text
stringlengths
7
1.24M
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
519
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UnivNetModel model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class UnivNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UnivNetModel`]. It is used to instantiate a UnivNet vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UnivNet [dg845/univnet-dev](https://huggingface.co/dg845/univnet-dev) architecture, which corresponds to the 'c32' architecture in [maum-ai/univnet](https://github.com/maum-ai/univnet/blob/master/config/default_c32.yaml). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_channels (`int`, *optional*, defaults to 64): The number of input channels for the UnivNet residual network. This should correspond to `noise_sequence.shape[1]` and the value used in the [`UnivNetFeatureExtractor`] class. model_hidden_channels (`int`, *optional*, defaults to 32): The number of hidden channels of each residual block in the UnivNet residual network. num_mel_bins (`int`, *optional*, defaults to 100): The number of frequency bins in the conditioning log-mel spectrogram. This should correspond to the value used in the [`UnivNetFeatureExtractor`] class. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 3, 3]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the UnivNet residual network. The length of `resblock_kernel_sizes` defines the number of resnet blocks and should match that of `resblock_stride_sizes` and `resblock_dilation_sizes`. resblock_stride_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 4]`): A tuple of integers defining the stride sizes of the 1D convolutional layers in the UnivNet residual network. The length of `resblock_stride_sizes` should match that of `resblock_kernel_sizes` and `resblock_dilation_sizes`. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the UnivNet residual network. The length of `resblock_dilation_sizes` should match that of `resblock_kernel_sizes` and `resblock_stride_sizes`. The length of each nested list in `resblock_dilation_sizes` defines the number of convolutional layers per resnet block. kernel_predictor_num_blocks (`int`, *optional*, defaults to 3): The number of residual blocks in the kernel predictor network, which calculates the kernel and bias for each location variable convolution layer in the UnivNet residual network. kernel_predictor_hidden_channels (`int`, *optional*, defaults to 64): The number of hidden channels for each residual block in the kernel predictor network. kernel_predictor_conv_size (`int`, *optional*, defaults to 3): The kernel size of each 1D convolutional layer in the kernel predictor network. kernel_predictor_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for each residual block in the kernel predictor network. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.2): The angle of the negative slope used by the leaky ReLU activation. Example: ```python >>> from transformers import UnivNetModel, UnivNetConfig >>> # Initializing a Tortoise TTS style configuration >>> configuration = UnivNetConfig() >>> # Initializing a model (with random weights) from the Tortoise TTS style configuration >>> model = UnivNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "univnet" def __init__( self, model_in_channels=64, model_hidden_channels=32, num_mel_bins=100, resblock_kernel_sizes=[3, 3, 3], resblock_stride_sizes=[8, 8, 4], resblock_dilation_sizes=[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]], kernel_predictor_num_blocks=3, kernel_predictor_hidden_channels=64, kernel_predictor_conv_size=3, kernel_predictor_dropout=0.0, initializer_range=0.01, leaky_relu_slope=0.2, **kwargs, ): if not (len(resblock_kernel_sizes) == len(resblock_stride_sizes) == len(resblock_dilation_sizes)): raise ValueError( "`resblock_kernel_sizes`, `resblock_stride_sizes`, and `resblock_dilation_sizes` must all have the" " same length (which will be the number of resnet blocks in the model)." ) self.model_in_channels = model_in_channels self.model_hidden_channels = model_hidden_channels self.num_mel_bins = num_mel_bins self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_stride_sizes = resblock_stride_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.kernel_predictor_num_blocks = kernel_predictor_num_blocks self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels self.kernel_predictor_conv_size = kernel_predictor_conv_size self.kernel_predictor_dropout = kernel_predictor_dropout self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope super().__init__(**kwargs)
transformers/src/transformers/models/univnet/configuration_univnet.py/0
{ "file_path": "transformers/src/transformers/models/univnet/configuration_univnet.py", "repo_id": "transformers", "token_count": 2457 }
380
