func_doc}" ) fn.__doc__ = func_doc return fn return docstring_decorator
diffusers/src/diffusers/utils/doc_utils.py/0
{ "file_path": "diffusers/src/diffusers/utils/doc_utils.py", "repo_id": "diffusers", "token_count": 506 }
148
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import sys import tempfile import traceback import warnings from pathlib import Path from typing import Dict, List, Optional, Union from uuid import uuid4 from huggingface_hub import ( ModelCard, ModelCardData, create_repo, hf_hub_download, model_info, snapshot_download, upload_folder, ) from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, validate_hf_hub_args, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger logger = get_logger(__name__) MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md" SESSION_ID = uuid4().hex def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: """ Formats a user-agent string with basic info about a request. """ ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(user_agent, dict): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent return ua def load_or_create_model_card( repo_id_or_path: str = None, token: Optional[str] = None, is_pipeline: bool = False, from_training: bool = False, model_description: Optional[str] = None, base_model: str = None, prompt: Optional[str] = None, license: Optional[str] = None, widget: Optional[List[dict]] = None, inference: Optional[bool] = None, ) -> ModelCard: """ Loads or creates a model card. Args: repo_id_or_path (`str`): The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card. token (`str`, *optional*): Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more details. is_pipeline (`bool`): Boolean to indicate if we're adding tag to a [`DiffusionPipeline`]. from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script. model_description (`str`, *optional*): Model description to add to the model card. Helpful when using `load_or_create_model_card` from a training script. base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful for DreamBooth-like training. prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training. license: (`str`, *optional*): License of the output artifact. Helpful when using `load_or_create_model_card` from a training script. widget (`List[dict]`, *optional*): Widget to accompany a gallery template. inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using `load_or_create_model_card` from a training script. """ if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `load_or_create_model_card`." " To install it, please run `pip install Jinja2`." ) try: # Check if the model card is present on the remote repo model_card = ModelCard.load(repo_id_or_path, token=token) except (EntryNotFoundError, RepositoryNotFoundError): # Otherwise create a model card from template if from_training: model_card = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block license=license, library_name="diffusers", inference=inference, base_model=base_model, instance_prompt=prompt, widget=widget, ), template_path=MODEL_CARD_TEMPLATE_PATH, model_description=model_description, ) else: card_data = ModelCardData() component = "pipeline" if is_pipeline else "model" if model_description is None: model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated." model_card = ModelCard.from_template(card_data, model_description=model_description) return model_card def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard: """Populates the `model_card` with library name and optional tags.""" if model_card.data.library_name is None: model_card.data.library_name = "diffusers" if tags is not None: if isinstance(tags, str): tags = [tags] if model_card.data.tags is None: model_card.data.tags = [] for tag in tags: model_card.data.tags.append(tag) return model_card def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None): """ Extracts the commit hash from a resolved filename toward a cache file. """ if resolved_file is None or commit_hash is not None: return commit_hash resolved_file = str(Path(resolved_file).as_posix()) search = re.search(r"snapshots/([^/]+)/", resolved_file) if search is None: return None commit_hash = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. hf_cache_home = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) old_diffusers_cache = os.path.join(hf_cache_home, "diffusers") def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None: if new_cache_dir is None: new_cache_dir = HF_HUB_CACHE if old_cache_dir is None: old_cache_dir = old_diffusers_cache old_cache_dir = Path(old_cache_dir).expanduser() new_cache_dir = Path(new_cache_dir).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*"): if old_blob_path.is_file() and not old_blob_path.is_symlink(): new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir) new_blob_path.parent.mkdir(parents=True, exist_ok=True) os.replace(old_blob_path, new_blob_path) try: os.symlink(new_blob_path, old_blob_path) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): cache_version = 0 else: with open(cache_version_file) as f: try: cache_version = int(f.read()) except ValueError: cache_version = 0 if cache_version < 1: old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: trace = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(HF_HUB_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure " "the directory exists and can be written to." ) def _add_variant(weights_name: str, variant: Optional[str] = None) -> str: if variant is not None: splits = weights_name.split(".") split_index = -2 if weights_name.endswith(".index.json") else -1 splits = splits[:-split_index] + [variant] + splits[-split_index:] weights_name = ".".join(splits) return weights_name @validate_hf_hub_args def _get_model_file( pretrained_model_name_or_path: Union[str, Path], *, weights_name: str, subfolder: Optional[str] = None, cache_dir: Optional[str] = None, force_download: bool = False, proxies: Optional[Dict] = None, local_files_only: bool = False, token: Optional[str] = None, user_agent: Optional[Union[Dict, str]] = None, revision: Optional[str] = None, commit_hash: Optional[str] = None, ): pretrained_model_name_or_path = str(pretrained_model_name_or_path) if os.path.isfile(pretrained_model_name_or_path): return pretrained_model_name_or_path elif os.path.isdir(pretrained_model_name_or_path): if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): # Load from a PyTorch checkpoint model_file = os.path.join(pretrained_model_name_or_path, weights_name) return model_file elif subfolder is not None and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, weights_name) ): model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0") ): try: model_file = hf_hub_download( pretrained_model_name_or_path, filename=_add_variant(weights_name, revision), cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision or commit_hash, ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.", FutureWarning, ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.", FutureWarning, ) try: # 2. Load model file as usual model_file = hf_hub_download( pretrained_model_name_or_path, filename=weights_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision or commit_hash, ) return model_file except RepositoryNotFoundError as e: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `token` or log in with `huggingface-cli " "login`." ) from e except RevisionNotFoundError as e: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " "this model name. Check the model page at " f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) from e except EntryNotFoundError as e: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) from e except HTTPError as e: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}" ) from e except ValueError as e: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) from e except EnvironmentError as e: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" ) from e # Adapted from # https://github.com/huggingface/transformers/blob/1360801a69c0b169e3efdbb0cd05d9a0e72bfb70/src/transformers/utils/hub.py#L976 # Differences are in parallelization of shard downloads and checking if shards are present. def _check_if_shards_exist_locally(local_dir, subfolder, original_shard_filenames): shards_path = os.path.join(local_dir, subfolder) shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames] for shard_file in shard_filenames: if not os.path.exists(shard_file): raise ValueError( f"{shards_path} does not appear to have a file named {shard_file} which is " "required according to the checkpoint index." ) def _get_checkpoint_shard_files( pretrained_model_name_or_path, index_filename, cache_dir=None, proxies=None, local_files_only=False, token=None, user_agent=None, revision=None, subfolder="", ): """ For a given model: - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the Hub - returns the list of paths to all the shards, as well as some metadata. For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). """ if not os.path.isfile(index_filename): raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") with open(index_filename, "r") as f: index = json.loads(f.read()) original_shard_filenames = sorted(set(index["weight_map"].values())) sharded_metadata = index["metadata"] sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) sharded_metadata["weight_map"] = index["weight_map"].copy() shards_path = os.path.join(pretrained_model_name_or_path, subfolder) # First, let's deal with local folder. if os.path.isdir(pretrained_model_name_or_path): _check_if_shards_exist_locally( pretrained_model_name_or_path, subfolder=subfolder, original_shard_filenames=original_shard_filenames ) return shards_path, sharded_metadata # At this stage pretrained_model_name_or_path is a model identifier on the Hub allow_patterns = original_shard_filenames if subfolder is not None: allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns] ignore_patterns = ["*.json", "*.md"] if not local_files_only: # `model_info` call must guarded with the above condition. model_files_info = model_info(pretrained_model_name_or_path, revision=revision) for shard_file in original_shard_filenames: shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings) if not shard_file_present: raise EnvironmentError( f"{shards_path} does not appear to have a file named {shard_file} which is " "required according to the checkpoint index." ) try: # Load from URL cached_folder = snapshot_download( pretrained_model_name_or_path, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, user_agent=user_agent, ) if subfolder is not None: cached_folder = os.path.join(cached_folder, subfolder) # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so # we don't have to catch them here. We have also dealt with EntryNotFoundError. except HTTPError as e: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try" " again after checking your internet connection." ) from e # If `local_files_only=True`, `cached_folder` may not contain all the shard files. elif local_files_only: _check_if_shards_exist_locally( local_dir=cache_dir, subfolder=subfolder, original_shard_filenames=original_shard_filenames ) if subfolder is not None: cached_folder = os.path.join(cached_folder, subfolder) return cached_folder, sharded_metadata class PushToHubMixin: """ A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub. """ def _upload_folder( self, working_dir: Union[str, os.PathLike], repo_id: str, token: Optional[str] = None, commit_message: Optional[str] = None, create_pr: bool = False, ): """ Uploads all files in `working_dir` to `repo_id`. """ if commit_message is None: if "Model" in self.__class__.__name__: commit_message = "Upload model" elif "Scheduler" in self.__class__.__name__: commit_message = "Upload scheduler" else: commit_message = f"Upload {self.__class__.__name__}" logger.info(f"Uploading the files of {working_dir} to {repo_id}.") return upload_folder( repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr ) def push_to_hub( self, repo_id: str, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[str] = None, create_pr: bool = False, safe_serialization: bool = True, variant: Optional[str] = None, ) -> str: """ Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub. Parameters: repo_id (`str`): The name of the repository you want to push your model, scheduler, or pipeline files to. It should contain your organization name when pushing to an organization. `repo_id` can also be a path to a local directory. commit_message (`str`, *optional*): Message to commit while pushing. Default to `"Upload {object}"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. The token generated when running `huggingface-cli login` (stored in `~/.huggingface`). create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights to the `safetensors` format. variant (`str`, *optional*): If specified, weights are saved in the format `pytorch_model.<variant>.bin`. Examples: ```python from diffusers import UNet2DConditionModel unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet") # Push the `unet` to your namespace with the name "my-finetuned-unet". unet.push_to_hub("my-finetuned-unet") # Push the `unet` to an organization with the name "my-finetuned-unet". unet.push_to_hub("your-org/my-finetuned-unet") ``` """ repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id # Create a new empty model card and eventually tag it model_card = load_or_create_model_card(repo_id, token=token) model_card = populate_model_card(model_card) # Save all files. save_kwargs = {"safe_serialization": safe_serialization} if "Scheduler" not in self.__class__.__name__: save_kwargs.update({"variant": variant}) with tempfile.TemporaryDirectory() as tmpdir: self.save_pretrained(tmpdir, **save_kwargs) # Update model card if needed: model_card.save(os.path.join(tmpdir, "README.md")) return self._upload_folder( tmpdir, repo_id, token=token, commit_message=commit_message, create_pr=create_pr, )
diffusers/src/diffusers/utils/hub_utils.py/0
{ "file_path": "diffusers/src/diffusers/utils/hub_utils.py", "repo_id": "diffusers", "token_count": 11110 }
149
import inspect from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax @require_flax class FlaxModelTesterMixin: def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"]) jax.lax.stop_gradient(variables) output = model.apply(variables, inputs_dict["sample"]) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_forward_with_norm_groups(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 16 init_dict["block_out_channels"] = (16, 32) model = self.model_class(**init_dict) variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"]) jax.lax.stop_gradient(variables) output = model.apply(variables, inputs_dict["sample"]) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_deprecated_kwargs(self): has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 if has_kwarg_in_model_class and not has_deprecated_kwarg: raise ValueError( f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" " [<deprecated_argument>]`" ) if not has_kwarg_in_model_class and has_deprecated_kwarg: raise ValueError( f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" " from `_deprecated_kwargs = [<deprecated_argument>]`" )
diffusers/tests/models/test_modeling_common_flax.py/0
{ "file_path": "diffusers/tests/models/test_modeling_common_flax.py", "repo_id": "diffusers", "token_count": 1124 }
150
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import os import tempfile import unittest from collections import OrderedDict import torch from huggingface_hub import snapshot_download from parameterized import parameterized from pytest import mark from diffusers import UNet2DConditionModel from diffusers.models.attention_processor import ( CustomDiffusionAttnProcessor, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, ) from diffusers.models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterPlusImageProjection from diffusers.utils import logging from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, floats_tensor, is_peft_available, load_hf_numpy, require_peft_backend, require_torch_accelerator, require_torch_accelerator_with_fp16, require_torch_accelerator_with_training, require_torch_gpu, skip_mps, slow, torch_all_close, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin if is_peft_available(): from peft import LoraConfig from peft.tuners.tuners_utils import BaseTunerLayer logger = logging.get_logger(__name__) enable_full_determinism() def get_unet_lora_config(): rank = 4 unet_lora_config = LoraConfig( r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False, use_dora=False, ) return unet_lora_config def check_if_lora_correctly_set(model) -> bool: """ Checks if the LoRA layers are correctly set with peft """ for module in model.modules(): if isinstance(module, BaseTunerLayer): return True return False def create_ip_adapter_state_dict(model): # "ip_adapter" (cross-attention weights) ip_cross_attn_state_dict = {} key_id = 1 for name in model.attn_processors.keys(): cross_attention_dim = ( None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim ) if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] if cross_attention_dim is not None: sd = IPAdapterAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 ).state_dict() ip_cross_attn_state_dict.update( { f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], } ) key_id += 2 # "image_proj" (ImageProjection layer weights) cross_attention_dim = model.config["cross_attention_dim"] image_projection = ImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4 ) ip_image_projection_state_dict = {} sd = image_projection.state_dict() ip_image_projection_state_dict.update( { "proj.weight": sd["image_embeds.weight"], "proj.bias": sd["image_embeds.bias"], "norm.weight": sd["norm.weight"], "norm.bias": sd["norm.bias"], } ) del sd ip_state_dict = {} ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) return ip_state_dict def create_ip_adapter_plus_state_dict(model): # "ip_adapter" (cross-attention weights) ip_cross_attn_state_dict = {} key_id = 1 for name in model.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] if cross_attention_dim is not None: sd = IPAdapterAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 ).state_dict() ip_cross_attn_state_dict.update( { f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], } ) key_id += 2 # "image_proj" (ImageProjection layer weights) cross_attention_dim = model.config["cross_attention_dim"] image_projection = IPAdapterPlusImageProjection( embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4 ) ip_image_projection_state_dict = OrderedDict() keys = [k for k in image_projection.state_dict() if "layers." in k] print(keys) for k, v in image_projection.state_dict().items(): if "2.to" in k: k = k.replace("2.to", "0.to") elif "layers.0.ln0" in k: k = k.replace("layers.0.ln0", "layers.0.0.norm1") elif "layers.0.ln1" in k: k = k.replace("layers.0.ln1", "layers.0.0.norm2") elif "layers.1.ln0" in k: k = k.replace("layers.1.ln0", "layers.1.0.norm1") elif "layers.1.ln1" in k: k = k.replace("layers.1.ln1", "layers.1.0.norm2") elif "layers.2.ln0" in k: k = k.replace("layers.2.ln0", "layers.2.0.norm1") elif "layers.2.ln1" in k: k = k.replace("layers.2.ln1", "layers.2.0.norm2") elif "layers.3.ln0" in k: k = k.replace("layers.3.ln0", "layers.3.0.norm1") elif "layers.3.ln1" in k: k = k.replace("layers.3.ln1", "layers.3.0.norm2") elif "to_q" in k: parts = k.split(".") parts[2] = "attn" k = ".".join(parts) elif "to_out.0" in k: parts = k.split(".") parts[2] = "attn" k = ".".join(parts) k = k.replace("to_out.0", "to_out") else: k = k.replace("0.ff.0", "0.1.0") k = k.replace("0.ff.1.net.0.proj", "0.1.1") k = k.replace("0.ff.1.net.2", "0.1.3") k = k.replace("1.ff.0", "1.1.0") k = k.replace("1.ff.1.net.0.proj", "1.1.1") k = k.replace("1.ff.1.net.2", "1.1.3") k = k.replace("2.ff.0", "2.1.0") k = k.replace("2.ff.1.net.0.proj", "2.1.1") k = k.replace("2.ff.1.net.2", "2.1.3") k = k.replace("3.ff.0", "3.1.0") k = k.replace("3.ff.1.net.0.proj", "3.1.1") k = k.replace("3.ff.1.net.2", "3.1.3") # if "norm_cross" in k: # ip_image_projection_state_dict[k.replace("norm_cross", "norm1")] = v # elif "layer_norm" in k: # ip_image_projection_state_dict[k.replace("layer_norm", "norm2")] = v if "to_k" in k: parts = k.split(".") parts[2] = "attn" k = ".".join(parts) ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0) elif "to_v" in k: continue else: ip_image_projection_state_dict[k] = v ip_state_dict = {} ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) return ip_state_dict def create_ip_adapter_faceid_state_dict(model): # "ip_adapter" (cross-attention weights) # no LoRA weights ip_cross_attn_state_dict = {} key_id = 1 for name in model.attn_processors.keys(): cross_attention_dim = ( None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim ) if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] if cross_attention_dim is not None: sd = IPAdapterAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 ).state_dict() ip_cross_attn_state_dict.update( { f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], } ) key_id += 2 # "image_proj" (ImageProjection layer weights) cross_attention_dim = model.config["cross_attention_dim"] image_projection = IPAdapterFaceIDImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, mult=2, num_tokens=4 ) ip_image_projection_state_dict = {} sd = image_projection.state_dict() ip_image_projection_state_dict.update( { "proj.0.weight": sd["ff.net.0.proj.weight"], "proj.0.bias": sd["ff.net.0.proj.bias"], "proj.2.weight": sd["ff.net.2.weight"], "proj.2.bias": sd["ff.net.2.bias"], "norm.weight": sd["norm.weight"], "norm.bias": sd["norm.bias"], } ) del sd ip_state_dict = {} ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) return ip_state_dict def create_custom_diffusion_layers(model, mock_weights: bool = True): train_kv = True train_q_out = True custom_diffusion_attn_procs = {} st = model.state_dict() for name, _ in model.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] layer_name = name.split(".processor")[0] weights = { "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], } if train_q_out: weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] if cross_attention_dim is not None: custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( train_kv=train_kv, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ).to(model.device) custom_diffusion_attn_procs[name].load_state_dict(weights) if mock_weights: # add 1 to weights to mock trained weights with torch.no_grad(): custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1 custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1 else: custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( train_kv=False, train_q_out=False, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ) del st return custom_diffusion_attn_procs class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet2DConditionModel main_input_name = "sample" # We override the items here because the unet under consideration is small. model_split_percents = [0.5, 0.3, 0.4] @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (16, 16) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} @property def input_shape(self): return (4, 16, 16) @property def output_shape(self): return (4, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (4, 8), "norm_num_groups": 4, "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), "cross_attention_dim": 8, "attention_head_dim": 2, "out_channels": 4, "in_channels": 4, "layers_per_block": 1, "sample_size": 16, } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_enable_works(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.enable_xformers_memory_efficient_attention() assert ( model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ == "XFormersAttnProcessor" ), "xformers is not enabled" @require_torch_accelerator_with_training def test_gradient_checkpointing(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-5) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) def test_model_with_attention_head_dim_tuple(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_use_linear_projection(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["use_linear_projection"] = True model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_cross_attention_dim_tuple(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["cross_attention_dim"] = (8, 8) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_simple_projection(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() batch_size, _, _, sample_size = inputs_dict["sample"].shape init_dict["class_embed_type"] = "simple_projection" init_dict["projection_class_embeddings_input_dim"] = sample_size inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_class_embeddings_concat(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() batch_size, _, _, sample_size = inputs_dict["sample"].shape init_dict["class_embed_type"] = "simple_projection" init_dict["projection_class_embeddings_input_dim"] = sample_size init_dict["class_embeddings_concat"] = True inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_attention_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) model.eval() model.set_attention_slice("auto") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice("max") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice(2) with torch.no_grad(): output = model(**inputs_dict) assert output is not None def test_model_sliceable_head_dim(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) def check_sliceable_dim_attr(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): assert isinstance(module.sliceable_head_dim, int) for child in module.children(): check_sliceable_dim_attr(child) # retrieve number of attention layers for module in model.children(): check_sliceable_dim_attr(module) def test_gradient_checkpointing_is_applied(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model_class_copy = copy.copy(self.model_class) modules_with_gc_enabled = {} # now monkey patch the following function: # def _set_gradient_checkpointing(self, module, value=False): # if hasattr(module, "gradient_checkpointing"): # module.gradient_checkpointing = value def _set_gradient_checkpointing_new(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value modules_with_gc_enabled[module.__class__.__name__] = True model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new model = model_class_copy(**init_dict) model.enable_gradient_checkpointing() EXPECTED_SET = { "CrossAttnUpBlock2D", "CrossAttnDownBlock2D", "UNetMidBlock2DCrossAttn", "UpBlock2D", "Transformer2DModel", "DownBlock2D", } assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET assert all(modules_with_gc_enabled.values()), "All modules should be enabled" def test_special_attn_proc(self): class AttnEasyProc(torch.nn.Module): def __init__(self, num): super().__init__() self.weight = torch.nn.Parameter(torch.tensor(num)) self.is_run = False self.number = 0 self.counter = 0 def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states += self.weight self.is_run = True self.counter += 1 self.number = number return hidden_states # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) processor = AttnEasyProc(5.0) model.set_attn_processor(processor) model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample assert processor.counter == 8 assert processor.is_run assert processor.number == 123 @parameterized.expand( [ # fmt: off [torch.bool], [torch.long], [torch.float], # fmt: on ] ) def test_model_xattn_mask(self, mask_dtype): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)}) model.to(torch_device) model.eval() cond = inputs_dict["encoder_hidden_states"] with torch.no_grad(): full_cond_out = model(**inputs_dict).sample assert full_cond_out is not None keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype) full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample assert full_cond_keepallmask_out.allclose( full_cond_out, rtol=1e-05, atol=1e-05 ), "a 'keep all' mask should give the same result as no mask" trunc_cond = cond[:, :-1, :] trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample assert not trunc_cond_out.allclose( full_cond_out, rtol=1e-05, atol=1e-05 ), "discarding the last token from our cond should change the result" batch, tokens, _ = cond.shape mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype) masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample assert masked_cond_out.allclose( trunc_cond_out, rtol=1e-05, atol=1e-05 ), "masking the last token from our cond should be equivalent to truncating that token out of the condition" # see diffusers.models.attention_processor::Attention#prepare_attention_mask # note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks. # since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric. # maybe it's fine that this only works for the unclip use-case. @mark.skip( reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length." ) def test_model_xattn_padding(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) model.to(torch_device) model.eval() cond = inputs_dict["encoder_hidden_states"] with torch.no_grad(): full_cond_out = model(**inputs_dict).sample assert full_cond_out is not None batch, tokens, _ = cond.shape keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool) keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result" trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool) trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample assert trunc_mask_out.allclose( keeplast_out ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." def test_custom_diffusion_processors(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample1 = model(**inputs_dict).sample custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) # make sure we can set a list of attention processors model.set_attn_processor(custom_diffusion_attn_procs) model.to(torch_device) # test that attn processors can be set to itself model.set_attn_processor(model.attn_processors) with torch.no_grad(): sample2 = model(**inputs_dict).sample assert (sample1 - sample2).abs().max() < 3e-3 def test_custom_diffusion_save_load(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) model.set_attn_processor(custom_diffusion_attn_procs) with torch.no_grad(): sample = model(**inputs_dict).