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT MSN checkpoints from the original repository: https://github.com/facebookresearch/msn""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def remove_projection_head(state_dict): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. ignore_keys = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def convert_vit_msn_checkpoint(checkpoint_url, pytorch_dump_folder_path): config = ViTMSNConfig() config.num_labels = 1000 repo_id = "datasets/huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if "s16" in checkpoint_url: config.hidden_size = 384 config.intermediate_size = 1536 config.num_attention_heads = 6 elif "l16" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.hidden_dropout_prob = 0.1 elif "b4" in checkpoint_url: config.patch_size = 4 elif "l7" in checkpoint_url: config.patch_size = 7 config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.hidden_dropout_prob = 0.1 model = ViTMSNModel(config) state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["target_encoder"] image_processor = ViTImageProcessor(size=config.image_size) remove_projection_head(state_dict) rename_keys = create_rename_keys(config, base_model=True) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model=True) model.load_state_dict(state_dict) model.eval() url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = ViTImageProcessor( size=config.image_size, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD ) inputs = image_processor(images=image, return_tensors="pt") # forward pass torch.manual_seed(2) outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: expected_slice = torch.tensor([[-1.0915, -1.4876, -1.1809]]) elif "b16" in checkpoint_url: expected_slice = torch.tensor([[14.2889, -18.9045, 11.7281]]) elif "l16" in checkpoint_url: expected_slice = torch.tensor([[41.5028, -22.8681, 45.6475]]) elif "b4" in checkpoint_url: expected_slice = torch.tensor([[-4.3868, 5.2932, -0.4137]]) else: expected_slice = torch.tensor([[-0.1792, -0.6465, 2.4263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], expected_slice, atol=1e-4) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/vit_msn/convert_msn_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit_msn/convert_msn_to_pytorch.py", "repo_id": "transformers", "token_count": 4263 }
381
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ViViT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class VivitConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VivitModel`]. It is used to instantiate a ViViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViViT [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. num_frames (`int`, *optional*, defaults to 32): The number of frames in each video. tubelet_size (`List[int]`, *optional*, defaults to `[2, 16, 16]`): The size (resolution) of each tubelet. num_channels (`int`, *optional*, defaults to 3): The number of input channels. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_fast"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_fast"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import VivitConfig, VivitModel >>> # Initializing a ViViT google/vivit-b-16x2-kinetics400 style configuration >>> configuration = VivitConfig() >>> # Initializing a model (with random weights) from the google/vivit-b-16x2-kinetics400 style configuration >>> model = VivitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vivit" def __init__( self, image_size=224, num_frames=32, tubelet_size=[2, 16, 16], num_channels=3, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_fast", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-06, qkv_bias=True, **kwargs, ): self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.num_frames = num_frames self.tubelet_size = tubelet_size self.num_channels = num_channels self.qkv_bias = qkv_bias super().__init__(**kwargs)
transformers/src/transformers/models/vivit/configuration_vivit.py/0
{ "file_path": "transformers/src/transformers/models/vivit/configuration_vivit.py", "repo_id": "transformers", "token_count": 1920 }
382
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2Bert BERT checkpoint.""" import argparse import torch import torchaudio from fairseq2.data import Collater from fairseq2.data.audio import WaveformToFbankConverter from fairseq2.nn.padding import get_seqs_and_padding_mask from seamless_communication.models.conformer_shaw import load_conformer_shaw_model from transformers import ( SeamlessM4TFeatureExtractor, Wav2Vec2BertConfig, Wav2Vec2BertModel, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) wav2vec_convert_list = [ ("encoder_frontend.model_dim_proj", "feature_projection.projection"), ("encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"), ("encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"), ("encoder.inner.layers", "encoder.layers"), ("encoder.inner_layer_norm", "encoder.layer_norm"), ("encoder.adaptor_layers", "adapter.layers"), ("inner_proj", "intermediate_dense"), ("self_attn.output_proj", "self_attn.linear_out"), ("output_proj", "output_dense"), ("self_attn.k_proj", "self_attn.linear_k"), ("self_attn.v_proj", "self_attn.linear_v"), ("self_attn.q_proj", "self_attn.linear_q"), ("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"), ("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"), ("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"), ("self_attn.sdpa.r_proj", "self_attn.linear_pos"), ("conv.pointwise_conv1", "conv_module.pointwise_conv1"), ("conv.pointwise_conv2", "conv_module.pointwise_conv2"), ("conv.depthwise_conv", "conv_module.depthwise_conv"), ("conv.layer_norm", "conv_module.depthwise_layer_norm"), ("conv_layer_norm", "conv_module.layer_norm"), ("encoder.proj1", "intermediate_ffn.intermediate_dense"), ("encoder.proj2", "intermediate_ffn.output_dense"), ("encoder.layer_norm", "inner_layer_norm"), ("masker.temporal_mask_embed", "masked_spec_embed"), ] keys_to_remove = { "quantizer.entry_proj", "final_proj", "final_target_proj", "quantizer.entries", "quantizer.num_updates", } def param_count(model): return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0]) def _convert_model( original_model, hf_model, convert_list, ): state_dict = original_model.state_dict() for k, v in list(state_dict.items()): new_key = k for old_layer_name, new_layer_name in convert_list: if old_layer_name in new_key: new_key = new_key.replace(old_layer_name, new_layer_name) # must do it by hand if ".layer_norm" in new_key and new_key.split(".layer_norm")[0][-1].isnumeric(): new_key = new_key.replace("layer_norm", "final_layer_norm") add_key = True for key in keys_to_remove: if key in new_key: state_dict.pop(k) add_key = False break if add_key: state_dict[new_key] = state_dict.pop(k) extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys()) extra_keys = set({k for k in extra_keys if "num_updates" not in k}) # filter unecessary param missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys()) if len(extra_keys) != 0: raise ValueError(f"extra keys found: {extra_keys}") if len(missing_keys) != 0: raise ValueError(f"missing keys: {missing_keys}") hf_model.load_state_dict(state_dict, strict=True) n_params = param_count(hf_model) logger.info(f"model loaded: {round(n_params/1e6,1)}M params") hf_model.eval() del state_dict return hf_model @torch.no_grad() def convert_wav2vec2_bert_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, repo_id=None, ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Wav2Vec2BertConfig.from_pretrained(config_path, hidden_act="swish") else: config = Wav2Vec2BertConfig(apply_spec_augment=False) hf_wav2vec = Wav2Vec2BertModel(config) model = load_conformer_shaw_model(checkpoint_path, dtype=torch.float32) model.eval() hf_wav2vec = _convert_model(model, hf_wav2vec, wav2vec_convert_list) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if repo_id: hf_wav2vec.push_to_hub(repo_id, create_pr=True) # save feature extractor fe = SeamlessM4TFeatureExtractor(padding_value=1) fe._set_processor_class("Wav2Vec2BertProcessor") fe.save_pretrained(pytorch_dump_folder_path) if repo_id: fe.push_to_hub(repo_id, create_pr=True) if args.audio_path: waveform, sample_rate = torchaudio.load(args.audio_path) waveform = torchaudio.functional.resample(waveform, sample_rate, fe.sampling_rate) fbank_converter = WaveformToFbankConverter( num_mel_bins=80, waveform_scale=2**15, channel_last=True, standardize=True, dtype=torch.float32, ) collater = Collater(pad_value=1) decoded_audio = {"waveform": waveform.T, "sample_rate": fe.sampling_rate, "format": -1} src = collater(fbank_converter(decoded_audio))["fbank"] seqs, padding_mask = get_seqs_and_padding_mask(src) with torch.inference_mode(): seqs, padding_mask = model.encoder_frontend(seqs, padding_mask) original_output, padding_mask = model.encoder(seqs, padding_mask) hf_wav2vec.eval() inputs = fe(waveform, return_tensors="pt", padding=True) with torch.no_grad(): outputs = hf_wav2vec(**inputs) torch.testing.assert_close(original_output, outputs.last_hidden_state, atol=5e-3, rtol=5e-3) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.", ) parser.add_argument( "--checkpoint_path", default="conformer_shaw", type=str, help="Path to seamless communication checkpoint" ) parser.add_argument( "--config_path", default=None, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--repo_id", default=None, type=str, help="Push to this repo id if precised.") parser.add_argument( "--audio_path", default=None, type=str, help="If specified, check that the original model and the converted model produce the same outputs.", ) args = parser.parse_args() convert_wav2vec2_bert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.repo_id )
transformers/src/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py", "repo_id": "transformers", "token_count": 3156 }
383