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname, safe_serialization=False) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin") new_model.to(torch_device) with torch.no_grad(): new_sample = new_model(**inputs_dict).sample assert (sample - new_sample).abs().max() < 1e-4 # custom diffusion and no custom diffusion should be the same assert (sample - old_sample).abs().max() < 3e-3 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_custom_diffusion_xformers_on_off(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) model.set_attn_processor(custom_diffusion_attn_procs) # default with torch.no_grad(): sample = model(**inputs_dict).sample model.enable_xformers_memory_efficient_attention() on_sample = model(**inputs_dict).sample model.disable_xformers_memory_efficient_attention() off_sample = model(**inputs_dict).sample assert (sample - on_sample).abs().max() < 1e-4 assert (sample - off_sample).abs().max() < 1e-4 def test_pickle(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample = model(**inputs_dict).sample sample_copy = copy.copy(sample) assert (sample - sample_copy).abs().max() < 1e-4 def test_asymmetrical_unet(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() # Add asymmetry to configs init_dict["transformer_layers_per_block"] = [[3, 2], 1] init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1] torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) output = model(**inputs_dict).sample expected_shape = inputs_dict["sample"].shape # Check if input and output shapes are the same self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_ip_adapter(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) # forward pass without ip-adapter with torch.no_grad(): sample1 = model(**inputs_dict).sample # update inputs_dict for ip-adapter batch_size = inputs_dict["encoder_hidden_states"].shape[0] # for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim] image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device) inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} # make ip_adapter_1 and ip_adapter_2 ip_adapter_1 = create_ip_adapter_state_dict(model) image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} ip_adapter_2 = {} ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) # forward pass ip_adapter_1 model._load_ip_adapter_weights([ip_adapter_1]) assert model.config.encoder_hid_dim_type == "ip_image_proj" assert model.encoder_hid_proj is not None assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( "IPAdapterAttnProcessor", "IPAdapterAttnProcessor2_0", ) with torch.no_grad(): sample2 = model(**inputs_dict).sample # forward pass with ip_adapter_2 model._load_ip_adapter_weights([ip_adapter_2]) with torch.no_grad(): sample3 = model(**inputs_dict).sample # forward pass with ip_adapter_1 again model._load_ip_adapter_weights([ip_adapter_1]) with torch.no_grad(): sample4 = model(**inputs_dict).sample # forward pass with multiple ip-adapters and multiple images model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1 for attn_processor in model.attn_processors.values(): if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): attn_processor.scale = [1, 0] image_embeds_multi = image_embeds.repeat(1, 2, 1) inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} with torch.no_grad(): sample5 = model(**inputs_dict).sample # forward pass with single ip-adapter & single image when image_embeds is not a list and a 2-d tensor image_embeds = image_embeds.squeeze(1) inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} model._load_ip_adapter_weights(ip_adapter_1) with torch.no_grad(): sample6 = model(**inputs_dict).sample assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) def test_ip_adapter_plus(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["block_out_channels"] = (16, 32) init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) # forward pass without ip-adapter with torch.no_grad(): sample1 = model(**inputs_dict).sample # update inputs_dict for ip-adapter batch_size = inputs_dict["encoder_hidden_states"].shape[0] # for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim] image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device) inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} # make ip_adapter_1 and ip_adapter_2 ip_adapter_1 = create_ip_adapter_plus_state_dict(model) image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} ip_adapter_2 = {} ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) # forward pass ip_adapter_1 model._load_ip_adapter_weights([ip_adapter_1]) assert model.config.encoder_hid_dim_type == "ip_image_proj" assert model.encoder_hid_proj is not None assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( "IPAdapterAttnProcessor", "IPAdapterAttnProcessor2_0", ) with torch.no_grad(): sample2 = model(**inputs_dict).sample # forward pass with ip_adapter_2 model._load_ip_adapter_weights([ip_adapter_2]) with torch.no_grad(): sample3 = model(**inputs_dict).sample # forward pass with ip_adapter_1 again model._load_ip_adapter_weights([ip_adapter_1]) with torch.no_grad(): sample4 = model(**inputs_dict).sample # forward pass with multiple ip-adapters and multiple images model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1 for attn_processor in model.attn_processors.values(): if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): attn_processor.scale = [1, 0] image_embeds_multi = image_embeds.repeat(1, 2, 1, 1) inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} with torch.no_grad(): sample5 = model(**inputs_dict).sample # forward pass with single ip-adapter & single image when image_embeds is a 3-d tensor image_embeds = image_embeds[:,].squeeze(1) inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} model._load_ip_adapter_weights(ip_adapter_1) with torch.no_grad(): sample6 = model(**inputs_dict).sample assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) @require_torch_gpu def test_load_sharded_checkpoint_from_hub(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy") loaded_model = loaded_model.to(torch_device) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_from_hub_subfolder(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() loaded_model = self.model_class.from_pretrained( "hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet" ) loaded_model = loaded_model.to(torch_device) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_from_hub_local(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True) loaded_model = loaded_model.to(torch_device) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_from_hub_local_subfolder(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True) loaded_model = loaded_model.to(torch_device) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_device_map_from_hub(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy", device_map="auto") new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() loaded_model = self.model_class.from_pretrained( "hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map="auto" ) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_device_map_from_hub_local(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto") new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") loaded_model = self.model_class.from_pretrained( ckpt_path, local_files_only=True, subfolder="unet", device_map="auto" ) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_torch_gpu def test_load_sharded_checkpoint_with_variant_from_hub(self): _, inputs_dict = self.prepare_init_args_and_inputs_for_common() loaded_model = self.model_class.from_pretrained( "hf-internal-testing/unet2d-sharded-with-variant-dummy", variant="fp16" ) loaded_model = loaded_model.to(torch_device) new_output = loaded_model(**inputs_dict) assert loaded_model assert new_output.sample.shape == (4, 4, 16, 16) @require_peft_backend def test_lora(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) # forward pass without LoRA with torch.no_grad(): non_lora_sample = model(**inputs_dict).sample unet_lora_config = get_unet_lora_config() model.add_adapter(unet_lora_config) assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." # forward pass with LoRA with torch.no_grad(): lora_sample = model(**inputs_dict).sample assert not torch.allclose( non_lora_sample, lora_sample, atol=1e-4, rtol=1e-4 ), "LoRA injected UNet should produce different results." @require_peft_backend def test_lora_serialization(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) # forward pass without LoRA with torch.no_grad(): non_lora_sample = model(**inputs_dict).sample unet_lora_config = get_unet_lora_config() model.add_adapter(unet_lora_config) assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." # forward pass with LoRA with torch.no_grad(): lora_sample_1 = model(**inputs_dict).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) model.unload_lora() model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." with torch.no_grad(): lora_sample_2 = model(**inputs_dict).sample assert not torch.allclose( non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4 ), "LoRA injected UNet should produce different results." assert torch.allclose( lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4 ), "Loading from a saved checkpoint should produce identical results." @slow class UNet2DConditionModelIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = UNet2DConditionModel.from_pretrained( model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision ) model.to(torch_device).eval() return model @require_torch_gpu def test_set_attention_slice_auto(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice("auto") latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 @require_torch_gpu def test_set_attention_slice_max(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice("max") latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 @require_torch_gpu def test_set_attention_slice_int(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice(2) latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 @require_torch_gpu def test_set_attention_slice_list(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() # there are 32 sliceable layers slice_list = 16 * [2, 3] unet = self.get_unet_model() unet.set_attention_slice(slice_list) latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): dtype = torch.float16 if fp16 else torch.float32 hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return hidden_states @parameterized.expand( [ # fmt: off [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], # fmt: on ] ) @require_torch_accelerator @skip_mps def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], # fmt: on ] ) @require_torch_accelerator @skip_mps def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") latents = self.get_latents(seed, shape=(4, 9, 64, 64)) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
diffusers/tests/models/unets/test_models_unet_2d_condition.py/0
{ "file_path": "diffusers/tests/models/unets/test_models_unet_2d_condition.py", "repo_id": "diffusers", "token_count": 28278 }
151
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow torch.backends.cuda.matmul.allow_tf32 = False class TrainingTests(unittest.TestCase): def get_model_optimizer(self, resolution=32): set_seed(0) model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3) optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) return model, optimizer @slow def test_training_step_equality(self): device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable ddpm_scheduler = DDPMScheduler( num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", clip_sample=True, ) ddim_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", clip_sample=True, ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)] noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)] timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)] # train with a DDPM scheduler model, optimizer = self.get_model_optimizer(resolution=32) model.train().to(device) for i in range(4): optimizer.zero_grad() ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM model, optimizer = self.get_model_optimizer(resolution=32) model.train().to(device) for i in range(4): optimizer.zero_grad() ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5)) self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))
diffusers/tests/others/test_training.py/0
{ "file_path": "diffusers/tests/others/test_training.py", "repo_id": "diffusers", "token_count": 1481 }
152
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, EulerDiscreteScheduler, HeunDiscreteScheduler, LCMScheduler, StableDiffusionXLControlNetPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, load_image, require_torch_gpu, slow, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( IPAdapterTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, ) enable_full_determinism() class StableDiffusionXLControlNetPipelineFastTests( IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase, ): pipeline_class = StableDiffusionXLControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, time_cond_proj_dim=time_cond_proj_dim, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", "image": image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) def test_ip_adapter_single(self, from_ssd1b=False, expected_pipe_slice=None): if not from_ssd1b: expected_pipe_slice = None if torch_device == "cpu": expected_pipe_slice = np.array( [0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054] ) return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_load_optional_components(self): self._test_save_load_optional_components() @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # Copied from test_stable_diffusion_xl.py def test_stable_diffusion_xl_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 2 * [inputs["prompt"]] inputs["num_images_per_prompt"] = 2 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) prompt = 2 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_controlnet_sdxl_guess(self): device = "cpu" components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["guess_mode"] = True output = sd_pipe(**inputs) image_slice = output.images[0, -3:, -3:, -1] expected_slice = np.array([0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054]) # make sure that it's equal assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 def test_controlnet_sdxl_lcm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionXLControlNetPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.7820, 0.6195, 0.6193, 0.7045, 0.6706, 0.5837, 0.4147, 0.5232, 0.4868]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # Copied from test_stable_diffusion_xl.py:test_stable_diffusion_two_xl_mixture_of_denoiser_fast # with `StableDiffusionXLControlNetPipeline` instead of `StableDiffusionXLPipeline` def test_controlnet_sdxl_two_mixture_of_denoiser_fast(self): components = self.get_dummy_components() pipe_1 = StableDiffusionXLControlNetPipeline(**components).to(torch_device) pipe_1.unet.set_default_attn_processor() components_without_controlnet = {k: v for k, v in components.items() if k != "controlnet"} pipe_2 = StableDiffusionXLImg2ImgPipeline(**components_without_controlnet).to(torch_device) pipe_2.unet.set_default_attn_processor() def assert_run_mixture( num_steps, split, scheduler_cls_orig, expected_tss, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, ): inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = num_steps class scheduler_cls(scheduler_cls_orig): pass pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) # Let's retrieve the number of timesteps we want to use pipe_1.scheduler.set_timesteps(num_steps) expected_steps = pipe_1.scheduler.timesteps.tolist() if pipe_1.scheduler.order == 2: expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) expected_steps = expected_steps_1 + expected_steps_2 else: expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) # now we monkey patch step `done_steps` # list into the step function for testing done_steps = [] old_step = copy.copy(scheduler_cls.step) def new_step(self, *args, **kwargs): done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` return old_step(self, *args, **kwargs) scheduler_cls.step = new_step inputs_1 = { **inputs, **{ "denoising_end": 1.0 - (split / num_train_timesteps), "output_type": "latent", }, } latents = pipe_1(**inputs_1).images[0] assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" inputs_2 = { **inputs, **{ "denoising_start": 1.0 - (split / num_train_timesteps), "image": latents, }, } pipe_2(**inputs_2).images[0] assert expected_steps_2 == done_steps[len(expected_steps_1) :] assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" steps = 10 for split in [300, 700]: for scheduler_cls_timesteps in [ (EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), ( HeunDiscreteScheduler, [ 901.0, 801.0, 801.0, 701.0, 701.0, 601.0, 601.0, 501.0, 501.0, 401.0, 401.0, 301.0, 301.0, 201.0, 201.0, 101.0, 101.0, 1.0, 1.0, ], ), ]: assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) class StableDiffusionXLMultiControlNetPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal_(m.weight) m.bias.data.fill_(1.0) controlnet1 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) controlnet1.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) controlnet2 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) controlnet2.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet1, controlnet2]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 images = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", "image": images, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_load_optional_components(self): return self._test_save_load_optional_components() class StableDiffusionXLMultiControlNetOneModelPipelineFastTests( PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal_(m.weight) m.bias.data.fill_(1.0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) controlnet.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 images = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", "image": images, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe( **inputs, control_guidance_start=[0.1], control_guidance_end=[0.2], )[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_load_optional_components(self): self._test_save_load_optional_components() def test_negative_conditions(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slice_without_neg_cond = image[0, -3:, -3:, -1] image = pipe( **inputs, negative_original_size=(512, 512), negative_crops_coords_top_left=(0, 0), negative_target_size=(1024, 1024), ).images image_slice_with_neg_cond = image[0, -3:, -3:, -1] self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2) @slow @require_torch_gpu class ControlNetSDXLPipelineSlowTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet ) pipe.enable_sequential_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images assert images[0].shape == (768, 512, 3) original_image = images[0, -3:, -3:, -1].flatten() expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913]) assert np.allclose(original_image, expected_image, atol=1e-04) def test_depth(self): controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet ) pipe.enable_sequential_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "Stormtrooper's lecture" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" ) images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images assert images[0].shape == (512, 512, 3) original_image = images[0, -3:, -3:, -1].flatten() expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853]) assert np.allclose(original_image, expected_image, atol=1e-04) class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests): def test_controlnet_sdxl_guess(self): device = "cpu" components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["guess_mode"] = True output = sd_pipe(**inputs) image_slice = output.images[0, -3:, -3:, -1] expected_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032]) # make sure that it's equal assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 def test_ip_adapter_single(self): expected_pipe_slice = None if torch_device == "cpu": expected_pipe_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032]) return super().test_ip_adapter_single(from_ssd1b=True, expected_pipe_slice=expected_pipe_slice) def test_controlnet_sdxl_lcm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionXLControlNetPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6787, 0.5117, 0.5558, 0.6963, 0.6571, 0.5928, 0.4121, 0.5468, 0.5057]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_conditioning_channels(self): unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), mid_block_type="UNetMidBlock2D", # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, time_cond_proj_dim=None, ) controlnet = ControlNetModel.from_unet(unet, conditioning_channels=4) assert type(controlnet.mid_block) == UNetMidBlock2D assert controlnet.conditioning_channels == 4 def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), mid_block_type="UNetMidBlock2D", # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, time_cond_proj_dim=time_cond_proj_dim, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), mid_block_type="UNetMidBlock2D", # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "feature_extractor": None, "image_encoder": None, } return components
diffusers/tests/pipelines/controlnet/test_controlnet_sdxl.py/0
{ "file_path": "diffusers/tests/pipelines/controlnet/test_controlnet_sdxl.py", "repo_id": "diffusers", "token_count": 20606 }
153
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DDIMPipeline params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DModel( block_out_channels=(4, 8), layers_per_block=1, norm_num_groups=4, sample_size=8, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = DDIMScheduler() components = {"unet": unet, "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "np", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 8, 8, 3)) expected_slice = np.array([0.0, 9.979e-01, 0.0, 9.999e-01, 9.986e-01, 9.991e-01, 7.106e-04, 0.0, 0.0]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def test_save_load_local(self): super().test_save_load_local(expected_max_difference=3e-3) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class DDIMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler() ddim = DDIMPipeline(unet=unet, scheduler=scheduler) ddim.to(torch_device) ddim.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddim(generator=generator, eta=0.0, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_ema_bedroom(self): model_id = "google/ddpm-ema-bedroom-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler.from_pretrained(model_id) ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
diffusers/tests/pipelines/ddim/test_ddim.py/0
{ "file_path": "diffusers/tests/pipelines/ddim/test_ddim.py", "repo_id": "diffusers", "token_count": 2218 }
154
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyV22PriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) model = CLIPVisionModelWithProjection(config) return model @property def dummy_image_processor(self): image_processor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) return image_processor def get_dummy_components(self): prior = self.dummy_prior image_encoder = self.dummy_image_encoder text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer image_processor = self.dummy_image_processor scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample=True, clip_sample_range=10.0, ) components = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyV22PriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22PriorPipeline params = ["prompt"] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] callback_cfg_params = ["prompt_embeds", "text_encoder_hidden_states", "text_mask"] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_prior(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.image_embeds image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -10:] image_from_tuple_slice = image_from_tuple[0, -10:] assert image.shape == (1, 32) expected_slice = np.array( [-0.5948, 0.1875, -0.1523, -1.1995, -1.4061, -0.6367, -1.4607, -0.6406, 0.8793, -0.3891] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-3) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) # override default test because no output_type "latent", use "pt" instead def test_callback_inputs(self): sig = inspect.signature(self.pipeline_class.__call__) if not ("callback_on_step_end_tensor_inputs" in sig.parameters and "callback_on_step_end" in sig.parameters): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) self.assertTrue( hasattr(pipe, "_callback_tensor_inputs"), f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", ) def callback_inputs_test(pipe, i, t, callback_kwargs): missing_callback_inputs = set() for v in pipe._callback_tensor_inputs: if v not in callback_kwargs: missing_callback_inputs.add(v) self.assertTrue( len(missing_callback_inputs) == 0, f"Missing callback tensor inputs: {missing_callback_inputs}" ) last_i = pipe.num_timesteps - 1 if i == last_i: callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) return callback_kwargs inputs = self.get_dummy_inputs(torch_device) inputs["callback_on_step_end"] = callback_inputs_test inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs inputs["num_inference_steps"] = 2 inputs["output_type"] = "pt" output = pipe(**inputs)[0] assert output.abs().sum() == 0
diffusers/tests/pipelines/kandinsky2_2/test_kandinsky_prior.py/0
{ "file_path": "diffusers/tests/pipelines/kandinsky2_2/test_kandinsky_prior.py", "repo_id": "diffusers", "token_count": 4051 }
155
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import torch from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, KolorsPAGPipeline, KolorsPipeline, UNet2DConditionModel, ) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import ( TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineFromPipeTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class KolorsPAGPipelineFastTests( PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase, ): pipeline_class = KolorsPAGPipeline params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) # Copied from tests.pipelines.kolors.test_kolors.KolorsPipelineFastTests.get_dummy_components def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(2, 4), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=56, cross_attention_dim=8, norm_num_groups=1, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "image_encoder": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "pag_scale": 0.9, "output_type": "np", } return inputs def test_pag_disable_enable(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline (expect same output when pag is disabled) pipe_sd = KolorsPipeline(**components) pipe_sd = pipe_sd.to(device) pipe_sd.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["pag_scale"] assert ( "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." out = pipe_sd(**inputs).images[0, -3:, -3:, -1] # pag disabled with pag_scale=0.0 pipe_pag = self.pipeline_class(**components) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["pag_scale"] = 0.0 out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] # pag enabled pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 def test_pag_applied_layers(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) # pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k] original_attn_procs = pipe.unet.attn_processors pag_layers = ["mid", "down", "up"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) all_self_attn_mid_layers = [ "mid_block.attentions.0.transformer_blocks.0.attn1.processor", "mid_block.attentions.0.transformer_blocks.1.attn1.processor", ] pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block.attentions.0"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) # pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block.attentions.1"] with self.assertRaises(ValueError): pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) # pag_applied_layers = "down" should apply to all self-attention layers in down_blocks pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 4 pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.0"] with self.assertRaises(ValueError): pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.1"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 4 pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.1.attentions.1"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 2 def test_pag_inference(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe_pag(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == ( 1, 64, 64, 3, ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" expected_slice = np.array( [0.26030684, 0.43192005, 0.4042826, 0.4189067, 0.5181305, 0.3832534, 0.472135, 0.4145031, 0.43726248] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=3e-3)
diffusers/tests/pipelines/pag/test_pag_kolors.py/0
{ "file_path": "diffusers/tests/pipelines/pag/test_pag_kolors.py", "repo_id": "diffusers", "token_count": 4755 }
156
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint.py", "repo_id": "diffusers", "token_count": 2242 }
157
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import time import unittest import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) enable_full_determinism() class StableDiffusion2VPredictionPipelineFastTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=64, ) return CLIPTextModel(config) def test_stable_diffusion_v_pred_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, prediction_type="v_prediction", ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, image_encoder=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6569, 0.6525, 0.5142, 0.4968, 0.4923, 0.4601, 0.4996, 0.5041, 0.4544]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="v_prediction" ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, image_encoder=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5644, 0.6514, 0.5190, 0.5663, 0.5287, 0.4953, 0.5430, 0.5243, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_v_pred_fp16(self): """Test that stable diffusion v-prediction works with fp16""" unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, prediction_type="v_prediction", ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, image_encoder=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @slow @require_torch_gpu class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_v_pred_default(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.1868, 0.1922, 0.1527, 0.1921, 0.1908, 0.1624, 0.1779, 0.1652, 0.1734]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_upcast_attention(self): sd_pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.4209, 0.4087, 0.4097, 0.4209, 0.3860, 0.4329, 0.4280, 0.4324, 0.4187]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def test_stable_diffusion_v_pred_euler(self): scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="np") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.1781, 0.1695, 0.1661, 0.1705, 0.1588, 0.1699, 0.2005, 0.1589, 0.1677]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_dpm(self): """ TODO: update this test after making DPM compatible with V-prediction! """ scheduler = DPMSolverMultistepScheduler.from_pretrained( "stabilityai/stable-diffusion-2", subfolder="scheduler", final_sigmas_type="sigma_min", ) sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "a photograph of an astronaut riding a horse" generator = torch.manual_seed(0) image = sd_pipe( [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="np" ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.3303, 0.3184, 0.3291, 0.3300, 0.3256, 0.3113, 0.2965, 0.3134, 0.3192]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_attention_slicing_v_pred(self): torch.cuda.reset_peak_memory_stats() model_id = "stabilityai/stable-diffusion-2" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photograph of an astronaut riding a horse" # make attention efficient pipe.enable_attention_slicing() generator = torch.manual_seed(0) output_chunked = pipe( [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="np" ) image_chunked = output_chunked.images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 5.5 GB is allocated assert mem_bytes < 5.5 * 10**9 # disable slicing pipe.disable_attention_slicing() generator = torch.manual_seed(0) output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="np") image = output.images # make sure that more than 3.0 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 3 * 10**9 max_diff = numpy_cosine_similarity_distance(image.flatten(), image_chunked.flatten()) assert max_diff < 1e-3 def test_stable_diffusion_text2img_pipeline_v_pred_default(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/astronaut_riding_a_horse_v_pred.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") pipe.to(torch_device) pipe.enable_attention_slicing() pipe.set_progress_bar_config(disable=None) prompt = "astronaut riding a horse" generator = torch.manual_seed(0) output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) assert max_diff < 1e-3 def test_stable_diffusion_text2img_pipeline_unflawed(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/lion_galaxy.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1") pipe.scheduler = DDIMScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", rescale_betas_zero_snr=True ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" generator = torch.Generator("cpu").manual_seed(0) output = pipe( prompt=prompt, guidance_scale=7.5, num_inference_steps=10, guidance_rescale=0.7, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) assert max_diff < 5e-2 def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/astronaut_riding_a_horse_v_pred_fp16.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "astronaut riding a horse" generator = torch.manual_seed(0) output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) assert max_diff < 1e-3 def test_download_local(self): filename = hf_hub_download("stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.safetensors") pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (768, 768, 3) def test_stable_diffusion_text2img_intermediate_state_v_pred(self): number_of_steps = 0 def test_callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None: test_callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 0: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 96, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.7749, 0.0325, 0.5088, 0.1619, 0.3372, 0.3667, -0.5186, 0.6860, 1.4326]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 19: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 96, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([1.3887, 1.0273, 1.7266, 0.0726, 0.6611, 0.1598, -1.0547, 0.1522, 0.0227]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 test_callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Andromeda galaxy in a bottle" generator = torch.manual_seed(0) pipe( prompt=prompt, num_inference_steps=20, guidance_scale=7.5, generator=generator, callback=test_callback_fn, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 20 def test_stable_diffusion_low_cpu_mem_usage_v_pred(self): pipeline_id = "stabilityai/stable-diffusion-2" start_time = time.time() pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline_low_cpu_mem_usage.to(torch_device) low_cpu_mem_usage_time = time.time() - start_time start_time = time.time() _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) normal_load_time = time.time() - start_time assert 2 * low_cpu_mem_usage_time < normal_load_time def test_stable_diffusion_pipeline_with_sequential_cpu_offloading_v_pred(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipeline_id = "stabilityai/stable-diffusion-2" prompt = "Andromeda galaxy in a bottle" pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline.enable_attention_slicing(1) pipeline.enable_sequential_cpu_offload() generator = torch.manual_seed(0) _ = pipeline(prompt, generator=generator, num_inference_steps=5) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9
diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_v_pred.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_v_pred.py", "repo_id": "diffusers", "token_count": 9716 }
158
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDM3DPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase): pipeline_class = StableDiffusionLDM3DPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=6, out_channels=6, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth image_slice_rgb = rgb[0, -3:, -3:, -1] image_slice_depth = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) expected_slice_rgb = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) expected_slice_depth = np.array([103.46727, 85.812004, 87.849236]) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2 def test_stable_diffusion_prompt_embeds(self): components = self.get_dummy_components() ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = ldm3d_pipe(**inputs) rgb_slice_1, depth_slice_1 = output.rgb, output.depth rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1] depth_slice_1 = depth_slice_1[0, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = ldm3d_pipe.tokenizer( prompt, padding="max_length", max_length=ldm3d_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = ldm3d_pipe(**inputs) rgb_slice_2, depth_slice_2 = output.rgb, output.depth rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1] depth_slice_2 = depth_slice_2[0, -3:, -1] assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4 assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt) rgb, depth = output.rgb, output.depth rgb_slice = rgb[0, -3:, -3:, -1] depth_slice = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) expected_slice_rgb = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) expected_slice_depth = np.array([107.84738, 84.62802, 89.962135]) assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2 @nightly @require_torch_gpu class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_ldm3d_stable_diffusion(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d") ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth rgb_slice = rgb[0, -3:, -3:, -1].flatten() depth_slice = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) expected_slice_rgb = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) expected_slice_depth = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3 @nightly @require_torch_gpu class StableDiffusionPipelineNightlyTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_ldm3d(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth expected_rgb_mean = 0.495586 expected_rgb_std = 0.33795515 expected_depth_mean = 112.48518 expected_depth_std = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3 def test_ldm3d_v2(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth expected_rgb_mean = 0.4194127 expected_rgb_std = 0.35375586 expected_depth_mean = 0.5638502 expected_depth_std = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3
diffusers/tests/pipelines/stable_diffusion_ldm3d/test_stable_diffusion_ldm3d.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_ldm3d/test_stable_diffusion_ldm3d.py", "repo_id": "diffusers", "token_count": 5675 }
159
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class StableUnCLIPImg2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableUnCLIPImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): embedder_hidden_size = 32 embedder_projection_dim = embedder_hidden_size # image encoding components feature_extractor = CLIPImageProcessor(crop_size=32, size=32) torch.manual_seed(0) image_encoder = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=embedder_hidden_size, projection_dim=embedder_projection_dim, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0) image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size) image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2") torch.manual_seed(0) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) text_encoder = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=embedder_hidden_size, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0) unet = UNet2DConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="projection", # The class embeddings are the noise augmented image embeddings. # I.e. the image embeddings concated with the noised embeddings of the same dimension projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=embedder_hidden_size, layers_per_block=1, upcast_attention=True, use_linear_projection=True, ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=False, steps_offset=1, ) torch.manual_seed(0) vae = AutoencoderKL() components = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def get_dummy_inputs(self, device, seed=0, pil_image=True): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) if pil_image: input_image = input_image * 0.5 + 0.5 input_image = input_image.clamp(0, 1) input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def test_image_embeds_none(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableUnCLIPImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs.update({"image_embeds": None}) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4397, 0.7080, 0.5590, 0.4255, 0.7181, 0.5938, 0.4051, 0.3720, 0.5116]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass # because GPU undeterminism requires a looser check. def test_attention_slicing_forward_pass(self): test_max_difference = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) # Overriding PipelineTesterMixin::test_inference_batch_single_identical # because undeterminism requires a looser check. def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False) @nightly @require_torch_gpu class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_unclip_l_img2img(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 ) pipe.set_progress_bar_config(disable=None) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe(input_image, "anime turle", generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) def test_stable_unclip_h_img2img(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 ) pipe.set_progress_bar_config(disable=None) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe(input_image, "anime turle", generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 ) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _ = pipe( input_image, "anime turtle", num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
diffusers/tests/pipelines/stable_unclip/test_stable_unclip_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/stable_unclip/test_stable_unclip_img2img.py", "repo_id": "diffusers", "token_count": 5063 }
160
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = UnCLIPPipeline params = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", "guidance_scale", "prompt_embeds", "cross_attention_kwargs", } batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = [ "generator", "return_dict", "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) return model @property def dummy_text_proj(self): torch.manual_seed(0) model_kwargs = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } model = UnCLIPTextProjModel(**model_kwargs) return model @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_super_res_kwargs(self): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "in_channels": 6, "out_channels": 3, } @property def dummy_super_res_first(self): torch.manual_seed(0) model = UNet2DModel(**self.dummy_super_res_kwargs) return model @property def dummy_super_res_last(self): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) model = UNet2DModel(**self.dummy_super_res_kwargs) return model def get_dummy_components(self): prior = self.dummy_prior decoder = self.dummy_decoder text_proj = self.dummy_text_proj text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer super_res_first = self.dummy_super_res_first super_res_last = self.dummy_super_res_last prior_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample_range=5.0, ) decoder_scheduler = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) super_res_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) components = { "prior": prior, "decoder": decoder, "text_proj": text_proj, "text_encoder": text_encoder, "tokenizer": tokenizer, "super_res_first": super_res_first, "super_res_last": super_res_last, "prior_scheduler": prior_scheduler, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "prior_num_inference_steps": 2, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } return inputs def test_unclip(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [ 0.9997, 0.9988, 0.0028, 0.9997, 0.9984, 0.9965, 0.0029, 0.9986, 0.0025, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_passed_text_embed(self): device = torch.device("cpu") class DummyScheduler: init_noise_sigma = 1 components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) prior = components["prior"] decoder = components["decoder"] super_res_first = components["super_res_first"] tokenizer = components["tokenizer"] text_encoder = components["text_encoder"] generator = torch.Generator(device=device).manual_seed(0) dtype = prior.dtype batch_size = 1 shape = (batch_size, prior.config.embedding_dim) prior_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size) decoder_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = ( batch_size, super_res_first.config.in_channels // 2, super_res_first.config.sample_size, super_res_first.config.sample_size, ) super_res_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) pipe.set_progress_bar_config(disable=None) prompt = "this is a prompt example" generator = torch.Generator(device=device).manual_seed(0) output = pipe( [prompt], generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, prior_latents=prior_latents, decoder_latents=decoder_latents, super_res_latents=super_res_latents, output_type="np", ) image = output.images text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) text_model_output = text_encoder(text_inputs.input_ids) text_attention_mask = text_inputs.attention_mask generator = torch.Generator(device=device).manual_seed(0) image_from_text = pipe( generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, prior_latents=prior_latents, decoder_latents=decoder_latents, super_res_latents=super_res_latents, text_model_output=text_model_output, text_attention_mask=text_attention_mask, output_type="np", )[0] # make sure passing text embeddings manually is identical assert np.abs(image - image_from_text).max() < 1e-4 # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass # because UnCLIP GPU undeterminism requires a looser check. @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01) # Overriding PipelineTesterMixin::test_inference_batch_single_identical # because UnCLIP undeterminism requires a looser check. @skip_mps def test_inference_batch_single_identical(self): additional_params_copy_to_batched_inputs = [ "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3 ) def test_inference_batch_consistent(self): additional_params_copy_to_batched_inputs = [ "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes batch_sizes = [2, 3] self._test_inference_batch_consistent( batch_sizes=batch_sizes, additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs ) @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_local(self): return super().test_save_load_local(expected_max_difference=5e-3) @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.") def test_float16_inference(self): super().test_float16_inference(expected_max_diff=1.0) @nightly class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_karlo_cpu_fp32(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_horse_cpu.npy" ) pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha") pipeline.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipeline( "horse", num_images_per_prompt=1, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 1e-1 @nightly @require_torch_gpu class UnCLIPPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_karlo(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_horse_fp16.npy" ) pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) output = pipeline( "horse", generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(image, expected_image) def test_unclip_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _ = pipe( "horse", num_images_per_prompt=1, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
diffusers/tests/pipelines/unclip/test_unclip.py/0
{ "file_path": "diffusers/tests/pipelines/unclip/test_unclip.py", "repo_id": "diffusers", "token_count": 7983 }
161
import torch from diffusers import SASolverScheduler from diffusers.utils.testing_utils import require_torchsde, torch_device from .test_schedulers import SchedulerCommonTest @require_torchsde class SASolverSchedulerTest(SchedulerCommonTest): scheduler_classes = (SASolverScheduler,) forward_default_kwargs = (("num_inference_steps", 10),) num_inference_steps = 10 def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**kwargs) return config def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] scheduler.model_outputs = dummy_past_residuals[ : max( scheduler.config.predictor_order, scheduler.config.corrector_order - 1, ) ] time_step_0 = scheduler.timesteps[5] time_step_1 = scheduler.timesteps[6] output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_timesteps(self): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=schedule) def test_prediction_type(self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=prediction_type) def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(self.num_inference_steps) model = self.dummy_model() sample = self.dummy_sample_deter * scheduler.init_noise_sigma sample = sample.to(torch_device) generator = torch.manual_seed(0) for i, t in enumerate(scheduler.timesteps): sample = scheduler.scale_model_input(sample, t, generator=generator) model_output = model(sample, t) output = scheduler.step(model_output, t, sample) sample = output.prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) if torch_device in ["cpu"]: assert abs(result_sum.item() - 337.394287109375) < 1e-2 assert abs(result_mean.item() - 0.43931546807289124) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 329.1999816894531) < 1e-2 assert abs(result_mean.item() - 0.4286458194255829) < 1e-3 else: print("None") def test_full_loop_with_v_prediction(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(self.num_inference_steps) model = self.dummy_model() sample = self.dummy_sample_deter * scheduler.init_noise_sigma sample = sample.to(torch_device) generator = torch.manual_seed(0) for i, t in enumerate(scheduler.timesteps): sample = scheduler.scale_model_input(sample, t, generator=generator) model_output = model(sample, t) output = scheduler.step(model_output, t, sample) sample = output.prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) if torch_device in ["cpu"]: assert abs(result_sum.item() - 193.1467742919922) < 1e-2 assert abs(result_mean.item() - 0.2514931857585907) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 193.4154052734375) < 1e-2 assert abs(result_mean.item() - 0.2518429756164551) < 1e-3 else: print("None") def test_full_loop_device(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(self.num_inference_steps, device=torch_device) model = self.dummy_model() sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma generator = torch.manual_seed(0) for t in scheduler.timesteps: sample = scheduler.scale_model_input(sample, t) model_output = model(sample, t) output = scheduler.step(model_output, t, sample, generator=generator) sample = output.prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) if torch_device in ["cpu"]: assert abs(result_sum.item() - 337.394287109375) < 1e-2 assert abs(result_mean.item() - 0.43931546807289124) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 337.394287109375) < 1e-2 assert abs(result_mean.item() - 0.4393154978752136) < 1e-3 else: print("None") def test_full_loop_device_karras_sigmas(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True) scheduler.set_timesteps(self.num_inference_steps, device=torch_device) model = self.dummy_model() sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma sample = sample.to(torch_device) generator = torch.manual_seed(0) for t in scheduler.timesteps: sample = scheduler.scale_model_input(sample, t) model_output = model(sample, t) output = scheduler.step(model_output, t, sample, generator=generator) sample = output.prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) if torch_device in ["cpu"]: assert abs(result_sum.item() - 837.2554931640625) < 1e-2 assert abs(result_mean.item() - 1.0901764631271362) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 837.25537109375) < 1e-2 assert abs(result_mean.item() - 1.0901763439178467) < 1e-2 else: print("None")
diffusers/tests/schedulers/test_scheduler_sasolver.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_sasolver.py", "repo_id": "diffusers", "token_count": 3629 }
162
import gc import unittest import torch from diffusers import ( StableDiffusionImg2ImgPipeline, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_gpu class StableDiffusionImg2ImgPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionImg2ImgPipeline ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" original_config = ( "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) repo_id = "runwayml/stable-diffusion-v1-5" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/sketch-mountains-input.png" ) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "image": init_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) @slow @require_torch_gpu class StableDiffusion21Img2ImgPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionImg2ImgPipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" repo_id = "stabilityai/stable-diffusion-2-1" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/sketch-mountains-input.png" ) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "image": init_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)
diffusers/tests/single_file/test_stable_diffusion_img2img_single_file.py/0
{ "file_path": "diffusers/tests/single_file/test_stable_diffusion_img2img_single_file.py", "repo_id": "diffusers", "token_count": 1546 }
163
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that sorts the imports in the custom inits of Diffusers. Diffusers uses init files that delay the import of an object to when it's actually needed. This is to avoid the main init importing all models, which would make the line `import transformers` very slow when the user has all optional dependencies installed. The inits with delayed imports have two halves: one defining a dictionary `_import_structure` which maps modules to the name of the objects in each module, and one in `TYPE_CHECKING` which looks like a normal init for type-checkers. `isort` or `ruff` properly sort the second half which looks like traditionl imports, the goal of this script is to sort the first half. Use from the root of the repo with: ```bash python utils/custom_init_isort.py ``` which will auto-sort the imports (used in `make style`). For a check only (as used in `make quality`) run: ```bash python utils/custom_init_isort.py --check_only ``` """ import argparse import os import re from typing import Any, Callable, List, Optional # Path is defined with the intent you should run this script from the root of the repo. PATH_TO_TRANSFORMERS = "src/diffusers" # Pattern that looks at the indentation in a line. _re_indent = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _re_direct_key = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _re_indirect_key = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _re_strip_line = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _re_bracket_content = re.compile(r"\[([^\]]+)\]") def get_indent(line: str) -> str: """Returns the indent in given line (as string).""" search = _re_indent.search(line) return "" if search is None else search.groups()[0] def split_code_in_indented_blocks( code: str, indent_level: str = "", start_prompt: Optional[str] = None, end_prompt: Optional[str] = None ) -> List[str]: """ Split some code into its indented blocks, starting at a given level. Args: code (`str`): The code to split. indent_level (`str`): The indent level (as string) to use for identifying the blocks to split. start_prompt (`str`, *optional*): If provided, only starts splitting at the line where this text is. end_prompt (`str`, *optional*): If provided, stops splitting at a line where this text is. Warning: The text before `start_prompt` or after `end_prompt` (if provided) is not ignored, just not split. The input `code` can thus be retrieved by joining the result. Returns: `List[str]`: The list of blocks. """ # Let's split the code into lines and move to start_index. index = 0 lines = code.split("\n") if start_prompt is not None: while not lines[index].startswith(start_prompt): index += 1 blocks = ["\n".join(lines[:index])] else: blocks = [] # This variable contains the block treated at a given time. current_block = [lines[index]] index += 1 # We split into blocks until we get to the `end_prompt` (or the end of the file). while index < len(lines) and (end_prompt is None or not lines[index].startswith(end_prompt)): # We have a non-empty line with the proper indent -> start of a new block if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: # Store the current block in the result and rest. There are two cases: the line is part of the block (like # a closing parenthesis) or not. if len(current_block) > 0 and get_indent(current_block[-1]).startswith(indent_level + " "): # Line is part of the current block current_block.append(lines[index]) blocks.append("\n".join(current_block)) if index < len(lines) - 1: current_block = [lines[index + 1]] index += 1 else: current_block = [] else: # Line is not part of the current block blocks.append("\n".join(current_block)) current_block = [lines[index]] else: # Just add the line to the current block current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(current_block) > 0: blocks.append("\n".join(current_block)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lines): blocks.append("\n".join(lines[index:])) return blocks def ignore_underscore_and_lowercase(key: Callable[[Any], str]) -> Callable[[Any], str]: """ Wraps a key function (as used in a sort) to lowercase and ignore underscores. """ def _inner(x): return key(x).lower().replace("_", "") return _inner def sort_objects(objects: List[Any], key: Optional[Callable[[Any], str]] = None) -> List[Any]: """ Sort a list of objects following the rules of isort (all uppercased first, camel-cased second and lower-cased last). Args: objects (`List[Any]`): The list of objects to sort. key (`Callable[[Any], str]`, *optional*): A function taking an object as input and returning a string, used to sort them by alphabetical order. If not provided, will default to noop (so a `key` must be provided if the `objects` are not of type string). Returns: `List[Any]`: The sorted list with the same elements as in the inputs """ # If no key is provided, we use a noop. def noop(x): return x if key is None: key = noop # Constants are all uppercase, they go first. constants = [obj for obj in objects if key(obj).isupper()] # Classes are not all uppercase but start with a capital, they go second. classes = [obj for obj in objects if key(obj)[0].isupper() and not key(obj).isupper()] # Functions begin with a lowercase, they go last. functions = [obj for obj in objects if not key(obj)[0].isupper()] # Then we sort each group. key1 = ignore_underscore_and_lowercase(key) return sorted(constants, key=key1) + sorted(classes, key=key1) + sorted(functions, key=key1) def sort_objects_in_import(import_statement: str) -> str: """ Sorts the imports in a single import statement. Args: import_statement (`str`): The import statement in which to sort the imports. Returns: `str`: The same as the input, but with objects properly sorted. """ # This inner function sort imports between [ ]. def _replace(match): imports = match.groups()[0] # If there is one import only, nothing to do. if "," not in imports: return f"[{imports}]" keys = [part.strip().replace('"', "") for part in imports.split(",")] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: keys = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(keys)]) + "]" lines = import_statement.split("\n") if len(lines) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. idx = 2 if lines[1].strip() == "[" else 1 keys_to_sort = [(i, _re_strip_line.search(line).groups()[0]) for i, line in enumerate(lines[idx:-idx])] sorted_indices = sort_objects(keys_to_sort, key=lambda x: x[1]) sorted_lines = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lines) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: lines[1] = _re_bracket_content.sub(_replace, lines[1]) else: keys = [part.strip().replace('"', "") for part in lines[1].split(",")] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: keys = keys[:-1] lines[1] = get_indent(lines[1]) + ", ".join([f'"{k}"' for k in sort_objects(keys)]) return "\n".join(lines) else: # Finally we have to deal with imports fitting on one line import_statement = _re_bracket_content.sub(_replace, import_statement) return import_statement def sort_imports(file: str, check_only: bool = True): """ Sort the imports defined in the `_import_structure` of a given init. Args: file (`str`): The path to the init to check/fix. check_only (`bool`, *optional*, defaults to `True`): Whether or not to just check (and not auto-fix) the init. """ with open(file, encoding="utf-8") as f: code = f.read() # If the file is not a custom init, there is nothing to do. if "_import_structure" not in code: return # Blocks of indent level 0 main_blocks = split_code_in_indented_blocks( code, start_prompt="_import_structure = {", end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(main_blocks) - 1): # Check if the block contains some `_import_structure`s thingy to sort. block = main_blocks[block_idx] block_lines = block.split("\n") # Get to the start of the imports. line_idx = 0 while line_idx < len(block_lines) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: line_idx = len(block_lines) else: line_idx += 1 if line_idx >= len(block_lines): continue # Ignore beginning and last line: they don't contain anything. internal_block_code = "\n".join(block_lines[line_idx:-1]) indent = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. internal_blocks = split_code_in_indented_blocks(internal_block_code, indent_level=indent) # We have two categories of import key: list or _import_structure[key].append/extend pattern = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. keys = [(pattern.search(b).groups()[0] if pattern.search(b) is not None else None) for b in internal_blocks] # We only sort the lines with a key. keys_to_sort = [(i, key) for i, key in enumerate(keys) if key is not None] sorted_indices = [x[0] for x in sorted(keys_to_sort, key=lambda x: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. count = 0 reordered_blocks = [] for i in range(len(internal_blocks)): if keys[i] is None: reordered_blocks.append(internal_blocks[i]) else: block = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reordered_blocks.append(block) count += 1 # And we put our main block back together with its first and last line. main_blocks[block_idx] = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]]) if code != "\n".join(main_blocks): if check_only: return True else: print(f"Overwriting {file}.") with open(file, "w", encoding="utf-8") as f: f.write("\n".join(main_blocks)) def sort_imports_in_all_inits(check_only=True): """ Sort the imports defined in the `_import_structure` of all inits in the repo. Args: check_only (`bool`, *optional*, defaults to `True`): Whether or not to just check (and not auto-fix) the init. """ failures = [] for root, _, files in os.walk(PATH_TO_TRANSFORMERS): if "__init__.py" in files: result = sort_imports(os.path.join(root, "__init__.py"), check_only=check_only) if result: failures = [os.path.join(root, "__init__.py")] if len(failures) > 0: raise ValueError(f"Would overwrite {len(failures)} files, run `make style`.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") args = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
diffusers/utils/custom_init_isort.py/0
{ "file_path": "diffusers/utils/custom_init_isort.py", "repo_id": "diffusers", "token_count": 5346 }
164
""" This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first. """ from pathlib import Path import gym_pusht # noqa: F401 import gymnasium as gym import imageio import numpy import torch from huggingface_hub import snapshot_download from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy # Create a directory to store the video of the evaluation output_directory = Path("outputs/eval/example_pusht_diffusion") output_directory.mkdir(parents=True, exist_ok=True) # Download the diffusion policy for pusht environment pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht")) # OR uncomment the following to evaluate a policy from the local outputs/train folder. # pretrained_policy_path = Path("outputs/train/example_pusht_diffusion") policy = DiffusionPolicy.from_pretrained(pretrained_policy_path) policy.eval() # Check if GPU is available if torch.cuda.is_available(): device = torch.device("cuda") print("GPU is available. Device set to:", device) else: device = torch.device("cpu") print(f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU.") # Decrease the number of reverse-diffusion steps (trades off a bit of quality for 10x speed) policy.diffusion.num_inference_steps = 10 policy.to(device) # Initialize evaluation environment to render two observation types: # an image of the scene and state/position of the agent. The environment # also automatically stops running after 300 interactions/steps. env = gym.make( "gym_pusht/PushT-v0", obs_type="pixels_agent_pos", max_episode_steps=300, ) # Reset the policy and environmens to prepare for rollout policy.reset() numpy_observation, info = env.reset(seed=42) # Prepare to collect every rewards and all the frames of the episode, # from initial state to final state. rewards = [] frames = [] # Render frame of the initial state frames.append(env.render()) step = 0 done = False while not done: # Prepare observation for the policy running in Pytorch state = torch.from_numpy(numpy_observation["agent_pos"]) image = torch.from_numpy(numpy_observation["pixels"]) # Convert to float32 with image from channel first in [0,255] # to channel last in [0,1] state = state.to(torch.float32) image = image.to(torch.float32) / 255 image = image.permute(2, 0, 1) # Send data tensors from CPU to GPU state = state.to(device, non_blocking=True) image = image.to(device, non_blocking=True) # Add extra (empty) batch dimension, required to forward the policy state = state.unsqueeze(0) image = image.unsqueeze(0) # Create the policy input dictionary observation = { "observation.state": state, "observation.image": image, } # Predict the next action with respect to the current observation with torch.inference_mode(): action = policy.select_action(observation) # Prepare the action for the environment numpy_action = action.squeeze(0).to("cpu").numpy() # Step through the environment and receive a new observation numpy_observation, reward, terminated, truncated, info = env.step(numpy_action) print(f"{step=} {reward=} {terminated=}") # Keep track of all the rewards and frames rewards.append(reward) frames.append(env.render()) # The rollout is considered done when the success state is reach (i.e. terminated is True), # or the maximum number of iterations is reached (i.e. truncated is True) done = terminated | truncated | done step += 1 if terminated: print("Success!") else: print("Failure!") # Get the speed of environment (i.e. its number of frames per second). fps = env.metadata["render_fps"] # Encode all frames into a mp4 video. video_path = output_directory / "rollout.mp4" imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps) print(f"Video of the evaluation is available in '{video_path}'.")