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_whisper": ["WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_whisper_fast"] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_whisper"] = [ "WhisperForCausalLM", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_whisper"] = [ "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_whisper"] = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WhisperForAudioClassification, WhisperForCausalLM, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/whisper/__init__.py/0
{ "file_path": "transformers/src/transformers/models/whisper/__init__.py", "repo_id": "transformers", "token_count": 1613 }
384
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ZoeDepth model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING logger = logging.get_logger(__name__) ZOEDEPTH_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Intel/zoedepth-nyu": "https://huggingface.co/Intel/zoedepth-nyu/resolve/main/config.json", } class ZoeDepthConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ZoeDepthForDepthEstimation`]. It is used to instantiate an ZoeDepth model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ZoeDepth [Intel/zoedepth-nyu](https://huggingface.co/Intel/zoedepth-nyu) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*, defaults to `BeitConfig()`): The configuration of the backbone model. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. readout_type (`str`, *optional*, defaults to `"project"`): The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`]. - "ignore" simply ignores the CLS token. - "add" passes the information from the CLS token to all other tokens by adding the representations. - "project" passes information to the other tokens by concatenating the readout to all other tokens before projecting the representation to the original feature dimension D using a linear layer followed by a GELU non-linearity. reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`): The up/downsampling factors of the reassemble layers. neck_hidden_sizes (`List[str]`, *optional*, defaults to `[96, 192, 384, 768]`): The hidden sizes to project to for the feature maps of the backbone. fusion_hidden_size (`int`, *optional*, defaults to 256): The number of channels before fusion. head_in_index (`int`, *optional*, defaults to -1): The index of the features to use in the heads. use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`): Whether to use batch normalization in the pre-activate residual units of the fusion blocks. use_bias_in_fusion_residual (`bool`, *optional*, defaults to `True`): Whether to use bias in the pre-activate residual units of the fusion blocks. num_relative_features (`int`, *optional*, defaults to 32): The number of features to use in the relative depth estimation head. add_projection (`bool`, *optional*, defaults to `False`): Whether to add a projection layer before the depth estimation head. bottleneck_features (`int`, *optional*, defaults to 256): The number of features in the bottleneck layer. num_attractors (`List[int], *optional*, defaults to `[16, 8, 4, 1]`): The number of attractors to use in each stage. bin_embedding_dim (`int`, *optional*, defaults to 128): The dimension of the bin embeddings. attractor_alpha (`int`, *optional*, defaults to 1000): The alpha value to use in the attractor. attractor_gamma (`int`, *optional*, defaults to 2): The gamma value to use in the attractor. attractor_kind (`str`, *optional*, defaults to `"mean"`): The kind of attractor to use. Can be one of [`"mean"`, `"sum"`]. min_temp (`float`, *optional*, defaults to 0.0212): The minimum temperature value to consider. max_temp (`float`, *optional*, defaults to 50.0): The maximum temperature value to consider. bin_centers_type (`str`, *optional*, defaults to `"softplus"`): Activation type used for bin centers. Can be "normed" or "softplus". For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. bin_configurations (`List[dict]`, *optional*, defaults to `[{'n_bins': 64, 'min_depth': 0.001, 'max_depth': 10.0}]`): Configuration for each of the bin heads. Each configuration should consist of the following keys: - name (`str`): The name of the bin head - only required in case of multiple bin configurations. - `n_bins` (`int`): The number of bins to use. - `min_depth` (`float`): The minimum depth value to consider. - `max_depth` (`float`): The maximum depth value to consider. In case only a single configuration is passed, the model will use a single head with the specified configuration. In case multiple configurations are passed, the model will use multiple heads with the specified configurations. num_patch_transformer_layers (`int`, *optional*): The number of transformer layers to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_hidden_size (`int`, *optional*): The hidden size to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_intermediate_size (`int`, *optional*): The intermediate size to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_num_attention_heads (`int`, *optional*): The number of attention heads to use in the patch transformer. Only used in case of multiple bin configurations. Example: ```python >>> from transformers import ZoeDepthConfig, ZoeDepthForDepthEstimation >>> # Initializing a ZoeDepth zoedepth-large style configuration >>> configuration = ZoeDepthConfig() >>> # Initializing a model from the zoedepth-large style configuration >>> model = ZoeDepthForDepthEstimation(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "zoedepth" def __init__( self, backbone_config=None, backbone=None, use_pretrained_backbone=False, backbone_kwargs=None, hidden_act="gelu", initializer_range=0.02, batch_norm_eps=1e-05, readout_type="project", reassemble_factors=[4, 2, 1, 0.5], neck_hidden_sizes=[96, 192, 384, 768], fusion_hidden_size=256, head_in_index=-1, use_batch_norm_in_fusion_residual=False, use_bias_in_fusion_residual=None, num_relative_features=32, add_projection=False, bottleneck_features=256, num_attractors=[16, 8, 4, 1], bin_embedding_dim=128, attractor_alpha=1000, attractor_gamma=2, attractor_kind="mean", min_temp=0.0212, max_temp=50.0, bin_centers_type="softplus", bin_configurations=[{"n_bins": 64, "min_depth": 0.001, "max_depth": 10.0}], num_patch_transformer_layers=None, patch_transformer_hidden_size=None, patch_transformer_intermediate_size=None, patch_transformer_num_attention_heads=None, **kwargs, ): super().__init__(**kwargs) if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") if attractor_kind not in ["mean", "sum"]: raise ValueError("Attractor_kind must be one of ['mean', 'sum']") if use_pretrained_backbone: raise ValueError("Pretrained backbones are not supported yet.") if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `BEiT` backbone.") backbone_config = CONFIG_MAPPING["beit"]( image_size=384, num_hidden_layers=24, hidden_size=1024, intermediate_size=4096, num_attention_heads=16, use_relative_position_bias=True, reshape_hidden_states=False, out_features=["stage6", "stage12", "stage18", "stage24"], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") self.backbone_config = backbone_config self.backbone = backbone self.hidden_act = hidden_act self.use_pretrained_backbone = use_pretrained_backbone self.initializer_range = initializer_range self.batch_norm_eps = batch_norm_eps self.readout_type = readout_type self.reassemble_factors = reassemble_factors self.neck_hidden_sizes = neck_hidden_sizes self.fusion_hidden_size = fusion_hidden_size self.head_in_index = head_in_index self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual self.use_bias_in_fusion_residual = use_bias_in_fusion_residual self.num_relative_features = num_relative_features self.add_projection = add_projection self.bottleneck_features = bottleneck_features self.num_attractors = num_attractors self.bin_embedding_dim = bin_embedding_dim self.attractor_alpha = attractor_alpha self.attractor_gamma = attractor_gamma self.attractor_kind = attractor_kind self.min_temp = min_temp self.max_temp = max_temp self.bin_centers_type = bin_centers_type self.bin_configurations = bin_configurations self.num_patch_transformer_layers = num_patch_transformer_layers self.patch_transformer_hidden_size = patch_transformer_hidden_size self.patch_transformer_intermediate_size = patch_transformer_intermediate_size self.patch_transformer_num_attention_heads = patch_transformer_num_attention_heads
transformers/src/transformers/models/zoedepth/configuration_zoedepth.py/0
{ "file_path": "transformers/src/transformers/models/zoedepth/configuration_zoedepth.py", "repo_id": "transformers", "token_count": 4805 }
385
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import csv import importlib import json import os import pickle import sys import traceback import types import warnings from abc import ABC, abstractmethod from collections import UserDict from contextlib import contextmanager from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from ..dynamic_module_utils import custom_object_save from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..modelcard import ModelCard from ..models.auto.configuration_auto import AutoConfig from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( ModelOutput, PushToHubMixin, add_end_docstrings, copy_func, infer_framework, is_tf_available, is_torch_available, is_torch_cuda_available, is_torch_mlu_available, is_torch_mps_available, is_torch_musa_available, is_torch_npu_available, is_torch_xpu_available, logging, ) GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"] if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TFAutoModel if is_torch_available(): import torch from torch.utils.data import DataLoader, Dataset from ..models.auto.modeling_auto import AutoModel # Re-export for backward compatibility from .pt_utils import KeyDataset