lerobot/examples/2_evaluate_pretrained_policy.py/0
{ "file_path": "lerobot/examples/2_evaluate_pretrained_policy.py", "repo_id": "lerobot", "token_count": 1310 }
165
OPENX_DATASET_CONFIGS: fractal20220817_data: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - base_pose_tool_reached - gripper_closed fps: 3 kuka: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - clip_function_input/base_pose_tool_reached - gripper_closed fps: 10 bridge_openx: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - EEF_state - gripper_state fps: 5 taco_play: image_obs_keys: - rgb_static - rgb_gripper depth_obs_keys: - depth_static - depth_gripper state_obs_keys: - state_eef - state_gripper fps: 15 jaco_play: image_obs_keys: - image - image_wrist depth_obs_keys: - null state_obs_keys: - state_eef - state_gripper fps: 10 berkeley_cable_routing: image_obs_keys: - image - top_image - wrist45_image - wrist225_image depth_obs_keys: - null state_obs_keys: - robot_state fps: 10 roboturk: image_obs_keys: - front_rgb depth_obs_keys: - null state_obs_keys: - null fps: 10 nyu_door_opening_surprising_effectiveness: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - null fps: 3 viola: image_obs_keys: - agentview_rgb - eye_in_hand_rgb depth_obs_keys: - null state_obs_keys: - joint_states - gripper_states fps: 20 berkeley_autolab_ur5: image_obs_keys: - image - hand_image depth_obs_keys: - image_with_depth state_obs_keys: - state fps: 5 toto: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 30 language_table: image_obs_keys: - rgb depth_obs_keys: - null state_obs_keys: - effector_translation fps: 10 columbia_cairlab_pusht_real: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - robot_state fps: 10 stanford_kuka_multimodal_dataset_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - depth_image state_obs_keys: - ee_position - ee_orientation fps: 20 nyu_rot_dataset_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 3 io_ai_tech: image_obs_keys: - image - image_fisheye - image_left_side - image_right_side depth_obs_keys: - null state_obs_keys: - state fps: 3 stanford_hydra_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 10 austin_buds_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 20 nyu_franka_play_dataset_converted_externally_to_rlds: image_obs_keys: - image - image_additional_view depth_obs_keys: - depth - depth_additional_view state_obs_keys: - eef_state fps: 3 maniskill_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - depth - wrist_depth state_obs_keys: - tcp_pose - gripper_state fps: 20 furniture_bench_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 10 cmu_franka_exploration_dataset_converted_externally_to_rlds: image_obs_keys: - highres_image depth_obs_keys: - null state_obs_keys: - null fps: 10 ucsd_kitchen_dataset_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - joint_state fps: 2 ucsd_pick_and_place_dataset_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 3 spoc: image_obs_keys: - image - image_manipulation depth_obs_keys: - null state_obs_keys: - null fps: 3 austin_sailor_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 20 austin_sirius_dataset_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 20 bc_z: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - present/xyz - present/axis_angle - present/sensed_close fps: 10 utokyo_pr2_opening_fridge_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 10 utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 10 utokyo_xarm_pick_and_place_converted_externally_to_rlds: image_obs_keys: - image - image2 - hand_image depth_obs_keys: - null state_obs_keys: - end_effector_pose fps: 10 utokyo_xarm_bimanual_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - pose_r fps: 10 robo_net: image_obs_keys: - image - image1 depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 1 robo_set: image_obs_keys: - image_left - image_right - image_wrist depth_obs_keys: - null state_obs_keys: - state - state_velocity fps: 5 berkeley_mvp_converted_externally_to_rlds: image_obs_keys: - hand_image depth_obs_keys: - null state_obs_keys: - gripper - pose - joint_pos fps: 5 berkeley_rpt_converted_externally_to_rlds: image_obs_keys: - hand_image depth_obs_keys: - null state_obs_keys: - joint_pos - gripper fps: 30 kaist_nonprehensile_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 10 stanford_mask_vit_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state tokyo_u_lsmo_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 10 dlr_sara_pour_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 10 dlr_sara_grid_clamp_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 10 dlr_edan_shared_control_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 5 asu_table_top_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 12.5 stanford_robocook_converted_externally_to_rlds: image_obs_keys: - image_1 - image_2 depth_obs_keys: - depth_1 - depth_2 state_obs_keys: - eef_state - gripper_state fps: 5 imperialcollege_sawyer_wrist_cam: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 10 iamlab_cmu_pickup_insert_converted_externally_to_rlds: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - joint_state - gripper_state fps: 20 uiuc_d3field: image_obs_keys: - image_1 - image_2 depth_obs_keys: - depth_1 - depth_2 state_obs_keys: - null fps: 1 utaustin_mutex: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 20 berkeley_fanuc_manipulation: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - joint_state - gripper_state fps: 10 cmu_playing_with_food: image_obs_keys: - image - finger_vision_1 depth_obs_keys: - null state_obs_keys: - state fps: 10 cmu_play_fusion: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state fps: 5 cmu_stretch: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - eef_state - gripper_state fps: 10 berkeley_gnm_recon: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state - position - yaw fps: 3 berkeley_gnm_cory_hall: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state - position - yaw fps: 5 berkeley_gnm_sac_son: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - state - position - yaw fps: 10 droid: image_obs_keys: - exterior_image_1_left - exterior_image_2_left - wrist_image_left depth_obs_keys: - null state_obs_keys: - proprio fps: 15 droid_100: image_obs_keys: - exterior_image_1_left - exterior_image_2_left - wrist_image_left depth_obs_keys: - null state_obs_keys: - proprio fps: 15 fmb: image_obs_keys: - image_side_1 - image_side_2 - image_wrist_1 - image_wrist_2 depth_obs_keys: - image_side_1_depth - image_side_2_depth - image_wrist_1_depth - image_wrist_2_depth state_obs_keys: - proprio fps: 10 dobbe: image_obs_keys: - wrist_image depth_obs_keys: - null state_obs_keys: - proprio fps: 3.75 usc_cloth_sim_converted_externally_to_rlds: image_obs_keys: - image depth_obs_keys: - null state_obs_keys: - null fps: 10 plex_robosuite: image_obs_keys: - image - wrist_image depth_obs_keys: - null state_obs_keys: - state fps: 20 conq_hose_manipulation: image_obs_keys: - frontleft_fisheye_image - frontright_fisheye_image - hand_color_image depth_obs_keys: - null state_obs_keys: - state fps: 30
lerobot/lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml/0
{ "file_path": "lerobot/lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml", "repo_id": "lerobot", "token_count": 5970 }
166
#!/usr/bin/env python # Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field @dataclass class ACTConfig: """Configuration class for the Action Chunking Transformers policy. Defaults are configured for training on bimanual Aloha tasks like "insertion" or "transfer". The parameters you will most likely need to change are the ones which depend on the environment / sensors. Those are: `input_shapes` and 'output_shapes`. Notes on the inputs and outputs: - Either: - At least one key starting with "observation.image is required as an input. AND/OR - The key "observation.environment_state" is required as input. - If there are multiple keys beginning with "observation.images." they are treated as multiple camera views. Right now we only support all images having the same shape. - May optionally work without an "observation.state" key for the proprioceptive robot state. - "action" is required as an output key. Args: n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the current step and additional steps going back). chunk_size: The size of the action prediction "chunks" in units of environment steps. n_action_steps: The number of action steps to run in the environment for one invocation of the policy. This should be no greater than the chunk size. For example, if the chunk size size 100, you may set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the environment, and throws the other 50 out. input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents the input data name, and the value is a list indicating the dimensions of the corresponding data. For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't include batch dimension or temporal dimension. output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents the output data name, and the value is a list indicating the dimensions of the corresponding data. For example, "action" refers to an output shape of [14], indicating 14-dimensional actions. Importantly, `output_shapes` doesn't include batch dimension or temporal dimension. input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"), and the value specifies the normalization mode to apply. The two available modes are "mean_std" which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a [-1, 1] range. output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the original scale. Note that this is also used for normalizing the training targets. vision_backbone: Name of the torchvision resnet backbone to use for encoding images. pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone. `None` means no pretrained weights. replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated convolution. pre_norm: Whether to use "pre-norm" in the transformer blocks. dim_model: The transformer blocks' main hidden dimension. n_heads: The number of heads to use in the transformer blocks' multi-head attention. dim_feedforward: The dimension to expand the transformer's hidden dimension to in the feed-forward layers. feedforward_activation: The activation to use in the transformer block's feed-forward layers. n_encoder_layers: The number of transformer layers to use for the transformer encoder. n_decoder_layers: The number of transformer layers to use for the transformer decoder. use_vae: Whether to use a variational objective during training. This introduces another transformer which is used as the VAE's encoder (not to be confused with the transformer encoder - see documentation in the policy class). latent_dim: The VAE's latent dimension. n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder. temporal_ensemble_coeff: Coefficient for the exponential weighting scheme to apply for temporal ensembling. Defaults to None which means temporal ensembling is not used. `n_action_steps` must be 1 when using this feature, as inference needs to happen at every step to form an ensemble. For more information on how ensembling works, please see `ACTTemporalEnsembler`. dropout: Dropout to use in the transformer layers (see code for details). kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`. """ # Input / output structure. n_obs_steps: int = 1 chunk_size: int = 100 n_action_steps: int = 100 input_shapes: dict[str, list[int]] = field( default_factory=lambda: { "observation.images.top": [3, 480, 640], "observation.state": [14], } ) output_shapes: dict[str, list[int]] = field( default_factory=lambda: { "action": [14], } ) # Normalization / Unnormalization input_normalization_modes: dict[str, str] = field( default_factory=lambda: { "observation.images.top": "mean_std", "observation.state": "mean_std", } ) output_normalization_modes: dict[str, str] = field( default_factory=lambda: { "action": "mean_std", } ) # Architecture. # Vision backbone. vision_backbone: str = "resnet18" pretrained_backbone_weights: str | None = "ResNet18_Weights.IMAGENET1K_V1" replace_final_stride_with_dilation: int = False # Transformer layers. pre_norm: bool = False dim_model: int = 512 n_heads: int = 8 dim_feedforward: int = 3200 feedforward_activation: str = "relu" n_encoder_layers: int = 4 # Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code # that means only the first layer is used. Here we match the original implementation by setting this to 1. # See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521. n_decoder_layers: int = 1 # VAE. use_vae: bool = True latent_dim: int = 32 n_vae_encoder_layers: int = 4 # Inference. # Note: the value used in ACT when temporal ensembling is enabled is 0.01. temporal_ensemble_coeff: float | None = None # Training and loss computation. dropout: float = 0.1 kl_weight: float = 10.0 def __post_init__(self): """Input validation (not exhaustive).""" if not self.vision_backbone.startswith("resnet"): raise ValueError( f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}." ) if self.temporal_ensemble_coeff is not None and self.n_action_steps > 1: raise NotImplementedError( "`n_action_steps` must be 1 when using temporal ensembling. This is " "because the policy needs to be queried every step to compute the ensembled action." ) if self.n_action_steps > self.chunk_size: raise ValueError( f"The chunk size is the upper bound for the number of action steps per model invocation. Got " f"{self.n_action_steps} for `n_action_steps` and {self.chunk_size} for `chunk_size`." ) if self.n_obs_steps != 1: raise ValueError( f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`" ) if ( not any(k.startswith("observation.image") for k in self.input_shapes) and "observation.environment_state" not in self.input_shapes ): raise ValueError("You must provide at least one image or the environment state among the inputs.")
lerobot/lerobot/common/policies/act/configuration_act.py/0
{ "file_path": "lerobot/lerobot/common/policies/act/configuration_act.py", "repo_id": "lerobot", "token_count": 3252 }
167
from typing import Protocol class MotorsBus(Protocol): def motor_names(self): ... def set_calibration(self): ... def apply_calibration(self): ... def revert_calibration(self): ... def read(self): ... def write(self): ...
lerobot/lerobot/common/robot_devices/motors/utils.py/0
{ "file_path": "lerobot/lerobot/common/robot_devices/motors/utils.py", "repo_id": "lerobot", "token_count": 88 }
168
# @package _global_ # Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots. # Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top). # Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps. # When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script. # Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy. # # Example of usage for training: # ```bash # python lerobot/scripts/train.py \ # policy=act_koch_real \ # env=koch_real # ``` seed: 1000 dataset_repo_id: lerobot/koch_pick_place_lego override_dataset_stats: observation.images.laptop: # stats from imagenet, since we use a pretrained vision model mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1) std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1) observation.images.phone: # stats from imagenet, since we use a pretrained vision model mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1) std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1) training: offline_steps: 80000 online_steps: 0 eval_freq: -1 save_freq: 10000 log_freq: 100 save_checkpoint: true batch_size: 8 lr: 1e-5 lr_backbone: 1e-5 weight_decay: 1e-4 grad_clip_norm: 10 online_steps_between_rollouts: 1 delta_timestamps: action: "[i / ${fps} for i in range(${policy.chunk_size})]" eval: n_episodes: 50 batch_size: 50 # See `configuration_act.py` for more details. policy: name: act # Input / output structure. n_obs_steps: 1 chunk_size: 100 n_action_steps: 100 input_shapes: # TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env? observation.images.laptop: [3, 480, 640] observation.images.phone: [3, 480, 640] observation.state: ["${env.state_dim}"] output_shapes: action: ["${env.action_dim}"] # Normalization / Unnormalization input_normalization_modes: observation.images.laptop: mean_std observation.images.phone: mean_std observation.state: mean_std output_normalization_modes: action: mean_std # Architecture. # Vision backbone. vision_backbone: resnet18 pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1 replace_final_stride_with_dilation: false # Transformer layers. pre_norm: false dim_model: 512 n_heads: 8 dim_feedforward: 3200 feedforward_activation: relu n_encoder_layers: 4 # Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code # that means only the first layer is used. Here we match the original implementation by setting this to 1. # See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521. n_decoder_layers: 1 # VAE. use_vae: true latent_dim: 32 n_vae_encoder_layers: 4 # Inference. temporal_ensemble_momentum: null # Training and loss computation. dropout: 0.1 kl_weight: 10.0
lerobot/lerobot/configs/policy/act_koch_real.yaml/0
{ "file_path": "lerobot/lerobot/configs/policy/act_koch_real.yaml", "repo_id": "lerobot", "token_count": 1161 }
169
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset. Note: The last frame of the episode doesnt always correspond to a final state. That's because our datasets are composed of transition from state to state up to the antepenultimate state associated to the ultimate action to arrive in the final state. However, there might not be a transition from a final state to another state. Note: This script aims to visualize the data used to train the neural networks. ~What you see is what you get~. When visualizing image modality, it is often expected to observe lossly compression artifacts since these images have been decoded from compressed mp4 videos to save disk space. The compression factor applied has been tuned to not affect success rate. Example of usage: - Visualize data stored on a local machine: ```bash local$ python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht local$ open http://localhost:9090 ``` - Visualize data stored on a distant machine with a local viewer: ```bash distant$ python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht local$ ssh -L 9090:localhost:9090 distant # create a ssh tunnel local$ open http://localhost:9090 ``` - Select episodes to visualize: ```bash python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht \ --episodes 7 3 5 1 4 ``` """ import argparse import logging import shutil from pathlib import Path import tqdm from flask import Flask, redirect, render_template, url_for from lerobot.common.datasets.lerobot_dataset import LeRobotDataset from lerobot.common.utils.utils import init_logging def run_server( dataset: LeRobotDataset, episodes: list[int], host: str, port: str, static_folder: Path, template_folder: Path, ): app = Flask(__name__, static_folder=static_folder.resolve(), template_folder=template_folder.resolve()) app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache @app.route("/") def index(): # home page redirects to the first episode page [dataset_namespace, dataset_name] = dataset.repo_id.split("/") first_episode_id = episodes[0] return redirect( url_for( "show_episode", dataset_namespace=dataset_namespace, dataset_name=dataset_name, episode_id=first_episode_id, ) ) @app.route("/<string:dataset_namespace>/<string:dataset_name>/episode_<int:episode_id>") def show_episode(dataset_namespace, dataset_name, episode_id): dataset_info = { "repo_id": dataset.repo_id, "num_samples": dataset.num_samples, "num_episodes": dataset.num_episodes, "fps": dataset.fps, } video_paths = get_episode_video_paths(dataset, episode_id) language_instruction = get_episode_language_instruction(dataset, episode_id) videos_info = [ {"url": url_for("static", filename=video_path), "filename": Path(video_path).name} for video_path in video_paths ] if language_instruction: videos_info[0]["language_instruction"] = language_instruction ep_csv_url = url_for("static", filename=get_ep_csv_fname(episode_id)) return render_template( "visualize_dataset_template.html", episode_id=episode_id, episodes=episodes, dataset_info=dataset_info, videos_info=videos_info, ep_csv_url=ep_csv_url, has_policy=False, ) app.run(host=host, port=port) def get_ep_csv_fname(episode_id: int): ep_csv_fname = f"episode_{episode_id}.csv" return ep_csv_fname def write_episode_data_csv(output_dir, file_name, episode_index, dataset): """Write a csv file containg timeseries data of an episode (e.g. state and action). This file will be loaded by Dygraph javascript to plot data in real time.""" from_idx = dataset.episode_data_index["from"][episode_index] to_idx = dataset.episode_data_index["to"][episode_index] has_state = "observation.state" in dataset.hf_dataset.features has_action = "action" in dataset.hf_dataset.features # init header of csv with state and action names header = ["timestamp"] if has_state: dim_state = len(dataset.hf_dataset["observation.state"][0]) header += [f"state_{i}" for i in range(dim_state)] if has_action: dim_action = len(dataset.hf_dataset["action"][0]) header += [f"action_{i}" for i in range(dim_action)] columns = ["timestamp"] if has_state: columns += ["observation.state"] if has_action: columns += ["action"] rows = [] data = dataset.hf_dataset.select_columns(columns) for i in range(from_idx, to_idx): row = [data[i]["timestamp"].item()] if has_state: row += data[i]["observation.state"].tolist() if has_action: row += data[i]["action"].tolist() rows.append(row) output_dir.mkdir(parents=True, exist_ok=True) with open(output_dir / file_name, "w") as f: f.write(",".join(header) + "\n") for row in rows: row_str = [str(col) for col in row] f.write(",".join(row_str) + "\n") def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]: # get first frame of episode (hack to get video_path of the episode) first_frame_idx = dataset.episode_data_index["from"][ep_index].item() return [ dataset.hf_dataset.select_columns(key)[first_frame_idx][key]["path"] for key in dataset.video_frame_keys ] def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]: # check if the dataset has language instructions if "language_instruction" not in dataset.hf_dataset.features: return None # get first frame index first_frame_idx = dataset.episode_data_index["from"][ep_index].item() language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"] # TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored # with the tf.tensor appearing in the string return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)") def visualize_dataset_html( repo_id: str, root: Path | None = None, episodes: list[int] = None, output_dir: Path | None = None, serve: bool = True, host: str = "127.0.0.1", port: int = 9090, force_override: bool = False, ) -> Path | None: init_logging() dataset = LeRobotDataset(repo_id, root=root) if not dataset.video: raise NotImplementedError(f"Image datasets ({dataset.video=}) are currently not supported.") if output_dir is None: output_dir = f"outputs/visualize_dataset_html/{repo_id}" output_dir = Path(output_dir) if output_dir.exists(): if force_override: shutil.rmtree(output_dir) else: logging.info(f"Output directory already exists. Loading from it: '{output_dir}'") output_dir.mkdir(parents=True, exist_ok=True) # Create a simlink from the dataset video folder containg mp4 files to the output directory # so that the http server can get access to the mp4 files. static_dir = output_dir / "static" static_dir.mkdir(parents=True, exist_ok=True) ln_videos_dir = static_dir / "videos" if not ln_videos_dir.exists(): ln_videos_dir.symlink_to(dataset.videos_dir.resolve()) template_dir = Path(__file__).resolve().parent.parent / "templates" if episodes is None: episodes = list(range(dataset.num_episodes)) logging.info("Writing CSV files") for episode_index in tqdm.tqdm(episodes): # write states and actions in a csv (it can be slow for big datasets) ep_csv_fname = get_ep_csv_fname(episode_index) # TODO(rcadene): speedup script by loading directly from dataset, pyarrow, parquet, safetensors? write_episode_data_csv(static_dir, ep_csv_fname, episode_index, dataset) if serve: run_server(dataset, episodes, host, port, static_dir, template_dir) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--repo-id", type=str, required=True, help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).", ) parser.add_argument( "--root", type=Path, default=None, help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.", ) parser.add_argument( "--episodes", type=int, nargs="*", default=None, help="Episode indices to visualize (e.g. `0 1 5 6` to load episodes of index 0, 1, 5 and 6). By default loads all episodes.", ) parser.add_argument( "--output-dir", type=Path, default=None, help="Directory path to write html files and kickoff a web server. By default write them to 'outputs/visualize_dataset/REPO_ID'.", ) parser.add_argument( "--serve", type=int, default=1, help="Launch web server.", ) parser.add_argument( "--host", type=str, default="127.0.0.1", help="Web host used by the http server.", ) parser.add_argument( "--port", type=int, default=9090, help="Web port used by the http server.", ) parser.add_argument( "--force-override", type=int, default=0, help="Delete the output directory if it exists already.", ) args = parser.parse_args() visualize_dataset_html(**vars(args)) if __name__ == "__main__": main()
lerobot/lerobot/scripts/visualize_dataset_html.py/0
{ "file_path": "lerobot/lerobot/scripts/visualize_dataset_html.py", "repo_id": "lerobot", "token_count": 4248 }
170
version https://git-lfs.github.com/spec/v1 oid sha256:79c2a3da1024fa140d23e8438b2756d27cf5db65ac70d7ac4215260b55ca55f8 size 1477064
lerobot/tests/data/lerobot/aloha_mobile_shrimp/train/data-00000-of-00001.arrow/0
{ "file_path": "lerobot/tests/data/lerobot/aloha_mobile_shrimp/train/data-00000-of-00001.arrow", "repo_id": "lerobot", "token_count": 65 }
171
version https://git-lfs.github.com/spec/v1 oid sha256:fb6de86fee6ff3cc5d61d591fe480a50feb289c05770e3f4b76e24138b571c65 size 136
lerobot/tests/data/lerobot/aloha_static_coffee/meta_data/episode_data_index.safetensors/0
{ "file_path": "lerobot/tests/data/lerobot/aloha_static_coffee/meta_data/episode_data_index.safetensors", "repo_id": "lerobot", "token_count": 63 }
172
version https://git-lfs.github.com/spec/v1 oid sha256:a11f160c819a5b5ab2cbb7d7cc60d6eb6cfbbde32a5646fad0d2e04c1c7fa796 size 4752
lerobot/tests/data/lerobot/aloha_static_fork_pick_up/meta_data/stats.safetensors/0
{ "file_path": "lerobot/tests/data/lerobot/aloha_static_fork_pick_up/meta_data/stats.safetensors", "repo_id": "lerobot", "token_count": 71 }
173
version https://git-lfs.github.com/spec/v1 oid sha256:6bdf22208d49cd36d24bc844d4d8bda5e321eafe39d2b470e4fc95c7812fdb24 size 3687117
lerobot/tests/data/save_dataset_to_safetensors/lerobot/aloha_sim_insertion_human/frame_0.safetensors/0
{ "file_path": "lerobot/tests/data/save_dataset_to_safetensors/lerobot/aloha_sim_insertion_human/frame_0.safetensors", "repo_id": "lerobot", "token_count": 67 }
174
version https://git-lfs.github.com/spec/v1 oid sha256:b5a9f73a2356aff9c717cdfd0d37a6da08b0cf2cc09c98edbc9492501b7f64a5 size 5104
lerobot/tests/data/save_policy_to_safetensors/dora_aloha_real_act_real_no_state/actions.safetensors/0
{ "file_path": "lerobot/tests/data/save_policy_to_safetensors/dora_aloha_real_act_real_no_state/actions.safetensors", "repo_id": "lerobot", "token_count": 70 }
175
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script provides a utility for saving a dataset as safetensors files for the purpose of testing backward compatibility when updating the data format. It uses the `PushtDataset` to create a DataLoader and saves selected frame from the dataset into a corresponding safetensors file in a specified output directory. If you know that your change will break backward compatibility, you should write a shortlived test by modifying `tests/test_datasets.py::test_backward_compatibility` accordingly, and make sure this custom test pass. Your custom test doesnt need to be merged into the `main` branch. Then you need to run this script and update the tests artifacts. Example usage: `python tests/scripts/save_dataset_to_safetensors.py` """ import shutil from pathlib import Path from safetensors.torch import save_file from lerobot.common.datasets.lerobot_dataset import LeRobotDataset def save_dataset_to_safetensors(output_dir, repo_id="lerobot/pusht"): repo_dir = Path(output_dir) / repo_id if repo_dir.exists(): shutil.rmtree(repo_dir) repo_dir.mkdir(parents=True, exist_ok=True) dataset = LeRobotDataset( repo_id=repo_id, ) # save 2 first frames of first episode i = dataset.episode_data_index["from"][0].item() save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # save 2 frames at the middle of first episode i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2) save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # save 2 last frames of first episode i = dataset.episode_data_index["to"][0].item() save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") # TODO(rcadene): Enable testing on second and last episode # We currently cant because our test dataset only contains the first episode # # save 2 first frames of second episode # i = dataset.episode_data_index["from"][1].item() # save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") # save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # # save 2 last frames of second episode # i = dataset.episode_data_index["to"][1].item() # save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") # save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") # # save 2 last frames of last episode # i = dataset.episode_data_index["to"][-1].item() # save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") # save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") if __name__ == "__main__": for dataset in [ "lerobot/pusht", "lerobot/aloha_sim_insertion_human", "lerobot/xarm_lift_medium", "lerobot/nyu_franka_play_dataset", "lerobot/cmu_stretch", ]: save_dataset_to_safetensors("tests/data/save_dataset_to_safetensors", repo_id=dataset)
lerobot/tests/scripts/save_dataset_to_safetensors.py/0
{ "file_path": "lerobot/tests/scripts/save_dataset_to_safetensors.py", "repo_id": "lerobot", "token_count": 1375 }
176
import random from typing import Callable from uuid import uuid4 import numpy as np import pytest import torch from datasets import Dataset from lerobot.common.datasets.utils import ( calculate_episode_data_index, hf_transform_to_torch, reset_episode_index, ) from lerobot.common.utils.utils import ( get_global_random_state, init_hydra_config, seeded_context, set_global_random_state, set_global_seed, ) # Random generation functions for testing the seeding and random state get/set. rand_fns = [ random.random, np.random.random, lambda: torch.rand(1).item(), ] if torch.cuda.is_available(): rand_fns.append(lambda: torch.rand(1, device="cuda")) @pytest.mark.parametrize("rand_fn", rand_fns) def test_seeding(rand_fn: Callable[[], int]): set_global_seed(0) a = rand_fn() with seeded_context(1337): c = rand_fn() b = rand_fn() set_global_seed(0) a_ = rand_fn() b_ = rand_fn() # Check that `set_global_seed` lets us reproduce a and b. assert a_ == a # Additionally, check that the `seeded_context` didn't interrupt the global RNG. assert b_ == b set_global_seed(1337) c_ = rand_fn() # Check that `seeded_context` and `global_seed` give the same reproducibility. assert c_ == c def test_get_set_random_state(): """Check that getting the random state, then setting it results in the same random number generation.""" random_state_dict = get_global_random_state() rand_numbers = [rand_fn() for rand_fn in rand_fns] set_global_random_state(random_state_dict) rand_numbers_ = [rand_fn() for rand_fn in rand_fns] assert rand_numbers_ == rand_numbers def test_calculate_episode_data_index(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [0, 0, 1, 2, 2, 2], }, ) dataset.set_transform(hf_transform_to_torch) episode_data_index = calculate_episode_data_index(dataset) assert torch.equal(episode_data_index["from"], torch.tensor([0, 2, 3])) assert torch.equal(episode_data_index["to"], torch.tensor([2, 3, 6])) def test_reset_episode_index(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [10, 10, 11, 12, 12, 12], }, ) dataset.set_transform(hf_transform_to_torch) correct_episode_index = [0, 0, 1, 2, 2, 2] dataset = reset_episode_index(dataset) assert dataset["episode_index"] == correct_episode_index def test_init_hydra_config_empty(): test_file = f"/tmp/test_init_hydra_config_empty_{uuid4().hex}.yaml" with open(test_file, "w") as f: f.write("\n") init_hydra_config(test_file)
lerobot/tests/test_utils.py/0
{ "file_path": "lerobot/tests/test_utils.py", "repo_id": "lerobot", "token_count": 1215 }
177
from .configuration_dac import DACConfig from .modeling_dac import DACModel
parler-tts/parler_tts/dac_wrapper/__init__.py/0
{ "file_path": "parler-tts/parler_tts/dac_wrapper/__init__.py", "repo_id": "parler-tts", "token_count": 22 }
178
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Adapter injection With PEFT, you can inject trainable adapters into any `torch` module which allows you to use adapter methods without relying on the modeling classes in PEFT. Currently, PEFT supports injecting [LoRA](../conceptual_guides/adapter#low-rank-adaptation-lora), [AdaLoRA](../conceptual_guides/adapter#adaptive-low-rank-adaptation-adalora), and [IA3](../conceptual_guides/ia3) into models because for these adapters, inplace modification of the model is sufficient for finetuning it. Check the table below to see when you should inject adapters. | Pros | Cons | |---|---| | the model is modified inplace, keeping all the original attributes and methods | manually write the `from_pretrained` and `save_pretrained` utility functions from Hugging Face to save and load adapters | | works for any `torch` module and modality | doesn't work with any of the utility methods provided by `PeftModel` such as disabling and merging adapters | To perform the adapter injection, use the [`inject_adapter_in_model`] method. This method takes 3 arguments, the PEFT config, the model, and an optional adapter name. You can also attach multiple adapters to the model if you call [`inject_adapter_in_model`] multiple times with different adapter names. For example, to inject LoRA adapters into the `linear` submodule of the `DummyModel` module: ```python import torch from peft import inject_adapter_in_model, LoraConfig class DummyModel(torch.nn.Module): def __init__(self): super().__init__() self.embedding = torch.nn.Embedding(10, 10) self.linear = torch.nn.Linear(10, 10) self.lm_head = torch.nn.Linear(10, 10) def forward(self, input_ids): x = self.embedding(input_ids) x = self.linear(x) x = self.lm_head(x) return x lora_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", target_modules=["linear"], ) model = DummyModel() model = inject_adapter_in_model(lora_config, model) dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]) dummy_outputs = model(dummy_inputs) ``` Print the model to see that the adapters have been correctly injected. ```bash DummyModel( (embedding): Embedding(10, 10) (linear): Linear( in_features=10, out_features=10, bias=True (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=10, out_features=64, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=64, out_features=10, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (lm_head): Linear(in_features=10, out_features=10, bias=True) ) ``` To only save the adapter, use the [`get_peft_model_state_dict`] function: ```python from peft import get_peft_model_state_dict peft_state_dict = get_peft_model_state_dict(model) print(peft_state_dict) ``` Otherwise, `model.state_dict()` returns the full state dict of the model.
peft/docs/source/developer_guides/low_level_api.md/0
{ "file_path": "peft/docs/source/developer_guides/low_level_api.md", "repo_id": "peft", "token_count": 1262 }
179
from pathlib import Path import torch from PIL import Image from torch.utils.data import Dataset from torchvision import transforms class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def collate_fn(examples, with_prior_preservation=False): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.cat(input_ids, dim=0) batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example
peft/examples/boft_dreambooth/utils/dataset.py/0
{ "file_path": "peft/examples/boft_dreambooth/utils/dataset.py", "repo_id": "peft", "token_count": 1884 }
180
import gc import os import sys import threading import psutil import torch from accelerate import Accelerator from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from peft import LoraConfig, TaskType, get_peft_model def levenshtein_distance(str1, str2): # TC: O(N^2) # SC: O(N) if str1 == str2: return 0 num_rows = len(str1) + 1 num_cols = len(str2) + 1 dp_matrix = list(range(num_cols)) for i in range(1, num_rows): prev = dp_matrix[0] dp_matrix[0] = i for j in range(1, num_cols): temp = dp_matrix[j] if str1[i - 1] == str2[j - 1]: dp_matrix[j] = prev else: dp_matrix[j] = min(prev, dp_matrix[j], dp_matrix[j - 1]) + 1 prev = temp return dp_matrix[num_cols - 1] def get_closest_label(eval_pred, classes): min_id = sys.maxsize min_edit_distance = sys.maxsize for i, class_label in enumerate(classes): edit_distance = levenshtein_distance(eval_pred.strip(), class_label) if edit_distance < min_edit_distance: min_id = i min_edit_distance = edit_distance return classes[min_id] # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() self.process = psutil.Process() self.cpu_begin = self.cpu_mem_used() self.peak_monitoring = True peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) peak_monitor_thread.daemon = True peak_monitor_thread.start() return self def cpu_mem_used(self): """get resident set size memory for the current process""" return self.process.memory_info().rss def peak_monitor_func(self): self.cpu_peak = -1 while True: self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) # time.sleep(0.001) # 1msec if not self.peak_monitoring: break def __exit__(self, *exc): self.peak_monitoring = False gc.collect() torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) self.cpu_end = self.cpu_mem_used() self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def main(): accelerator = Accelerator() # model_name_or_path = "bigscience/T0_3B" model_name_or_path = "facebook/bart-large" dataset_name = "twitter_complaints" peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) text_column = "Tweet text" label_column = "text_label" lr = 3e-3 num_epochs = 5 batch_size = 8 seed = 42 do_test = False set_seed(seed) dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, truncation=True) labels = tokenizer( targets, max_length=target_max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs with accelerator.main_process_first(): processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=True, desc="Running tokenizer on dataset", ) accelerator.wait_for_everyone() train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] test_dataset = processed_datasets["test"] def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) # creating model model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=lr) # lr scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler ) accelerator.print(model) is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None): is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc: model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}") accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}") accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") accelerator.print( f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") accelerator.print( f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" ) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) accelerator.print(f"{epoch=}: {train_ppl=} {train_epoch_loss=}") model.eval() eval_preds = [] with TorchTracemalloc() as tracemalloc: for _, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather_for_metrics(outputs).detach().cpu().numpy() eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print(f"GPU Memory before entering the eval : {b2mb(tracemalloc.begin)}") accelerator.print(f"GPU Memory consumed at the end of the eval (end-begin): {tracemalloc.used}") accelerator.print(f"GPU Peak Memory consumed during the eval (max-begin): {tracemalloc.peaked}") accelerator.print( f"GPU Total Peak Memory consumed during the eval (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) accelerator.print(f"CPU Memory before entering the eval : {b2mb(tracemalloc.cpu_begin)}") accelerator.print(f"CPU Memory consumed at the end of the eval (end-begin): {tracemalloc.cpu_used}") accelerator.print(f"CPU Peak Memory consumed during the eval (max-begin): {tracemalloc.cpu_peaked}") accelerator.print( f"CPU Total Peak Memory consumed during the eval (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" ) correct = 0 total = 0 assert len(eval_preds) == len( dataset["train"][label_column] ), f"{len(eval_preds)} != {len(dataset['train'][label_column])}" for pred, true in zip(eval_preds, dataset["train"][label_column]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 accelerator.print(f"{accuracy=}") accelerator.print(f"{eval_preds[:10]=}") accelerator.print(f"{dataset['train'][label_column][:10]=}") if do_test: model.eval() test_preds = [] for _, batch in enumerate(tqdm(test_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather(outputs).detach().cpu().numpy() test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) test_preds_cleaned = [] for _, pred in enumerate(test_preds): test_preds_cleaned.append(get_closest_label(pred, classes)) test_df = dataset["test"].to_pandas() assert len(test_preds_cleaned) == len(test_df), f"{len(test_preds_cleaned)} != {len(test_df)}" test_df[label_column] = test_preds_cleaned test_df["text_labels_orig"] = test_preds accelerator.print(test_df[[text_column, label_column]].sample(20)) pred_df = test_df[["ID", label_column]] pred_df.columns = ["ID", "Label"] os.makedirs(f"data/{dataset_name}", exist_ok=True) pred_df.to_csv(f"data/{dataset_name}/predictions.csv", index=False) accelerator.wait_for_everyone() # Option1: Pushing the model to Hugging Face Hub # model.push_to_hub( # f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_"), # token = "hf_..." # ) # token (`bool` or `str`, *optional*): # `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated # when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` # is not specified. # Or you can get your token from https://huggingface.co/settings/token # Option2: Saving the model locally peft_model_id = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace( "/", "_" ) model.save_pretrained(peft_model_id) accelerator.wait_for_everyone() if __name__ == "__main__": main()
peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py/0
{ "file_path": "peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py", "repo_id": "peft", "token_count": 5607 }
181
<jupyter_start><jupyter_text>Finetuning Whisper-large-V2 on Colab using PEFT-Lora + BNB INT8 training In this Colab, we present a step-by-step guide on how to fine-tune Whisper for any multilingual ASR dataset using Hugging Face 🤗 Transformers and 🤗 PEFT. Using 🤗 PEFT and `bitsandbytes`, you can train the `whisper-large-v2` seamlessly on a colab with T4 GPU (16 GB VRAM). In this notebook, with most parts from [fine_tune_whisper.ipynb](https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/fine_tune_whisper.ipynbscrollTo=BRdrdFIeU78w) is adapted to train using PEFT LoRA+BNB INT8.For more details on model, datasets and metrics, refer blog [Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) Inital Setup<jupyter_code>!add-apt-repository -y ppa:jonathonf/ffmpeg-4 !apt update !apt install -y ffmpeg !pip install datasets>=2.6.1 !pip install git+https://github.com/huggingface/transformers !pip install librosa !pip install evaluate>=0.30 !pip install jiwer !pip install gradio !pip install -q bitsandbytes datasets accelerate !pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git@main<jupyter_output><empty_output><jupyter_text>Linking the notebook to the Hub is straightforward - it simply requires entering your Hub authentication token when prompted. Find your Hub authentication token [here](https://huggingface.co/settings/tokens):<jupyter_code>from huggingface_hub import notebook_login notebook_login() # Select CUDA device index import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_name_or_path = "openai/whisper-large-v2" language = "Marathi" language_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0"<jupyter_output><empty_output><jupyter_text>Load Dataset<jupyter_code>from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True) common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True) print(common_voice) common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) print(common_voice)<jupyter_output>DatasetDict({ train: Dataset({ features: ['audio', 'sentence'], num_rows: 3927 }) test: Dataset({ features: ['audio', 'sentence'], num_rows: 1816 }) })<jupyter_text>Prepare Feature Extractor, Tokenizer and Data<jupyter_code>from transformers import WhisperFeatureExtractor feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name_or_path) from transformers import WhisperTokenizer tokenizer = WhisperTokenizer.from_pretrained(model_name_or_path, language=language, task=task) from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained(model_name_or_path, language=language, task=task)<jupyter_output><empty_output><jupyter_text>Prepare Data<jupyter_code>print(common_voice["train"][0])<jupyter_output>{'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3', 'array': array([-1.3727526e-15, -1.2400461e-13, -1.5159097e-13, ..., 4.7928120e-06, 3.5631349e-06, 1.6352631e-06], dtype=float32), 'sampling_rate': 48000}, 'sentence': 'आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.'}<jupyter_text>Since our input audio is sampled at 48kHz, we need to _downsample_ it to 16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. We'll set the audio inputs to the correct sampling rate using dataset's [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_columndatasets.DatasetDict.cast_column)method. This operation does not change the audio in-place, but rather signals to `datasets` to resample audio samples _on the fly_ the first time that they are loaded:<jupyter_code>from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))<jupyter_output><empty_output><jupyter_text>Re-loading the first audio sample in the Common Voice dataset will resample it to the desired sampling rate:<jupyter_code>print(common_voice["train"][0])<jupyter_output>{'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3', 'array': array([-4.4097186e-14, -9.4153831e-14, 3.4645775e-13, ..., -7.6018655e-06, -1.8617659e-06, 4.4520480e-06], dtype=float32), 'sampling_rate': 16000}, 'sentence': 'आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.'}<jupyter_text>Now we can write a function to prepare our data ready for the model:1. We load and resample the audio data by calling `batch["audio"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.3. We encode the transcriptions to label ids through the use of the tokenizer.<jupyter_code>def prepare_dataset(batch): # load and resample audio data from 48 to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] # encode target text to label ids batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch<jupyter_output><empty_output><jupyter_text>We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially.<jupyter_code>common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2) common_voice["train"]<jupyter_output><empty_output><jupyter_text>Training and Evaluation Define a Data Collator<jupyter_code>import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need different padding methods # first treat the audio inputs by simply returning torch tensors input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") # get the tokenized label sequences label_features = [{"input_ids": feature["labels"]} for feature in features] # pad the labels to max length labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch<jupyter_output><empty_output><jupyter_text>Let's initialise the data collator we've just defined:<jupyter_code>data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)<jupyter_output><empty_output><jupyter_text>Evaluation Metrics We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:<jupyter_code>import evaluate metric = evaluate.load("wer")<jupyter_output><empty_output><jupyter_text>We then simply have to define a function that takes our model predictions and returns the WER metric. This function, called`compute_metrics`, first replaces `-100` with the `pad_token_id`in the `label_ids` (undoing the step we applied in the data collator to ignore padded tokens correctly in the loss).It then decodes the predicted and label ids to strings. Finally,it computes the WER between the predictions and reference labels:<jupyter_code>def compute_metrics(pred): pred_ids = pred.predictions label_ids = pred.label_ids # replace -100 with the pad_token_id label_ids[label_ids == -100] = tokenizer.pad_token_id # we do not want to group tokens when computing the metrics pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) wer = 100 * metric.compute(predictions=pred_str, references=label_str) return {"wer": wer}<jupyter_output><empty_output><jupyter_text>Load a Pre-Trained Checkpoint Now let's load the pre-trained Whisper `small` checkpoint. Again, this is trivial through use of 🤗 Transformers!<jupyter_code>from transformers import WhisperForConditionalGeneration, BitsAndBytesConfig model = WhisperForConditionalGeneration.from_pretrained(model_name_or_path, quantization_config=BitsAndBytesConfig(load_in_8bit=True)) # model.hf_device_map - this should be {" ": 0}<jupyter_output><empty_output><jupyter_text>Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generationtransformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generationtransformers.generation_utils.GenerationMixin.generate.suppress_tokens)):<jupyter_code>model.config.forced_decoder_ids = None model.config.suppress_tokens = []<jupyter_output><empty_output><jupyter_text>Post-processing on the modelFinally, we need to apply some post-processing on the 8-bit model to enable training, let's freeze all our layers, and cast all non `int8` layers in `float32` for stability.<jupyter_code>from peft import prepare_model_for_kbit_training model = prepare_model_for_kbit_training(model)<jupyter_output><empty_output><jupyter_text>Apply LoRAHere comes the magic with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`.<jupyter_code>from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") model = get_peft_model(model, config) model.print_trainable_parameters()<jupyter_output>trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203<jupyter_text>We are ONLY using **1%** of the total trainable parameters, thereby performing **Parameter-Efficient Fine-Tuning** Define the Training Configuration In the final step, we define all the parameters related to training. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainertransformers.Seq2SeqTrainingArguments).<jupyter_code>from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="temp", # change to a repo name of your choice per_device_train_batch_size=8, gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size learning_rate=1e-3, warmup_steps=50, num_train_epochs=3, evaluation_strategy="epoch", fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward label_names=["labels"], # same reason as above )<jupyter_output><empty_output><jupyter_text>**Few Important Notes:**1. `remove_unused_columns=False` and `label_names=["labels"]` are required as the PeftModel's forward doesn't have the signature of the base model's forward.2. INT8 training required autocasting. `predict_with_generate` can't be passed to Trainer because it internally calls transformer's `generate` without autocasting leading to errors. 3. Because of point 2, `compute_metrics` shouldn't be passed to `Seq2SeqTrainer` as seen below. (commented out)<jupyter_code>from transformers import Seq2SeqTrainer, TrainerCallback, TrainingArguments, TrainerState, TrainerControl from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) return control trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, # compute_metrics=compute_metrics, tokenizer=processor.feature_extractor, callbacks=[SavePeftModelCallback], ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train() model_name_or_path = "openai/whisper-large-v2" peft_model_id = "smangrul/" + f"{model_name_or_path}-{model.peft_config.peft_type}-colab".replace("/", "-") model.push_to_hub(peft_model_id) print(peft_model_id)<jupyter_output>Uploading the following files to smangrul/openai-whisper-large-v2-LORA-colab: adapter_model.bin,adapter_config.json<jupyter_text>Evaluation and Inference **Important points to note while inferencing**:1. As `predict_with_generate` can't be used, we will write the eval loop with `torch.cuda.amp.autocast()` as shown below. 2. As the base model is frozen, PEFT model sometimes fails ot recognise the language while decoding.Hence, we force the starting tokens to mention the language we are transcribing. This is done via `forced_decoder_ids = processor.get_decoder_prompt_ids(language="Marathi", task="transcribe")` and passing that to the `model.generate` call.3. Please note that [AutoEvaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=mozilla-foundation%2Fcommon_voice_11_0&only_verified=0&task=automatic-speech-recognition&config=mr&split=test&metric=wer) for `mr` language on `common_voice_11_0` has a bug wherein openai's `BasicTextNormalizer` normalizer is used while evaluation leading to degerated output text, an example is shown below:```without normalizer: 'स्विच्चान नरुवित्तीची पद्दत मोठ्या प्रमाणात आमलात आणल्या बसोन या दुपन्याने अनेक राथ प्रवेश केला आहे.'with normalizer: 'स व च च न नर व त त च पद दत म ठ य प रम ण त आमल त आणल य बस न य द पन य न अन क र थ प रव श क ल आह'```Post fixing this bug, we report the 2 metrics for the top model of the leaderboard and the PEFT model:1. `wer`: `wer` without using the `BasicTextNormalizer` as it doesn't cater to most indic languages. This is want we consider as true performance metric.2. `normalized_wer`: `wer` using the `BasicTextNormalizer` to be comparable to the leaderboard metrics.Below are the results:| Model | DrishtiSharma/whisper-large-v2-marathi | smangrul/openai-whisper-large-v2-LORA-colab ||----------------|----------------------------------------|---------------------------------------------|| wer | 35.6457 | 36.1356 || normalized_wer | 13.6440 | 14.0165 |We see that PEFT model's performance is comparable to the fully fine-tuned model on the top of the leaderboard. At the same time, we are able to train the large model in Colab notebook with limited GPU memory and the added advantage of resulting checkpoint being jsut `63` MB.<jupyter_code>from peft import PeftModel, PeftConfig from transformers import WhisperForConditionalGeneration, Seq2SeqTrainer peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda"), max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) metric.add_batch( predictions=decoded_preds, references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute() print(f"{wer=}")<jupyter_output><empty_output><jupyter_text>Using AutomaticSpeechRecognitionPipeline **Few important notes:**1. `pipe()` should be in the autocast context manager `with torch.cuda.amp.autocast():`2. `forced_decoder_ids` specifying the `language` being transcribed should be provided in `generate_kwargs` dict.3. You will get warning along the below lines which is **safe to ignore**.```The model 'PeftModel' is not supported for . Supported models are ['SpeechEncoderDecoderModel', 'Speech2TextForConditionalGeneration', 'SpeechT5ForSpeechToText', 'WhisperForConditionalGeneration', 'Data2VecAudioForCTC', 'HubertForCTC', 'MCTCTForCTC', 'SEWForCTC', 'SEWDForCTC', 'UniSpeechForCTC', 'UniSpeechSatForCTC', 'Wav2Vec2ForCTC', 'Wav2Vec2ConformerForCTC', 'WavLMForCTC'].```<jupyter_code>import torch import gradio as gr from transformers import ( AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor, ) from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" language = "Marathi" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) def transcribe(audio): with torch.cuda.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] return text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text", title="PEFT LoRA + INT8 Whisper Large V2 Marathi", description="Realtime demo for Marathi speech recognition using `PEFT-LoRA+INT8` fine-tuned Whisper Large V2 model.", ) iface.launch(share=True)<jupyter_output><empty_output>
peft/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb/0
{ "file_path": "peft/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb", "repo_id": "peft", "token_count": 7713 }
182
<jupyter_start><jupyter_text>Using PEFT with custom models `peft` allows us to fine-tune models efficiently with LoRA. In this short notebook, we will demonstrate how to train a simple multilayer perceptron (MLP) using `peft`. Imports Make sure that you have the latest version of `peft` installed. To ensure that, run this in your Python environment: python -m pip install --upgrade peft<jupyter_code>import copy import os # ignore bnb warnings os.environ["BITSANDBYTES_NOWELCOME"] = "1" import peft import torch from torch import nn import torch.nn.functional as F torch.manual_seed(0)<jupyter_output><empty_output><jupyter_text>Data We will create a toy dataset consisting of random data for a classification task. There is a little bit of signal in the data, so we should expect that the loss of the model can improve during training.<jupyter_code>X = torch.rand((1000, 20)) y = (X.sum(1) > 10).long() n_train = 800 batch_size = 64 train_dataloader = torch.utils.data.DataLoader( torch.utils.data.TensorDataset(X[:n_train], y[:n_train]), batch_size=batch_size, shuffle=True, ) eval_dataloader = torch.utils.data.DataLoader( torch.utils.data.TensorDataset(X[n_train:], y[n_train:]), batch_size=batch_size, )<jupyter_output><empty_output><jupyter_text>Model As a model, we use a simple multilayer perceptron (MLP). For demonstration purposes, we use a very large number of hidden units. This is totally overkill for this task but it helps to demonstrate the advantages of `peft`. In more realistic settings, models will also be quite large on average, so this is not far-fetched.<jupyter_code>class MLP(nn.Module): def __init__(self, num_units_hidden=2000): super().__init__() self.seq = nn.Sequential( nn.Linear(20, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, 2), nn.LogSoftmax(dim=-1), ) def forward(self, X): return self.seq(X)<jupyter_output><empty_output><jupyter_text>Training Here are just a few training hyper-parameters and a simple function that performs the training and evaluation loop.<jupyter_code>lr = 0.002 batch_size = 64 max_epochs = 30 device = "cpu" if not torch.cuda.is_available() else "cuda" def train(model, optimizer, criterion, train_dataloader, eval_dataloader, epochs): for epoch in range(epochs): model.train() train_loss = 0 for xb, yb in train_dataloader: xb = xb.to(device) yb = yb.to(device) outputs = model(xb) loss = criterion(outputs, yb) train_loss += loss.detach().float() loss.backward() optimizer.step() optimizer.zero_grad() model.eval() eval_loss = 0 for xb, yb in eval_dataloader: xb = xb.to(device) yb = yb.to(device) with torch.no_grad(): outputs = model(xb) loss = criterion(outputs, yb) eval_loss += loss.detach().float() eval_loss_total = (eval_loss / len(eval_dataloader)).item() train_loss_total = (train_loss / len(train_dataloader)).item() print(f"{epoch=:<2} {train_loss_total=:.4f} {eval_loss_total=:.4f}")<jupyter_output><empty_output><jupyter_text>Training without peft Let's start without using `peft` to see what we can expect from the model training.<jupyter_code>module = MLP().to(device) optimizer = torch.optim.Adam(module.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() %time train(module, optimizer, criterion, train_dataloader, eval_dataloader, epochs=max_epochs)<jupyter_output>epoch=0 train_loss_total=0.7970 eval_loss_total=0.6472 epoch=1 train_loss_total=0.5597 eval_loss_total=0.4898 epoch=2 train_loss_total=0.3696 eval_loss_total=0.3323 epoch=3 train_loss_total=0.2364 eval_loss_total=0.5454 epoch=4 train_loss_total=0.2428 eval_loss_total=0.2843 epoch=5 train_loss_total=0.1251 eval_loss_total=0.2514 epoch=6 train_loss_total=0.0952 eval_loss_total=0.2068 epoch=7 train_loss_total=0.0831 eval_loss_total=0.2395 epoch=8 train_loss_total=0.0655 eval_loss_total=0.2524 epoch=9 train_loss_total=0.0380 eval_loss_total=0.3650 epoch=10 train_loss_total=0.0363 eval_loss_total=0.3495 epoch=11 train_loss_total=0.0231 eval_loss_total=0.2360 epoch=12 train_loss_total=0.0162 eval_loss_total=0.2276 epoch=13 train_loss_total=0.0094 eval_loss_total=0.2716 epoch=14 train_loss_total=0.0065 eval_loss_total=0.2237 epoch=15 train_loss_total=0.0054 eval_loss_total=0.2366 epoch=16 train_loss_total=0.0035 eval_loss_total=0.2673 epoch=17 trai[...]<jupyter_text>Okay, so we got an eval loss of ~0.26, which is much better than random. Training with peft Now let's train with `peft`. First we check the names of the modules, so that we can configure `peft` to fine-tune the right modules.<jupyter_code>[(n, type(m)) for n, m in MLP().named_modules()]<jupyter_output><empty_output><jupyter_text>Next we can define the LoRA config. There is nothing special going on here. We set the LoRA rank to 8 and select the layers `seq.0` and `seq.2` to be used for LoRA fine-tuning. As for `seq.4`, which is the output layer, we set it as `module_to_save`, which means it is also trained but no LoRA is applied. *Note: Not all layers types can be fine-tuned with LoRA. At the moment, linear layers, embeddings, `Conv2D` and `transformers.pytorch_utils.Conv1D` are supported.<jupyter_code>config = peft.LoraConfig( r=8, target_modules=["seq.0", "seq.2"], modules_to_save=["seq.4"], )<jupyter_output><empty_output><jupyter_text>Now let's create the `peft` model by passing our initial MLP, as well as the config we just defined, to `get_peft_model`.<jupyter_code>module = MLP().to(device) module_copy = copy.deepcopy(module) # we keep a copy of the original model for later peft_model = peft.get_peft_model(module, config) optimizer = torch.optim.Adam(peft_model.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() peft_model.print_trainable_parameters()<jupyter_output>trainable params: 56,164 || all params: 4,100,164 || trainable%: 1.369798866581922<jupyter_text>Checking the numbers, we see that only ~1% of parameters are actually trained, which is what we like to see.Now let's start the training:<jupyter_code>%time train(peft_model, optimizer, criterion, train_dataloader, eval_dataloader, epochs=max_epochs)<jupyter_output>epoch=0 train_loss_total=0.6918 eval_loss_total=0.6518 epoch=1 train_loss_total=0.5975 eval_loss_total=0.6125 epoch=2 train_loss_total=0.5402 eval_loss_total=0.4929 epoch=3 train_loss_total=0.3886 eval_loss_total=0.3476 epoch=4 train_loss_total=0.2677 eval_loss_total=0.3185 epoch=5 train_loss_total=0.1938 eval_loss_total=0.2294 epoch=6 train_loss_total=0.1712 eval_loss_total=0.2653 epoch=7 train_loss_total=0.1555 eval_loss_total=0.2764 epoch=8 train_loss_total=0.1218 eval_loss_total=0.2104 epoch=9 train_loss_total=0.0846 eval_loss_total=0.1756 epoch=10 train_loss_total=0.0710 eval_loss_total=0.1873 epoch=11 train_loss_total=0.0372 eval_loss_total=0.1539 epoch=12 train_loss_total=0.0350 eval_loss_total=0.2348 epoch=13 train_loss_total=0.0298 eval_loss_total=0.4605 epoch=14 train_loss_total=0.0355 eval_loss_total=0.2208 epoch=15 train_loss_total=0.0099 eval_loss_total=0.1583 epoch=16 train_loss_total=0.0051 eval_loss_total=0.2042 epoch=17 trai[...]<jupyter_text>In the end, we see that the eval loss is very similar to the one we saw earlier when we trained without `peft`. This is quite nice to see, given that we are training a much smaller number of parameters. Check which parameters were updated Finally, just to check that LoRA was applied as expected, we check what original weights were updated what weights stayed the same.<jupyter_code>for name, param in peft_model.base_model.named_parameters(): if "lora" not in name: continue print(f"New parameter {name:<13} | {param.numel():>5} parameters | updated") params_before = dict(module_copy.named_parameters()) for name, param in peft_model.base_model.named_parameters(): if "lora" in name: continue name_before = ( name.partition(".")[-1].replace("original_", "").replace("module.", "").replace("modules_to_save.default.", "") ) param_before = params_before[name_before] if torch.allclose(param, param_before): print(f"Parameter {name_before:<13} | {param.numel():>7} parameters | not updated") else: print(f"Parameter {name_before:<13} | {param.numel():>7} parameters | updated")<jupyter_output>Parameter seq.0.weight | 40000 parameters | not updated Parameter seq.0.bias | 2000 parameters | not updated Parameter seq.2.weight | 4000000 parameters | not updated Parameter seq.2.bias | 2000 parameters | not updated Parameter seq.4.weight | 4000 parameters | not updated Parameter seq.4.bias | 2 parameters | not updated Parameter seq.4.weight | 4000 parameters | updated Parameter seq.4.bias | 2 parameters | updated<jupyter_text>So we can see that apart from the new LoRA weights that were added, only the last layer was updated. Since the LoRA weights and the last layer have comparitively few parameters, this gives us a big boost in efficiency. Sharing the model through Hugging Face Hub Pushing the model to HF Hub With the `peft` model, it is also very easy to push a model the Hugging Face Hub. Below, we demonstrate how it works. It is assumed that you have a valid Hugging Face account and are logged in:<jupyter_code>user = "BenjaminB" # put your user name here model_name = "peft-lora-with-custom-model" model_id = f"{user}/{model_name}" peft_model.push_to_hub(model_id);<jupyter_output><empty_output><jupyter_text>As we can see, the adapter size is only 211 kB. Loading the model from HF Hub Now, it only takes one step to load the model from HF Hub. To do this, we can use `PeftModel.from_pretrained`, passing our base model and the model ID:<jupyter_code>loaded = peft.PeftModel.from_pretrained(module_copy, model_id) type(loaded)<jupyter_output><empty_output><jupyter_text>Let's check that the two models produce the same output:<jupyter_code>y_peft = peft_model(X.to(device)) y_loaded = loaded(X.to(device)) torch.allclose(y_peft, y_loaded)<jupyter_output><empty_output><jupyter_text>Clean up Finally, as a clean up step, you may want to delete the repo.<jupyter_code>from huggingface_hub import delete_repo delete_repo(model_id)<jupyter_output><empty_output>
peft/examples/multilayer_perceptron/multilayer_perceptron_lora.ipynb/0
{ "file_path": "peft/examples/multilayer_perceptron/multilayer_perceptron_lora.ipynb", "repo_id": "peft", "token_count": 4094 }
183