else: Dataset = None KeyDataset = None if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def no_collate_fn(items): if len(items) != 1: raise ValueError("This collate_fn is meant to be used with batch_size=1") return items[0] def _pad(items, key, padding_value, padding_side): batch_size = len(items) if isinstance(items[0][key], torch.Tensor): # Others include `attention_mask` etc... shape = items[0][key].shape dim = len(shape) if dim == 1: # We have a list of 1-dim torch tensors, which can be stacked without padding return torch.cat([item[key] for item in items], dim=0) if key in ["pixel_values", "image"]: # This is probable image so padding shouldn't be necessary # B, C, H, W return torch.cat([item[key] for item in items], dim=0) elif dim == 4 and key == "input_features": # this is probably a mel spectrogram batched return torch.cat([item[key] for item in items], dim=0) max_length = max(item[key].shape[1] for item in items) min_length = min(item[key].shape[1] for item in items) dtype = items[0][key].dtype if dim == 2: if max_length == min_length: # Bypass for `ImageGPT` which doesn't provide a padding value, yet # we can consistently pad since the size should be matching return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value elif dim == 3: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value elif dim == 4: tensor = torch.zeros((batch_size, max_length, shape[-2], shape[-1]), dtype=dtype) + padding_value for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]) :] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() elif dim == 4: if padding_side == "left": tensor[i, -len(item[key][0]) :, :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :, :] = item[key][0].clone() return tensor else: return [item[key] for item in items] def pad_collate_fn(tokenizer, feature_extractor): # Tokenizer t_padding_side = None # Feature extractor f_padding_side = None if tokenizer is None and feature_extractor is None: raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching") if tokenizer is not None: if tokenizer.pad_token_id is None: raise ValueError( "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with " "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`." ) else: t_padding_value = tokenizer.pad_token_id t_padding_side = tokenizer.padding_side if feature_extractor is not None: # Feature extractor can be images, where no padding is expected f_padding_value = getattr(feature_extractor, "padding_value", None) f_padding_side = getattr(feature_extractor, "padding_side", None) if t_padding_side is not None and f_padding_side is not None and t_padding_side != f_padding_side: raise ValueError( f"The feature extractor, and tokenizer don't agree on padding side {t_padding_side} != {f_padding_side}" ) padding_side = "right" if t_padding_side is not None: padding_side = t_padding_side if f_padding_side is not None: padding_side = f_padding_side def inner(items): keys = set(items[0].keys()) for item in items: if set(item.keys()) != keys: raise ValueError( f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} !=" f" {keys})" ) # input_values, input_pixels, input_ids, ... padded = {} for key in keys: if key in {"input_ids"}: # ImageGPT uses a feature extractor if tokenizer is None and feature_extractor is not None: _padding_value = f_padding_value else: _padding_value = t_padding_value elif key in {"input_values", "pixel_values", "input_features"}: _padding_value = f_padding_value elif key in {"p_mask", "special_tokens_mask"}: _padding_value = 1 elif key in {"attention_mask", "token_type_ids"}: _padding_value = 0 else: # This is likely another random key maybe even user provided _padding_value = 0 padded[key] = _pad(items, key, _padding_value, padding_side) return padded return inner def infer_framework_load_model( model, config: AutoConfig, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. config ([`AutoConfig`]): The config associated with the model to help using the correct class model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): model_kwargs["_from_pipeline"] = task class_tuple = () look_pt = is_torch_available() and framework in {"pt", None} look_tf = is_tf_available() and framework in {"tf", None} if model_classes: if look_pt: class_tuple = class_tuple + model_classes.get("pt", (AutoModel,)) if look_tf: class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,)) if config.architectures: classes = [] for architecture in config.architectures: transformers_module = importlib.import_module("transformers") if look_pt: _class = getattr(transformers_module, architecture, None) if _class is not None: classes.append(_class) if look_tf: _class = getattr(transformers_module, f"TF{architecture}", None) if _class is not None: classes.append(_class) class_tuple = class_tuple + tuple(classes) if len(class_tuple) == 0: raise ValueError(f"Pipeline cannot infer suitable model classes from {model}") all_traceback = {} for model_class in class_tuple: kwargs = model_kwargs.copy() if framework == "pt" and model.endswith(".h5"): kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) try: model = model_class.from_pretrained(model, **kwargs) if hasattr(model, "eval"): model = model.eval() # Stop loading on the first successful load. break except (OSError, ValueError): all_traceback[model_class.