<jupyter_start><jupyter_text>Using VeRA for sequence classification In this example, we fine-tune Roberta on a sequence classification task using VeRA. Imports<jupyter_code>import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_model, VeraConfig, PeftType, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed, AutoConfig from tqdm import tqdm<jupyter_output><empty_output><jupyter_text>Parameters<jupyter_code>batch_size = 128 model_name_or_path = "roberta-base" task = "mrpc" peft_type = PeftType.VERA device = "cuda" num_epochs = 5 # for best results, increase this number rank = 8 # for best results, increase this number max_length = 128 torch.manual_seed(0) peft_config = VeraConfig( task_type="SEQ_CLS", r=rank, d_initial=0.1, target_modules=["query", "value", "intermediate.dense"], save_projection=True, ) head_lr = 1e-2 vera_lr = 2e-2<jupyter_output><empty_output><jupyter_text>Loading data<jupyter_code>if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=max_length) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size )<jupyter_output><empty_output><jupyter_text>Preparing the VeRA model<jupyter_code>model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True, max_length=None) model = get_peft_model(model, peft_config) model.print_trainable_parameters() optimizer = AdamW( [ {"params": [p for n, p in model.named_parameters() if "vera_lambda_" in n], "lr": vera_lr}, {"params": [p for n, p in model.named_parameters() if "classifier" in n], "lr": head_lr}, ] ) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )<jupyter_output><empty_output><jupyter_text>Training<jupyter_code>model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)<jupyter_output>0%| | 0/29 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. 100%|██████████| 29/29 [00:18<00:00, 1.58it/s] 100%|██████████| 4/4 [00:01<00:00, 3.52it/s]<jupyter_text>Share adapters on the 🤗 Hub<jupyter_code>account_id = ... # your Hugging Face Hub account ID model.push_to_hub(f"{account_id}/roberta-large-peft-vera")<jupyter_output><empty_output><jupyter_text>Load adapters from the HubYou can also directly load adapters from the Hub using the commands below:<jupyter_code>import torch from peft import PeftModel, PeftConfig from transformers import AutoTokenizer peft_model_id = f"{account_id}/roberta-large-peft-vera" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Vera model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)<jupyter_output>0%| | 0/4 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 3.14it/s]
peft/examples/sequence_classification/VeRA.ipynb/0
{ "file_path": "peft/examples/sequence_classification/VeRA.ipynb", "repo_id": "peft", "token_count": 2545 }
184
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "0.12.1.dev0" from .auto import ( AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForSequenceClassification, AutoPeftModelForSeq2SeqLM, AutoPeftModelForTokenClassification, AutoPeftModelForQuestionAnswering, AutoPeftModelForFeatureExtraction, ) from .mapping import ( MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING, get_peft_config, get_peft_model, inject_adapter_in_model, ) from .mixed_model import PeftMixedModel from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, PeftModelForQuestionAnswering, PeftModelForFeatureExtraction, get_layer_status, get_model_status, ) from .tuners import ( AdaptionPromptConfig, AdaptionPromptModel, LoraConfig, LoraRuntimeConfig, LoftQConfig, LoraModel, LoHaConfig, LoHaModel, LoKrConfig, LoKrModel, IA3Config, IA3Model, AdaLoraConfig, AdaLoraModel, BOFTConfig, BOFTModel, PrefixEncoder, PrefixTuningConfig, PromptEmbedding, PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType, PromptTuningConfig, PromptTuningInit, MultitaskPromptTuningConfig, MultitaskPromptTuningInit, OFTConfig, OFTModel, PolyConfig, PolyModel, LNTuningConfig, LNTuningModel, VeraConfig, VeraModel, FourierFTConfig, FourierFTModel, XLoraConfig, XLoraModel, HRAConfig, HRAModel, ) from .utils import ( TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, PeftType, TaskType, bloom_model_postprocess_past_key_value, get_peft_model_state_dict, prepare_model_for_kbit_training, replace_lora_weights_loftq, set_peft_model_state_dict, shift_tokens_right, load_peft_weights, cast_mixed_precision_params, ) from .config import PeftConfig, PromptLearningConfig
peft/src/peft/__init__.py/0
{ "file_path": "peft/src/peft/__init__.py", "repo_id": "peft", "token_count": 1084 }
185
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .layer import AdaLoraLayer class SVDQuantLinear(torch.nn.Module, AdaLoraLayer): def __init__( self, base_layer, adapter_name, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, **kwargs, ) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter # for backwards compatibility self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def forward(self, x: torch.Tensor) -> torch.Tensor: result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-5 requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum # TODO: here, the dtype conversion is applied on the *whole expression*, # not the intermediate result, unlike for SVDLinear8bitLT and # SVDLinear4bit, is that correct? if requires_conversion: output = output.to(expected_dtype) result += output return result def __repr__(self) -> str: rep = super().__repr__() return "adalora." + rep
peft/src/peft/tuners/adalora/gptq.py/0
{ "file_path": "peft/src/peft/tuners/adalora/gptq.py", "repo_id": "peft", "token_count": 1173 }
186
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from dataclasses import dataclass, field from typing import Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class FourierFTConfig(PeftConfig): """ This is the configuration class to store the configuration of a [`FourierFTModel`]. Args: n_frequency (`int`): Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d). Additionally, it is the number of trainable parameters required to update each delta W weight. 'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy. With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of FourierFT. The following examples of settings regarding 'n_frequency' can be used as reference for users. For NLU tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results as 'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT. For image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve similar results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT. scaling (`float`): The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to the 'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search process. However, if users want to skip this process, one can refer to the settings in the following scenarios. This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models across all NLU (GLUE) tasks. This parameter can be set to 300.0 for both LLaMA family models for all instruction tuning. This parameter can be set to 300.0 for both ViT-base and ViT-large models across all image classification tasks. random_loc_seed (`int`): Seed for the random location of the frequencies, i.e., the spectral entry matrix. target_modules (`Union[list[str],str]`): List of module names or regex expression of the module names to replace with FourierFT. For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. Only linear layers are supported. fan_in_fan_out (`bool`): Set this to True if the layer to replace stores weight like (fan_in, fan_out). bias (`str`): Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'. modules_to_save (`list[str]`): List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved. layers_to_transform (`Union[list[int],int]`): The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index. layers_pattern (`str`): The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern. n_frequency_pattern (`dict`): The mapping from layer names or regexp expression to n_frequency which are different from the default specified. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 1000`}. init_weights (`bool`): The initialization of the Fourier weights. Set this to False if the spectrum are initialized to a standard normal distribution. Set this to True if the spectrum are initialized to zeros. """ n_frequency: int = field( default=1000, metadata={ "help": ( "Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is" "greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d)." "Additionally, it is the number of trainable parameters required to update each delta W weight." "'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on" "training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy." "With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of FourierFT." "The following examples of settings regarding 'n_frequency' can be used as reference for users. For NLU" "tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results as" "'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT." "For image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve" "similar results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT." ) }, ) scaling: float = field( default=150.0, metadata={ "help": ( "The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to the" "'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search process." "However, if users want to skip this process, one can refer to the settings in the following scenarios." "This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models across all NLU (GLUE) tasks." "This parameter can be set to 300.0 for both LLaMA family models for all instruction tuning." "This parameter can be set to 300.0 for both ViT-base and ViT-large models across all image classification tasks." ) }, ) random_loc_seed: Optional[int] = field( default=777, metadata={"help": "Seed for the random location of the frequencies."} ) fan_in_fan_out: bool = field( default=False, metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"}, ) target_modules: Optional[Union[list[str], str]] = field( default=None, metadata={ "help": ( "List of module names or regex expression of the module names to replace with FourierFT." "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. " "Only linear layers are supported." ) }, ) bias: str = field( default="none", metadata={"help": "Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'."} ) modules_to_save: Optional[list[str]] = field( default=None, metadata={ "help": ( "List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For" " example, in Sequence Classification or Token Classification tasks, the final layer" " `classifier/score` are randomly initialized and as such need to be trainable and saved." ) }, ) layers_to_transform: Optional[Union[list[int], int]] = field( default=None, metadata={ "help": ( "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers" " indexes that are specified inside this list. If a single integer is passed, PEFT will transform only" " the layer at this index." ) }, ) layers_pattern: Optional[str] = field( default=None, metadata={ "help": ( "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer" " pattern is not in the common layers pattern." ) }, ) n_frequency_pattern: Optional[dict] = field( default_factory=dict, metadata={ "help": ( "The mapping from layer names or regexp expression to n_frequency which are different from the default specified." "For example, `{model.decoder.layers.0.encoder_attn.k_proj: 500`}." ) }, ) init_weights: bool = field( default=False, metadata={ "help": ( "The initialization of the Fourier weights. Set this to False if the spectrum should be initialized to a standard normal distribution." "Set this to True if the spectrum should be initialized to zeros." ) }, ) def __post_init__(self): self.peft_type = PeftType.FOURIERFT self.target_modules = ( set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules ) # if target_modules is a regex expression, then layers_to_transform should be None if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.") # if target_modules is a regex expression, then layers_pattern should be None if isinstance(self.target_modules, str) and self.layers_pattern is not None: raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")
peft/src/peft/tuners/fourierft/config.py/0
{ "file_path": "peft/src/peft/tuners/fourierft/config.py", "repo_id": "peft", "token_count": 4021 }
187
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import warnings from typing import Any, Optional import torch from peft.import_utils import is_hqq_available from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.other import transpose from .layer import LoraLayer if is_hqq_available(): from hqq.core.quantize import HQQLinear class HqqLoraLinear(torch.nn.Module, LoraLayer): # Lora implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, use_rslora: bool = False, use_dora: bool = False, **kwargs, ) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self.fan_in_fan_out = False self._active_adapter = adapter_name self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, ) def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter not in self.lora_A.keys(): continue layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} lora_data = self.get_delta_weight(active_adapter) output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output + lora_data else: # handle dora # since output already includes scaling, set it to 1 here weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach() # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = dora_factor.view(-1, 1) * (output + lora_data) if safe_merge and not torch.isfinite(w_data).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop("offload_meta", None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter not in self.lora_A.keys(): continue lora_data = self.get_delta_weight(active_adapter) layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output - lora_data else: weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = output.data / dora_factor.view(-1, 1) - lora_data new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop("offload_meta", None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer def get_delta_weight(self, adapter): return ( transpose( self.lora_B[adapter].weight @ self.lora_A[adapter].weight, False, ) * self.scaling[adapter] ) def _mixed_batch_forward( self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any ) -> torch.Tensor: # This is a special method that handles the case when users pass the argument `adapter_names`. This is an # extra argument that allows mixing different adapters in the same batch at inference time. result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter]) for i, active_adapter in enumerate(unique_adapters): if active_adapter == "__base__": continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear # layer output sub_batch = x[sub_batch_indices_list[i]] output = lora_B(lora_A(dropout(sub_batch))) * scaling if requires_conversion: output = output.to(expected_dtype) result[sub_batch_indices_list[i]] += output return result def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) if not self.use_dora[active_adapter]: output = lora_B(lora_A(dropout(x))) * scaling else: output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter) if requires_conversion: output = output.to(expected_dtype) result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_hqq_available() and isinstance(target_base_layer, HQQLinear): new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs) return new_module
peft/src/peft/tuners/lora/hqq.py/0
{ "file_path": "peft/src/peft/tuners/lora/hqq.py", "repo_id": "peft", "token_count": 5285 }
188
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Based on https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/modules/common/prompt_encoder.py # with some refactor import warnings import torch from .config import PromptEncoderConfig, PromptEncoderReparameterizationType class PromptEncoder(torch.nn.Module): """ The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. Args: config ([`PromptEncoderConfig`]): The configuration of the prompt encoder. Example: ```py >>> from peft import PromptEncoder, PromptEncoderConfig >>> config = PromptEncoderConfig( ... peft_type="P_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ... encoder_hidden_size=768, ... ) >>> prompt_encoder = PromptEncoder(config) ``` **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt encoder. - **mlp_head** (`torch.nn.Sequential`) -- The MLP head of the prompt encoder if `inference_mode=False`. - **lstm_head** (`torch.nn.LSTM`) -- The LSTM head of the prompt encoder if `inference_mode=False` and `encoder_reparameterization_type="LSTM"`. - **token_dim** (`int`) -- The hidden embedding dimension of the base transformer model. - **input_size** (`int`) -- The input size of the prompt encoder. - **output_size** (`int`) -- The output size of the prompt encoder. - **hidden_size** (`int`) -- The hidden size of the prompt encoder. - **total_virtual_tokens** (`int`): The total number of virtual tokens of the prompt encoder. - **encoder_type** (Union[[`PromptEncoderReparameterizationType`], `str`]): The encoder type of the prompt encoder. Input shape: (`batch_size`, `total_virtual_tokens`) Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`) """ def __init__(self, config): super().__init__() self.token_dim = config.token_dim self.input_size = self.token_dim self.output_size = self.token_dim self.hidden_size = config.encoder_hidden_size self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules self.encoder_type = config.encoder_reparameterization_type # embedding self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim) if not config.inference_mode: if self.encoder_type == PromptEncoderReparameterizationType.LSTM: lstm_dropout = config.encoder_dropout num_layers = config.encoder_num_layers # LSTM self.lstm_head = torch.nn.LSTM( input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers, dropout=lstm_dropout, bidirectional=True, batch_first=True, ) self.mlp_head = torch.nn.Sequential( torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size * 2, self.output_size), ) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: encoder_num_layers_default = PromptEncoderConfig.encoder_num_layers if config.encoder_num_layers != encoder_num_layers_default: warnings.warn( f"for {self.encoder_type.value}, the argument `encoder_num_layers` is ignored. " f"Exactly {encoder_num_layers_default} MLP layers are used." ) layers = [ torch.nn.Linear(self.input_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.output_size), ] self.mlp_head = torch.nn.Sequential(*layers) else: raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") def forward(self, indices): input_embeds = self.embedding(indices) if self.encoder_type == PromptEncoderReparameterizationType.LSTM: output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: output_embeds = self.mlp_head(input_embeds) else: raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") return output_embeds
peft/src/peft/tuners/p_tuning/model.py/0
{ "file_path": "peft/src/peft/tuners/p_tuning/model.py", "repo_id": "peft", "token_count": 2476 }
189
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math import warnings from dataclasses import asdict from enum import Enum from typing import Optional, Union import torch import torch.nn as nn from torch.nn.init import _calculate_correct_fan from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import ( TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules, ) from .._buffer_dict import BufferDict from ..tuners_utils import _maybe_include_all_linear_layers from .config import VeraConfig from .layer import Linear, VeraLayer def _kaiming_init( tensor_or_shape: Union[torch.Tensor, tuple[int, ...]], generator: torch.Generator, ) -> torch.Tensor: """ Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG. Args: tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`): Tensor to initialise, or shape of new tensor to create and then initialise. generator: (`torch.Generator`): Generator object that manages the state of the PRNG algorithm in use. Returns: `torch.Tensor`: The initialised tensor. """ if isinstance(tensor_or_shape, tuple): tensor = torch.empty(tensor_or_shape) else: tensor = tensor_or_shape fan = _calculate_correct_fan(tensor, "fan_in") gain = math.sqrt(2) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): return tensor.uniform_(-bound, bound, generator=generator) class VeraModel(BaseTuner): """ Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model. Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. config ([`VeraConfig`]): The configuration of the Vera model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. Returns: `torch.nn.Module`: The Vera model. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import VeraConfig, get_peft_model >>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") >>> config = VeraConfig(r=128) >>> model = get_peft_model(base_model, config) ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`VeraConfig`]): The configuration of the Vera model. """ prefix: str = "vera_lambda" def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _find_dim(self, config) -> tuple[int, int]: """ Finds the largest input and output dimensions across linear layers that have been wrapped with VeRA. This will be used for determining the size of the shared vera_A and vera_B matrices. """ model_config = self.get_model_config(self.model) peft_config = self._prepare_adapter_config(config, model_config) peft_config = _maybe_include_all_linear_layers(peft_config, self.model) largest_shape = None for key, module in self.model.named_modules(): if not self._check_target_module_exists(peft_config, key): continue if isinstance(module, (nn.Linear, Conv1D)): module_shape = tuple(module.weight.shape) if isinstance(module, Conv1D): module_shape = module_shape[::-1] else: continue if largest_shape is None: largest_shape = module_shape continue if module_shape != largest_shape: largest_shape = tuple(max(a, b) for a, b in zip(largest_shape, module_shape)) if largest_shape is None: msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`." raise ValueError(msg) return largest_shape def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None: linear_out_dim, linear_in_dim = self._find_dim(config) # use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them. self.vera_A = BufferDict({}, persistent=config.save_projection) self.vera_B = BufferDict({}, persistent=config.save_projection) # deterministic init of vera_A and vera_B if we know the key generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key) vera_A = _kaiming_init((config.r, linear_in_dim), generator=generator) vera_B = _kaiming_init((linear_out_dim, config.r), generator=generator) self.vera_A[adapter_name] = vera_A self.vera_B[adapter_name] = vera_B def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None: self._init_vera_A_vera_B(config, adapter_name) def _check_new_adapter_config(self, config: VeraConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ # the below todo is copied from LoRA # TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check # does not fully correspond to the error message. if (len(self.peft_config) > 1) and (config.bias != "none"): raise ValueError( f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " "set bias to 'none' for all adapters." ) for existing_config in self.peft_config.values(): if existing_config is config: # skip the current config continue if existing_config.projection_prng_key != config.projection_prng_key: raise ValueError( f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but " f"previous config had {existing_config.projection_prng_key}." ) save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()}) if len(save_project_unique_values) > 1: raise ValueError( "VeRA projection weights must be saved for all adapters or none, but got multiple different values: " f"{save_project_unique_values}" ) @staticmethod def _check_target_module_exists(vera_config, key): return check_target_module_exists(vera_config, key) def _create_and_replace( self, vera_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs, ): if current_key is None: raise ValueError("Current Key shouldn't be `None`") r = vera_config.r bias = hasattr(target, "bias") and target.bias is not None kwargs = { "r": r, "vera_dropout": vera_config.vera_dropout, "fan_in_fan_out": vera_config.fan_in_fan_out, "init_weights": vera_config.init_weights, } kwargs["bias"] = bias # TODO: add quantization support if isinstance(target, Linear): target.update_layer( adapter_name, self.vera_A, self.vera_B, r, vera_config.vera_dropout, vera_config.init_weights, d_initial=vera_config.d_initial, ) else: new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs) if adapter_name not in self.active_adapter: # adding an additional adapter: it is not automatically trainable new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _replace_module(parent, child_name, new_module, child): setattr(parent, child_name, new_module) # It's not necessary to set requires_grad here, as that is handled by # _mark_only_adapters_as_trainable # child layer wraps the original module, unpack it if hasattr(child, "base_layer"): child = child.base_layer if not hasattr(new_module, "base_layer"): new_module.weight = child.weight if hasattr(child, "bias"): new_module.bias = child.bias if getattr(child, "state", None) is not None: if hasattr(new_module, "base_layer"): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) # dispatch to correct device for name, module in new_module.named_modules(): if "vera_" in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for n, p in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == "none": continue if bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "vera_only": for m in model.modules(): if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") @staticmethod def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs): bias = kwargs.pop("bias", False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs["is_target_conv_1d_layer"] = True if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. Currently, only the following modules are supported: " "`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`." ) new_module = Linear( target, vera_A, vera_B, adapter_name, bias=bias, d_initial=vera_config.d_initial, **kwargs, ) return new_module def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: if name == "model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool = False): config_dict = {} for key, value in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} if inference: config["inference_mode"] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != "none": msg = ( f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " "output as the the base model would without adaption." ) warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, VeraLayer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = set( TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]] ) return peft_config def _unload_and_optionally_merge( self, merge=True, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, ): # we cannot use self.prefix as we want to include non-trainable vera parameters key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] desc = "Unloading " + ("and merging " if merge else "") + "model" for key in tqdm(key_list, disable=not progressbar, desc=desc): try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, "base_layer"): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): # save any additional trainable modules part of `modules_to_save` setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str): """ Deletes an existing adapter. Args: adapter_name (str): Name of the adapter to be deleted. """ if adapter_name not in list(self.peft_config.keys()): raise ValueError(f"Adapter {adapter_name} does not exist") del self.peft_config[adapter_name] # we cannot use self.prefix as we want to include non-trainable vera parameters key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] new_adapter = None for key in key_list: _, target, _ = _get_submodules(self.model, key) if isinstance(target, VeraLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload( self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None ): r""" This method merges the Vera layers into the base model. This is needed if someone wants to use the base model as a standalone model. Args: progressbar (`bool`): whether to show a progressbar indicating the unload and merge process safe_merge (`bool`): whether to activate the safe merging check to check if there is any potential Nan in the adapter weights adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() ``` """ return self._unload_and_optionally_merge( progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names ) def unload(self): """ Gets back the base model by removing all the Vera modules without merging. This gives back the original base model. """ return self._unload_and_optionally_merge(merge=False)
peft/src/peft/tuners/vera/model.py/0
{ "file_path": "peft/src/peft/tuners/vera/model.py", "repo_id": "peft", "token_count": 8260 }
190
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest def pytest_addoption(parser): parser.addoption("--regression", action="store_true", default=False, help="run regression tests") def pytest_configure(config): config.addinivalue_line("markers", "regression: mark regression tests") def pytest_collection_modifyitems(config, items): if config.getoption("--regression"): return skip_regression = pytest.mark.skip(reason="need --regression option to run regression tests") for item in items: if "regression" in item.keywords: item.add_marker(skip_regression)
peft/tests/conftest.py/0
{ "file_path": "peft/tests/conftest.py", "repo_id": "peft", "token_count": 356 }
191
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from peft import LoraConfig, get_peft_model_state_dict, inject_adapter_in_model from peft.utils import ModulesToSaveWrapper class DummyModel(torch.nn.Module): def __init__(self): super().__init__() self.embedding = torch.nn.Embedding(10, 10) self.linear = torch.nn.Linear(10, 10) self.lm_head = torch.nn.Linear(10, 10) def forward(self, input_ids): x = self.embedding(input_ids) x = self.linear(x) x = self.lm_head(x) return x class TestPeft(unittest.TestCase): def setUp(self): self.model = DummyModel() lora_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", target_modules=["linear"], ) self.model = inject_adapter_in_model(lora_config, self.model) def test_inject_adapter_in_model(self): dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]) _ = self.model(dummy_inputs) for name, module in self.model.named_modules(): if name == "linear": assert hasattr(module, "lora_A") assert hasattr(module, "lora_B") def test_get_peft_model_state_dict(self): peft_state_dict = get_peft_model_state_dict(self.model) for key in peft_state_dict.keys(): assert "lora" in key def test_modules_to_save(self): self.model = DummyModel() lora_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", target_modules=["linear"], modules_to_save=["embedding"], ) self.model = inject_adapter_in_model(lora_config, self.model) for name, module in self.model.named_modules(): if name == "linear": assert hasattr(module, "lora_A") assert hasattr(module, "lora_B") elif name == "embedding": assert isinstance(module, ModulesToSaveWrapper) state_dict = get_peft_model_state_dict(self.model) assert "embedding.weight" in state_dict.keys() assert hasattr(self.model.embedding, "weight")
peft/tests/test_low_level_api.py/0
{ "file_path": "peft/tests/test_low_level_api.py", "repo_id": "peft", "token_count": 1280 }
192
# Changelog ### Aug 8, 2024 * Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225) ### July 28, 2024 * Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256. * Release 1.0.8 ### July 26, 2024 * More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models | model |top1 |top1_err|top5 |top5_err|param_count|img_size| |--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| | [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 | | [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 | | [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 | | [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 | | [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 | | [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 | | [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 | | [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 | * Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines) | model |top1 |top1_err|top5 |top5_err|param_count|img_size| |--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| | [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 | | [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 | | [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 | | [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 | | [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 | | [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 | * Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation. * Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints * Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same. * Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k |model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct| |----------------------------|------|--------|------|--------|-----------|--------|--------| |test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 | |test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 | |test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 | |test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 | |test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 | |test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 | * Fix vit reg token init, thanks [Promisery](https://github.com/Promisery) * Other misc fixes ### June 24, 2024 * 3 more MobileNetV4 hyrid weights with different MQA weight init scheme | model |top1 |top1_err|top5 |top5_err|param_count|img_size| |--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| | [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644 |96.892 |3.108 |37.76 |448 | | [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010 |96.702 |3.298 |37.76 |384 | | [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |83.394|16.606 |96.760|3.240 |11.07 |448 | | [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |82.968|17.032 |96.474|3.526 |11.07 |384 | | [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |82.492|17.508 |96.278|3.722 |11.07 |320 | | [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |81.446|18.554 |95.704|4.296 |11.07 |256 | * florence2 weight loading in DaViT model ### June 12, 2024 * MobileNetV4 models and initial set of `timm` trained weights added: | model |top1 |top1_err|top5 |top5_err|param_count|img_size| |--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| | [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734 |96.936 |3.064 |37.76 |448 | | [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200 |96.770 |3.230 |37.76 |384 | | [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608 |96.622 |3.378 |32.59 |448 | | [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048 |96.266 |3.734 |32.59 |384 | | [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 | | [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 | | [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 | | [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 | | [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 | | [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 | | [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 | | [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 | | [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 | | [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 | | [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |74.616|25.384 |92.072|7.928 |3.77 |256 | | [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 | | [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |73.756|26.244 |91.422|8.578 |3.77 |224 | | [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 | * Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support). * ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support). * OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d. ### May 14, 2024 * Support loading PaliGemma jax weights into SigLIP ViT models with average pooling. * Add Hiera models from Meta (https://github.com/facebookresearch/hiera). * Add `normalize=` flag for transorms, return non-normalized torch.Tensor with original dytpe (for `chug`) * Version 1.0.3 release ### May 11, 2024 * `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base. | model | top1 | top5 | param_count | img_size | | -------------------------------------------------- | ------ | ------ | ----------- | -------- | | [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 | | [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 85.418 | 97.48 | 60.4 | 256 | | [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k) | 84.322 | 96.812 | 63.95 | 256 | | [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k) | 83.906 | 96.684 | 60.23 | 256 | | [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k) | 83.866 | 96.67 | 86.43 | 256 | | [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k) | 83.81 | 96.824 | 38.74 | 256 | | [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k) | 83.706 | 96.616 | 60.4 | 256 | | [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k) | 83.628 | 96.544 | 60.4 | 256 | | [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k) | 83.47 | 96.622 | 38.88 | 256 | | [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k) | 83.462 | 96.548 | 38.88 | 256 | | [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k) | 82.514 | 96.262 | 22.52 | 256 | | [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k) | 80.256 | 95.360 | 13.42 | 256 | | [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k) | 80.072 | 95.136 | 15.25 | 256 | | [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 | | [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 60.4 | 256 | * AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949 * `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods. * 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests. * Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used. ### April 11, 2024 * Prepping for a long overdue 1.0 release, things have been stable for a while now. * Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`) * Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or direclty. ```python model = timm.create_model('vit_base_patch16_224') final_feat, intermediates = model.forward_intermediates(input) output = model.forward_head(final_feat) # pooling + classifier head print(final_feat.shape) torch.Size([2, 197, 768]) for f in intermediates: print(f.shape) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) torch.Size([2, 768, 14, 14]) print(output.shape) torch.Size([2, 1000]) ``` ```python model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,)) output = model(torch.randn(2, 3, 512, 512)) for o in output: print(o.shape) torch.Size([2, 768, 32, 32]) torch.Size([2, 768, 32, 32]) ``` * TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst) ### Feb 19, 2024 * Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT * HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun) * Removed setup.py, moved to pyproject.toml based build supported by PDM * Add updated model EMA impl using _for_each for less overhead * Support device args in train script for non GPU devices * Other misc fixes and small additions * Min supported Python version increased to 3.8 * Release 0.9.16 ### Jan 8, 2024 Datasets & transform refactoring * HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`) * Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset * Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm * Make input & target column/field keys consistent across datasets and pass via args * Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset * Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project * Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args * Allow train without validation set (`--val-split ''`) in train script * Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding ### Nov 23, 2023 * Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun) * Fix Python 3.7 compat, will be dropping support for it soon * Other misc fixes * Release 0.9.12 ### Nov 20, 2023 * Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation. * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035 * Updated imagenet eval and test set csv files with latest models * `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916) * 0.9.11 release ### Nov 3, 2023 * [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added * DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193) * Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) * Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w) * ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge` * 0.9.9 release ### Oct 20, 2023 * [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`. * Great potential for fine-tune and downstream feature use. * Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588) * Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm) * Add patch resizing support (on pretrained weight load) to Swin models * 0.9.8 release pending ### Sep 1, 2023 * TinyViT added by [SeeFun](https://github.com/seefun) * Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10 * 0.9.7 release ### Aug 28, 2023 * Add dynamic img size support to models in `vision_transformer.py`, `vision_transformer_hybrid.py`, `deit.py`, and `eva.py` w/o breaking backward compat. * Add `dynamic_img_size=True` to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass). * Add `dynamic_img_pad=True` to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass). * Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf. * Existing method of resizing position embedding by passing different `img_size` (interpolate pretrained embed weights once) on creation still works. * Existing method of changing `patch_size` (resize pretrained patch_embed weights once) on creation still works. * Example validation cmd `python validate.py /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True` ### Aug 25, 2023 * Many new models since last release * FastViT - https://arxiv.org/abs/2303.14189 * MobileOne - https://arxiv.org/abs/2206.04040 * InceptionNeXt - https://arxiv.org/abs/2303.16900 * RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen) * GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang) * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun) * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun) * Add `--reparam` arg to `benchmark.py`, `onnx_export.py`, and `validate.py` to trigger layer reparameterization / fusion for models with any one of `reparameterize()`, `switch_to_deploy()` or `fuse()` * Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT * Preparing 0.9.6 'back to school' release ### Aug 11, 2023 * Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights * Example validation cmd to test w/ non-square resize `python validate.py /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320` ### Aug 3, 2023 * Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun) * Fix `selecsls*` model naming regression * Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize) * v0.9.5 release prep ### July 27, 2023 * Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of. * RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm) * I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * Add support for alternative feat extraction methods and -ve indices to EfficientNet * Add NAdamW optimizer * Misc fixes ### May 11, 2023 * `timm` 0.9 released, transition from 0.8.xdev releases ### May 10, 2023 * Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm` * DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue) * FB MAE vit feature backbone weights added * OpenCLIP DataComp-XL L/14 feat backbone weights added * MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54) * Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. * Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization) * Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers * bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit` * Misc cleanup and fixes * Final testing before switching to a 0.9 and bringing `timm` out of pre-release state ### April 27, 2023 * 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs * Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes. ### April 21, 2023 * Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag) * More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned) * Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune * Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). ### April 12, 2023 * Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch. * Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models. * fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable * Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed. ### April 5, 2023 * ALL ResNet models pushed to Hugging Face Hub with multi-weight support * All past `timm` trained weights added with recipe based tags to differentiate * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available * Add torchvision v2 recipe weights to existing torchvision originals * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison * New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288 * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320 ### March 31, 2023 * Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models. | model |top1 |top5 |img_size|param_count|gmacs |macts | |----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------| | [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 |88.312|98.578|384 |200.13 |101.11|126.74| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 |87.968|98.47 |320 |200.13 |70.21 |88.02 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 |87.138|98.212|384 |88.59 |45.21 |84.49 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k |86.344|97.97 |256 |88.59 |20.09 |37.55 | * Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks. | model |top1 |top5 |param_count|img_size| |----------------------------------------------------|------|------|-----------|--------| | [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08 |448 | | eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |89.946|99.01 |305.08 |448 | | eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 | | eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 | | eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 | | eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 | | eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 | | eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 | | eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 | | eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 | | eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 | | eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 | | eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 | | eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 | | eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 | | eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 | * Multi-weight and HF hub for DeiT and MLP-Mixer based models ### March 22, 2023 * More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py` * Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs. * FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint * RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful. * More ImageNet-12k pretrained and 1k fine-tuned `timm` weights: * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288 * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288 * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288 * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away) * Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added... * Minor bug fixes and improvements. ### Feb 26, 2023 * Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup) * Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) * 0.8.15dev0 ### Feb 20, 2023 * Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_lage_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune * 0.8.13dev0 pypi release for latest changes w/ move to huggingface org ### Feb 16, 2023 * `safetensor` checkpoint support added * Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block * Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start) * Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675) * gradient checkpointing works with `features_only=True` ### Feb 7, 2023 * New inference benchmark numbers added in [results](results/) folder. * Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256 * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384 * Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54). * Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT * Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`. * Minor updates to EfficientFormer. * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required. * Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/). * Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm` * Update `inference.py` to use, try: `python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5` * Ready for 0.8.10 pypi pre-release (final testing). ### Jan 20, 2023 * Add two convnext 12k -> 1k fine-tunes at 384x384 * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384 * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384 * Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### Jan 11, 2023 * Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags) * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288 (previously released) * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288 * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288 ### Jan 6, 2023 * Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line * `train.py /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu` * `train.py /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12` * Cleanup some popular models to better support arg passthrough / merge with model configs, more to go. ### Jan 5, 2023 * ConvNeXt-V2 models and weights added to existing `convnext.py` * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) @dataclass ### Dec 23, 2022 🎄☃ * Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP * Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) * More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) * More ImageNet-12k (subset of 22k) pretrain models popping up: * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 ### Dec 8, 2022 * Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) * original source: https://github.com/baaivision/EVA | model | top1 | param_count | gmac | macts | hub | |:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| | eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 6, 2022 * Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. * original source: https://github.com/baaivision/EVA * paper: https://arxiv.org/abs/2211.07636 | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| | eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 5, 2022 * Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` * vision_transformer, maxvit, convnext are the first three model impl w/ support * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling * bugs are likely, but I need feedback so please try it out * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) * Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument * Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output * Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models | model | top1 | param_count | gmac | macts | hub | |:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| | vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | | vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | | vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | | vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | * Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| | maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | | maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | | maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | | maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | | maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | | maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | | maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | | maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | | maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | | maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | | maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | | maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | | maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | | maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | | maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | | maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | ### Oct 15, 2022 * Train and validation script enhancements * Non-GPU (ie CPU) device support * SLURM compatibility for train script * HF datasets support (via ReaderHfds) * TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) * in_chans !=3 support for scripts / loader * Adan optimizer * Can enable per-step LR scheduling via args * Dataset 'parsers' renamed to 'readers', more descriptive of purpose * AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` * main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds * master -> main branch rename ### Oct 10, 2022 * More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. ### Sept 23, 2022 * LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) * vit_base_patch32_224_clip_laion2b * vit_large_patch14_224_clip_laion2b * vit_huge_patch14_224_clip_laion2b * vit_giant_patch14_224_clip_laion2b ### Sept 7, 2022 * Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future * Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 * Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) ### Aug 29, 2022 * MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) ### Aug 26, 2022 * CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit * Initial CoAtNet and MaxVit timm pretrained weights (working on more): * `coatnet_nano_rw_224` - 81.7 @ 224 (T) * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks * `coatnet_bn_0_rw_224` - 82.4 (T) * `maxvit_nano_rw_256` - 82.9 @ 256 (T) * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) * `coatnet_1_rw_224` - 83.6 @ 224 (G) * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained * GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) * MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) * EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) * PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) * 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) ### Aug 15, 2022 * ConvNeXt atto weights added * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 ### Aug 5, 2022 * More custom ConvNeXt smaller model defs with weights * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 * Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) ### July 28, 2022 * Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! ### July 27, 2022 * All runtime benchmark and validation result csv files are finally up-to-date! * A few more weights & model defs added: * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 * `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! * Add output_stride=8 and 16 support to ConvNeXt (dilation) * deit3 models not being able to resize pos_emb fixed * Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) ### July 8, 2022 More models, more fixes * Official research models (w/ weights) added: * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) * MobileViT-V2 from (https://github.com/apple/ml-cvnets) * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) * My own models: * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. * My own model weight results (all ImageNet-1k training) * `resnet10t` - 66.5 @ 176, 68.3 @ 224 * `resnet14t` - 71.3 @ 176, 72.3 @ 224 * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 * `darknet53` - 80.0 @ 256, 80.5 @ 288 * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 * `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. * Hugging Face Hub support fixes verified, demo notebook TBA * Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. * Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) * Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` * Numerous bug fixes * Currently testing for imminent PyPi 0.6.x release * LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? * ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... ### May 13, 2022 * Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. * Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. * More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) * Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) * Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials * Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) ### May 2, 2022 * Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool * Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) * `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). ### April 22, 2022 * `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). * Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 ### March 23, 2022 * Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) * `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. ### March 21, 2022 * Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. * Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) * `regnety_040` - 82.3 @ 224, 82.96 @ 288 * `regnety_064` - 83.0 @ 224, 83.65 @ 288 * `regnety_080` - 83.17 @ 224, 83.86 @ 288 * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) * `xception41p` - 82 @ 299 (timm pre-act) * `xception65` - 83.17 @ 299 * `xception65p` - 83.14 @ 299 (timm pre-act) * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 * HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) * SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. * Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 * MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets * PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer * VOLO models w/ weights adapted from https://github.com/sail-sg/volo * Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc * Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception * Grouped conv support added to EfficientNet family * Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler * Gradient checkpointing support added to many models * `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` * All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` ### Feb 2, 2022 * [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) * I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. ### Jan 14, 2022 * Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... * Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features * Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... * `mnasnet_small` - 65.6 top-1 * `mobilenetv2_050` - 65.9 * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 * `semnasnet_075` - 73 * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 * TinyNet models added by [rsomani95](https://github.com/rsomani95) * LCNet added via MobileNetV3 architecture ### Jan 5, 2023 * ConvNeXt-V2 models and weights added to existing `convnext.py` * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) ### Dec 23, 2022 🎄☃ * Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP * Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) * More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) * More ImageNet-12k (subset of 22k) pretrain models popping up: * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 ### Dec 8, 2022 * Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) * original source: https://github.com/baaivision/EVA | model | top1 | param_count | gmac | macts | hub | |:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| | eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 6, 2022 * Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. * original source: https://github.com/baaivision/EVA * paper: https://arxiv.org/abs/2211.07636 | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| | eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 5, 2022 * Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` * vision_transformer, maxvit, convnext are the first three model impl w/ support * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling * bugs are likely, but I need feedback so please try it out * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) * Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument * Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output * Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models | model | top1 | param_count | gmac | macts | hub | |:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| | vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | | vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | | vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | | vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | * Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| | maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | | maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | | maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | | maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | | maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | | maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | | maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | | maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | | maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | | maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | | maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | | maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | | maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | | maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | | maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | | maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | ### Oct 15, 2022 * Train and validation script enhancements * Non-GPU (ie CPU) device support * SLURM compatibility for train script * HF datasets support (via ReaderHfds) * TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) * in_chans !=3 support for scripts / loader * Adan optimizer * Can enable per-step LR scheduling via args * Dataset 'parsers' renamed to 'readers', more descriptive of purpose * AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` * main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds * master -> main branch rename ### Oct 10, 2022 * More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. ### Sept 23, 2022 * LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) * vit_base_patch32_224_clip_laion2b * vit_large_patch14_224_clip_laion2b * vit_huge_patch14_224_clip_laion2b * vit_giant_patch14_224_clip_laion2b ### Sept 7, 2022 * Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future * Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 * Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) ### Aug 29, 2022 * MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) ### Aug 26, 2022 * CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit * Initial CoAtNet and MaxVit timm pretrained weights (working on more): * `coatnet_nano_rw_224` - 81.7 @ 224 (T) * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks * `coatnet_bn_0_rw_224` - 82.4 (T) * `maxvit_nano_rw_256` - 82.9 @ 256 (T) * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) * `coatnet_1_rw_224` - 83.6 @ 224 (G) * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained * GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) * MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) * EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) * PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) * 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) ### Aug 15, 2022 * ConvNeXt atto weights added * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 ### Aug 5, 2022 * More custom ConvNeXt smaller model defs with weights * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 * Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) ### July 28, 2022 * Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! ### July 27, 2022 * All runtime benchmark and validation result csv files are up-to-date! * A few more weights & model defs added: * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 * `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! * Add output_stride=8 and 16 support to ConvNeXt (dilation) * deit3 models not being able to resize pos_emb fixed * Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) ### July 8, 2022 More models, more fixes * Official research models (w/ weights) added: * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) * MobileViT-V2 from (https://github.com/apple/ml-cvnets) * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) * My own models: * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. * My own model weight results (all ImageNet-1k training) * `resnet10t` - 66.5 @ 176, 68.3 @ 224 * `resnet14t` - 71.3 @ 176, 72.3 @ 224 * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 * `darknet53` - 80.0 @ 256, 80.5 @ 288 * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 * `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. * Hugging Face Hub support fixes verified, demo notebook TBA * Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. * Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) * Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` * Numerous bug fixes * Currently testing for imminent PyPi 0.6.x release * LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? * ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... ### May 13, 2022 * Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. * Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. * More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) * Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) * Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials * Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) ### May 2, 2022 * Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool * Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) * `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). ### April 22, 2022 * `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). * Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 ### March 23, 2022 * Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) * `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. ### March 21, 2022 * Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. * Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) * `regnety_040` - 82.3 @ 224, 82.96 @ 288 * `regnety_064` - 83.0 @ 224, 83.65 @ 288 * `regnety_080` - 83.17 @ 224, 83.86 @ 288 * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) * `xception41p` - 82 @ 299 (timm pre-act) * `xception65` - 83.17 @ 299 * `xception65p` - 83.14 @ 299 (timm pre-act) * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 * HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) * SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. * Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 * MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets * PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer * VOLO models w/ weights adapted from https://github.com/sail-sg/volo * Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc * Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception * Grouped conv support added to EfficientNet family * Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler * Gradient checkpointing support added to many models * `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` * All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` ### Feb 2, 2022 * [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) * I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. ### Jan 14, 2022 * Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... * Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features * Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... * `mnasnet_small` - 65.6 top-1 * `mobilenetv2_050` - 65.9 * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 * `semnasnet_075` - 73 * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 * TinyNet models added by [rsomani95](https://github.com/rsomani95) * LCNet added via MobileNetV3 architecture
pytorch-image-models/hfdocs/source/changes.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/changes.mdx", "repo_id": "pytorch-image-models", "token_count": 43611 }
193
# EfficientNet (Knapsack Pruned) **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). This collection consists of pruned EfficientNet models. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ``` @misc{aflalo2020knapsack, title={Knapsack Pruning with Inner Distillation}, author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, year={2020}, eprint={2002.08258}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Pruned Paper: Title: Knapsack Pruning with Inner Distillation URL: https://paperswithcode.com/paper/knapsack-pruning-with-inner-distillation Models: - Name: efficientnet_b1_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 489653114 Parameters: 6330000 File Size: 25595162 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1_pruned Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1208 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 93.84% - Name: efficientnet_b2_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 878133915 Parameters: 8310000 File Size: 33555005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2_pruned Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1219 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.86% - Name: efficientnet_b3_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 1239590641 Parameters: 9860000 File Size: 39770812 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3_pruned Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1230 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.86% Top 5 Accuracy: 95.24% -->
pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx", "repo_id": "pytorch-image-models", "token_count": 2777 }
194
# (Legacy) SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('legacy_seresnet101', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnet101`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('legacy_seresnet101', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnet101 In Collection: Legacy SE ResNet Metadata: FLOPs: 9762614000 Parameters: 49330000 File Size: 197822624 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet101 LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L426 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.38% Top 5 Accuracy: 94.26% - Name: legacy_seresnet152 In Collection: Legacy SE ResNet Metadata: FLOPs: 14553578160 Parameters: 66819999 File Size: 268033864 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet152 LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.67% Top 5 Accuracy: 94.38% - Name: legacy_seresnet18 In Collection: Legacy SE ResNet Metadata: FLOPs: 2328876024 Parameters: 11780000 File Size: 47175663 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet18 LR: 0.6 Epochs: 100 Layers: 18 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 71.74% Top 5 Accuracy: 90.34% - Name: legacy_seresnet34 In Collection: Legacy SE ResNet Metadata: FLOPs: 4706201004 Parameters: 21960000 File Size: 87958697 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet34 LR: 0.6 Epochs: 100 Layers: 34 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.79% Top 5 Accuracy: 92.13% - Name: legacy_seresnet50 In Collection: Legacy SE ResNet Metadata: FLOPs: 4974351024 Parameters: 28090000 File Size: 112611220 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Interpolation: bilinear Minibatch Size: 1024 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L419 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.64% Top 5 Accuracy: 93.74% -->
pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx", "repo_id": "pytorch-image-models", "token_count": 3701 }
195
# (Tensorflow) MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_mixnet_l', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_mixnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TF MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: tf_mixnet_l In Collection: TF MixNet Metadata: FLOPs: 688674516 Parameters: 7330000 File Size: 29620756 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1720 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.78% Top 5 Accuracy: 94.0% - Name: tf_mixnet_m In Collection: TF MixNet Metadata: FLOPs: 416633502 Parameters: 5010000 File Size: 20310871 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1709 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.96% Top 5 Accuracy: 93.16% - Name: tf_mixnet_s In Collection: TF MixNet Metadata: FLOPs: 302587678 Parameters: 4130000 File Size: 16738218 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1698 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.68% Top 5 Accuracy: 92.64% -->
pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx", "repo_id": "pytorch-image-models", "token_count": 2359 }
196
[build-system] requires = ["pdm-backend"] build-backend = "pdm.backend" [project] name = "timm" authors = [ {name = "Ross Wightman", email = "[email protected]"}, ] description = "PyTorch Image Models" readme = "README.md" requires-python = ">=3.8" keywords = ["pytorch", "image-classification"] license = {text = "Apache-2.0"} classifiers = [ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3.12', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ] dependencies = [ 'torch', 'torchvision', 'pyyaml', 'huggingface_hub', 'safetensors', ] dynamic = ["version"] [project.urls] homepage = "https://github.com/huggingface/pytorch-image-models" documentation = "https://huggingface.co/docs/timm/en/index" repository = "https://github.com/huggingface/pytorch-image-models" [tool.pdm.dev-dependencies] test = [ 'pytest', 'pytest-timeout', 'pytest-xdist', 'pytest-forked', 'expecttest', ] [tool.pdm.version] source = "file" path = "timm/version.py" [tool.pytest.ini_options] testpaths = ['tests'] markers = [ "base: marker for model tests using the basic setup", "cfg: marker for model tests checking the config", "torchscript: marker for model tests using torchscript", "features: marker for model tests checking feature extraction", "fxforward: marker for model tests using torch fx (only forward)", "fxbackward: marker for model tests using torch fx (only backward)", ]
pytorch-image-models/pyproject.toml/0
{ "file_path": "pytorch-image-models/pyproject.toml", "repo_id": "pytorch-image-models", "token_count": 800 }
197
""" Optimzier Tests These tests were adapted from PyTorch' optimizer tests. """ import math import pytest import functools from copy import deepcopy import torch from torch.testing._internal.common_utils import TestCase from torch.nn import Parameter from timm.scheduler import PlateauLRScheduler from timm.optim import create_optimizer_v2 import importlib import os torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cuda') # HACK relying on internal PyTorch test functionality for comparisons that I don't want to write torch_tc = TestCase() def _test_basic_cases_template(weight, bias, input, constructor, scheduler_constructors): weight = Parameter(weight) bias = Parameter(bias) input = Parameter(input) optimizer = constructor(weight, bias) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) # to check if the optimizer can be printed as a string optimizer.__repr__() def fn(): optimizer.zero_grad() y = weight.mv(input) if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device(): y = y.cuda(bias.get_device()) loss = (y + bias).pow(2).sum() loss.backward() return loss initial_value = fn().item() for _i in range(200): for scheduler in schedulers: if isinstance(scheduler, PlateauLRScheduler): val_loss = fn() scheduler.step(val_loss) else: scheduler.step() optimizer.step(fn) assert fn().item() < initial_value def _test_state_dict(weight, bias, input, constructor): weight = Parameter(weight) bias = Parameter(bias) input = Parameter(input) def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input_device if weight.device.type != 'cpu' else input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = constructor(weight, bias) fn = functools.partial(fn_base, optimizer, weight, bias) # Prime the optimizer for _i in range(20): optimizer.step(fn) # Clone the weights and construct new optimizer for them with torch.no_grad(): weight_c = Parameter(weight.clone().detach()) bias_c = Parameter(bias.clone().detach()) optimizer_c = constructor(weight_c, bias_c) fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) # Load state dict state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_c.load_state_dict(state_dict_c) # Run both optimizations in parallel for _i in range(20): optimizer.step(fn) optimizer_c.step(fn_c) torch_tc.assertEqual(weight, weight_c) torch_tc.assertEqual(bias, bias_c) # Make sure state dict is deterministic with equal but not identical parameters torch_tc.assertEqual(optimizer.state_dict(), optimizer_c.state_dict()) # Make sure repeated parameters have identical representation in state dict optimizer_c.param_groups.extend(optimizer_c.param_groups) torch_tc.assertEqual(optimizer.state_dict()['param_groups'][-1], optimizer_c.state_dict()['param_groups'][-1]) # Check that state dict can be loaded even when we cast parameters # to a different type and move to a different device. if torch_device == 'cpu': return elif torch_device == 'cuda' and not torch.cuda.is_available(): return with torch.no_grad(): input_device = Parameter(input.clone().detach().float().to(torch_device)) weight_device = Parameter(weight.clone().detach().to(torch_device)) bias_device = Parameter(bias.clone().detach().to(torch_device)) optimizer_device = constructor(weight_device, bias_device) fn_device = functools.partial(fn_base, optimizer_device, weight_device, bias_device) state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_device.load_state_dict(state_dict_c) # Make sure state dict wasn't modified torch_tc.assertEqual(state_dict, state_dict_c) for _i in range(20): optimizer.step(fn) optimizer_device.step(fn_device) torch_tc.assertEqual(weight, weight_device) torch_tc.assertEqual(bias, bias_device) # validate deepcopy() copies all public attributes def getPublicAttr(obj): return set(k for k in obj.__dict__ if not k.startswith('_')) assert getPublicAttr(optimizer) == getPublicAttr(deepcopy(optimizer)) def _test_basic_cases(constructor, scheduler_constructors=None): if scheduler_constructors is None: scheduler_constructors = [] _test_state_dict( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor ) _test_basic_cases_template( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor, scheduler_constructors ) # non-contiguous parameters _test_basic_cases_template( torch.randn(10, 5, 2)[..., 0], torch.randn(10, 2)[..., 0], torch.randn(5), constructor, scheduler_constructors ) # CUDA if torch_device == 'cpu': return elif torch_device == 'cuda' and not torch.cuda.is_available(): return _test_basic_cases_template( torch.randn(10, 5).to(torch_device), torch.randn(10).to(torch_device), torch.randn(5).to(torch_device), constructor, scheduler_constructors ) def _test_model(optimizer, params, device=torch.device('cpu')): weight = torch.tensor( [[-0.2109, -0.4976], [-0.1413, -0.3420], [-0.2524, 0.6976]], device=device, requires_grad=True) bias = torch.tensor([-0.1085, -0.2979, 0.6892], device=device, requires_grad=True) weight2 = torch.tensor([[-0.0508, -0.3941, -0.2843]], device=device, requires_grad=True) bias2 = torch.tensor([-0.0711], device=device, requires_grad=True) input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], device=device).reshape(3, 2) model = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Sigmoid(), torch.nn.Linear(3, 1), torch.nn.Sigmoid()) model.to(device) pretrained_dict = model.state_dict() pretrained_dict['0.weight'] = weight pretrained_dict['0.bias'] = bias pretrained_dict['2.weight'] = weight2 pretrained_dict['2.bias'] = bias2 model.load_state_dict(pretrained_dict) optimizer = create_optimizer_v2(model, opt=optimizer, **params) prev_loss = float('inf') for i in range(20): optimizer.zero_grad() output = model(input) loss = output.sum() loss.backward() loss = loss.item() assert loss < prev_loss prev_loss = loss optimizer.step() def rosenbrock(tensor): x, y = tensor return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 def drosenbrock(tensor): x, y = tensor return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) def _test_rosenbrock(constructor, scheduler_constructors=None): if scheduler_constructors is None: scheduler_constructors = [] params_t = torch.tensor([1.5, 1.5]) params = Parameter(params_t) optimizer = constructor([params]) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) solution = torch.tensor([1, 1]) initial_dist = params.clone().detach().dist(solution) def eval(params, w): # Depending on w, provide only the x or y gradient optimizer.zero_grad() loss = rosenbrock(params) loss.backward() grad = drosenbrock(params.clone().detach()) # NB: We torture test the optimizer by returning an # uncoalesced sparse tensor if w: i = torch.LongTensor([[0, 0]]) x = grad[0] v = torch.tensor([x / 4., x - x / 4.]) else: i = torch.LongTensor([[1, 1]]) y = grad[1] v = torch.tensor([y - y / 4., y / 4.]) x = torch.sparse.DoubleTensor(i, v, torch.Size([2])).to(dtype=v.dtype) with torch.no_grad(): params.grad = x.to_dense() return loss for i in range(2000): # Do cyclic coordinate descent w = i % 2 optimizer.step(functools.partial(eval, params, w)) for scheduler in schedulers: if isinstance(scheduler, PlateauLRScheduler): scheduler.step(rosenbrock(params)) else: scheduler.step() torch_tc.assertLessEqual(params.clone().detach().dist(solution), initial_dist) def _build_params_dict(weight, bias, **kwargs): return [{'params': [weight]}, dict(params=[bias], **kwargs)] def _build_params_dict_single(weight, bias, **kwargs): return [dict(params=bias, **kwargs)] #@pytest.mark.parametrize('optimizer', ['sgd', 'momentum']) # FIXME momentum variant frequently fails in GitHub runner, but never local after many attempts @pytest.mark.parametrize('optimizer', ['sgd']) def test_sgd(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=1e-2), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-2), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-2), optimizer) ) # _test_basic_cases( # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10)] # ) # _test_basic_cases( # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="linear")] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="constant")] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), # lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4)] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), # lambda opt: ReduceLROnPlateau(opt)] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.99, step_size=10), # lambda opt: ExponentialLR(opt, gamma=0.99), # lambda opt: ReduceLROnPlateau(opt)] # ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1, weight_decay=.1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['adamw', 'adam', 'nadam', 'adamax']) def test_adam(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['adabelief']) def test_adabelief(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['radam', 'radabelief']) def test_rectified(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['adadelta', 'adagrad']) def test_adaother(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-1) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['adafactor']) def test_adafactor(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2(_build_params_dict_single(weight, bias), optimizer) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['lamb', 'lambc']) def test_lamb(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=1e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['lars', 'larc', 'nlars', 'nlarc']) def test_lars(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=1e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=1e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['madgrad', 'madgradw']) def test_madgrad(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) ) _test_model(optimizer, dict(lr=1e-2)) @pytest.mark.parametrize('optimizer', ['novograd']) def test_novograd(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['rmsprop', 'rmsproptf']) def test_rmsprop(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) ) _test_model(optimizer, dict(lr=1e-2)) @pytest.mark.parametrize('optimizer', ['adamp']) def test_adamp(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['sgdp']) def test_sgdp(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['lookahead_sgd', 'lookahead_momentum']) def test_lookahead_sgd(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) @pytest.mark.parametrize('optimizer', ['lookahead_adamw', 'lookahead_adam']) def test_lookahead_adam(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) @pytest.mark.parametrize('optimizer', ['lookahead_radam']) def test_lookahead_radam(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer, lr=1e-3) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=3e-3), optimizer) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-4) )
pytorch-image-models/tests/test_optim.py/0
{ "file_path": "pytorch-image-models/tests/test_optim.py", "repo_id": "pytorch-image-models", "token_count": 11722 }
198
""" Mixup and Cutmix Papers: mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) Code Reference: CutMix: https://github.com/clovaai/CutMix-PyTorch Hacked together by / Copyright 2019, Ross Wightman """ import numpy as np import torch def one_hot(x, num_classes, on_value=1., off_value=0.): x = x.long().view(-1, 1) return torch.full((x.size()[0], num_classes), off_value, device=x.device).scatter_(1, x, on_value) def mixup_target(target, num_classes, lam=1., smoothing=0.0): off_value = smoothing / num_classes on_value = 1. - smoothing + off_value y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value) y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value) return y1 * lam + y2 * (1. - lam) def rand_bbox(img_shape, lam, margin=0., count=None): """ Standard CutMix bounding-box Generates a random square bbox based on lambda value. This impl includes support for enforcing a border margin as percent of bbox dimensions. Args: img_shape (tuple): Image shape as tuple lam (float): Cutmix lambda value margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) count (int): Number of bbox to generate """ ratio = np.sqrt(1 - lam) img_h, img_w = img_shape[-2:] cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) yl = np.clip(cy - cut_h // 2, 0, img_h) yh = np.clip(cy + cut_h // 2, 0, img_h) xl = np.clip(cx - cut_w // 2, 0, img_w) xh = np.clip(cx + cut_w // 2, 0, img_w) return yl, yh, xl, xh def rand_bbox_minmax(img_shape, minmax, count=None): """ Min-Max CutMix bounding-box Inspired by Darknet cutmix impl, generates a random rectangular bbox based on min/max percent values applied to each dimension of the input image. Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max. Args: img_shape (tuple): Image shape as tuple minmax (tuple or list): Min and max bbox ratios (as percent of image size) count (int): Number of bbox to generate """ assert len(minmax) == 2 img_h, img_w = img_shape[-2:] cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) yl = np.random.randint(0, img_h - cut_h, size=count) xl = np.random.randint(0, img_w - cut_w, size=count) yu = yl + cut_h xu = xl + cut_w return yl, yu, xl, xu def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): """ Generate bbox and apply lambda correction. """ if ratio_minmax is not None: yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count) else: yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count) if correct_lam or ratio_minmax is not None: bbox_area = (yu - yl) * (xu - xl) lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) return (yl, yu, xl, xu), lam class Mixup: """ Mixup/Cutmix that applies different params to each element or whole batch Args: mixup_alpha (float): mixup alpha value, mixup is active if > 0. cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None. prob (float): probability of applying mixup or cutmix per batch or element switch_prob (float): probability of switching to cutmix instead of mixup when both are active mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element) correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders label_smoothing (float): apply label smoothing to the mixed target tensor num_classes (int): number of classes for target """ def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5, mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000): self.mixup_alpha = mixup_alpha self.cutmix_alpha = cutmix_alpha self.cutmix_minmax = cutmix_minmax if self.cutmix_minmax is not None: assert len(self.cutmix_minmax) == 2 # force cutmix alpha == 1.0 when minmax active to keep logic simple & safe self.cutmix_alpha = 1.0 self.mix_prob = prob self.switch_prob = switch_prob self.label_smoothing = label_smoothing self.num_classes = num_classes self.mode = mode self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop) def _params_per_elem(self, batch_size): lam = np.ones(batch_size, dtype=np.float32) use_cutmix = np.zeros(batch_size, dtype=bool) if self.mixup_enabled: if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: use_cutmix = np.random.rand(batch_size) < self.switch_prob lam_mix = np.where( use_cutmix, np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) elif self.mixup_alpha > 0.: lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) elif self.cutmix_alpha > 0.: use_cutmix = np.ones(batch_size, dtype=bool) lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) else: assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) return lam, use_cutmix def _params_per_batch(self): lam = 1. use_cutmix = False if self.mixup_enabled and np.random.rand() < self.mix_prob: if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: use_cutmix = np.random.rand() < self.switch_prob lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \ np.random.beta(self.mixup_alpha, self.mixup_alpha) elif self.mixup_alpha > 0.: lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) elif self.cutmix_alpha > 0.: use_cutmix = True lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) else: assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." lam = float(lam_mix) return lam, use_cutmix def _mix_elem(self, x): batch_size = len(x) lam_batch, use_cutmix = self._params_per_elem(batch_size) x_orig = x.clone() # need to keep an unmodified original for mixing source for i in range(batch_size): j = batch_size - i - 1 lam = lam_batch[i] if lam != 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] lam_batch[i] = lam else: x[i] = x[i] * lam + x_orig[j] * (1 - lam) return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) def _mix_pair(self, x): batch_size = len(x) lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) x_orig = x.clone() # need to keep an unmodified original for mixing source for i in range(batch_size // 2): j = batch_size - i - 1 lam = lam_batch[i] if lam != 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] lam_batch[i] = lam else: x[i] = x[i] * lam + x_orig[j] * (1 - lam) x[j] = x[j] * lam + x_orig[i] * (1 - lam) lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) def _mix_batch(self, x): lam, use_cutmix = self._params_per_batch() if lam == 1.: return 1. if use_cutmix: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] else: x_flipped = x.flip(0).mul_(1. - lam) x.mul_(lam).add_(x_flipped) return lam def __call__(self, x, target): assert len(x) % 2 == 0, 'Batch size should be even when using this' if self.mode == 'elem': lam = self._mix_elem(x) elif self.mode == 'pair': lam = self._mix_pair(x) else: lam = self._mix_batch(x) target = mixup_target(target, self.num_classes, lam, self.label_smoothing) return x, target class FastCollateMixup(Mixup): """ Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch A Mixup impl that's performed while collating the batches. """ def _mix_elem_collate(self, output, batch, half=False): batch_size = len(batch) num_elem = batch_size // 2 if half else batch_size assert len(output) == num_elem lam_batch, use_cutmix = self._params_per_elem(num_elem) for i in range(num_elem): j = batch_size - i - 1 lam = lam_batch[i] mixed = batch[i][0] if lam != 1.: if use_cutmix[i]: if not half: mixed = mixed.copy() (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] lam_batch[i] = lam else: mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) np.rint(mixed, out=mixed) output[i] += torch.from_numpy(mixed.astype(np.uint8)) if half: lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) return torch.tensor(lam_batch).unsqueeze(1) def _mix_pair_collate(self, output, batch): batch_size = len(batch) lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) for i in range(batch_size // 2): j = batch_size - i - 1 lam = lam_batch[i] mixed_i = batch[i][0] mixed_j = batch[j][0] assert 0 <= lam <= 1.0 if lam < 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) patch_i = mixed_i[:, yl:yh, xl:xh].copy() mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] mixed_j[:, yl:yh, xl:xh] = patch_i lam_batch[i] = lam else: mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(np.float32) * (1 - lam) mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(np.float32) * (1 - lam) mixed_i = mixed_temp np.rint(mixed_j, out=mixed_j) np.rint(mixed_i, out=mixed_i) output[i] += torch.from_numpy(mixed_i.astype(np.uint8)) output[j] += torch.from_numpy(mixed_j.astype(np.uint8)) lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) return torch.tensor(lam_batch).unsqueeze(1) def _mix_batch_collate(self, output, batch): batch_size = len(batch) lam, use_cutmix = self._params_per_batch() if use_cutmix: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) for i in range(batch_size): j = batch_size - i - 1 mixed = batch[i][0] if lam != 1.: if use_cutmix: mixed = mixed.copy() # don't want to modify the original while iterating mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] else: mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) np.rint(mixed, out=mixed) output[i] += torch.from_numpy(mixed.astype(np.uint8)) return lam def __call__(self, batch, _=None): batch_size = len(batch) assert batch_size % 2 == 0, 'Batch size should be even when using this' half = 'half' in self.mode if half: batch_size //= 2 output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) if self.mode == 'elem' or self.mode == 'half': lam = self._mix_elem_collate(output, batch, half=half) elif self.mode == 'pair': lam = self._mix_pair_collate(output, batch) else: lam = self._mix_batch_collate(output, batch) target = torch.tensor([b[1] for b in batch], dtype=torch.int64) target = mixup_target(target, self.num_classes, lam, self.label_smoothing) target = target[:batch_size] return output, target
pytorch-image-models/timm/data/mixup.py/0
{ "file_path": "pytorch-image-models/timm/data/mixup.py", "repo_id": "pytorch-image-models", "token_count": 7225 }
199