__name__] = traceback.format_exc() continue if isinstance(model, str): error = "" for class_name, trace in all_traceback.items(): error += f"while loading with {class_name}, an error is thrown:\n{trace}\n" raise ValueError( f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n" ) if framework is None: framework = infer_framework(model.__class__) return framework, model def infer_framework_from_model( model, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs) else: config = model.config return infer_framework_load_model( model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs ) def get_framework(model, revision: Optional[str] = None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ warnings.warn( "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.", FutureWarning, ) if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model, revision=revision) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model, revision=revision) else: try: model = AutoModel.from_pretrained(model, revision=revision) except OSError: model = TFAutoModel.from_pretrained(model, revision=revision) framework = infer_framework(model.__class__) return framework def get_default_model_and_revision( targeted_task: Dict, framework: Optional[str], task_options: Optional[Any] ) -> Union[str, Tuple[str, str]]: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (`Dict`): Dictionary representing the given task, that should contain default models framework (`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. task_options (`Any`, None) Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for translation task. Returns `str` The model string representing the default model for this pipeline """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" defaults = targeted_task["default"] if task_options: if task_options not in defaults: raise ValueError(f"The task does not provide any default models for options {task_options}") default_models = defaults[task_options]["model"] elif "model" in defaults: default_models = targeted_task["default"]["model"] else: # XXX This error message needs to be updated to be more generic if more tasks are going to become # parametrized raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"') if framework is None: framework = "pt" return default_models[framework] class PipelineException(Exception): """ Raised by a [`Pipeline`] when handling __call__. Args: task (`str`): The task of the pipeline. model (`str`): The model used by the pipeline. reason (`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each [`~pipelines.Pipeline`]. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError(f"{self.output_path} already exists on disk") if input_path is not None: if not exists(abspath(self.input_path)): raise OSError(f"{self.input_path} doesnt exist on disk") @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`dict` or list of `dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (`dict` or list of `dict`): The data to store. Returns: `str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`. Args: format (`str`): The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`. output_path (`str`, *optional*): Where to save the outgoing data. input_path (`str`, *optional*): Where to look for the input data. column (`str`, *optional*): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. Returns: [`~pipelines.PipelineDataFormat`]: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)") class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() def build_pipeline_init_args( has_tokenizer: bool = False, has_feature_extractor: bool = False, has_image_processor: bool = False, supports_binary_output: bool = True, ) -> str: docstring = r""" Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.""" if has_tokenizer: docstring += r""" tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`].""" if has_feature_extractor: docstring += r""" feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode data for the model. This object inherits from [`SequenceFeatureExtractor`].""" if has_image_processor: docstring += r""" image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`].""" docstring += r""" modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`)""" if supports_binary_output: docstring += r""" binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text.""" return docstring PIPELINE_INIT_ARGS = build_pipeline_init_args( has_tokenizer=True, has_feature_extractor=True, has_image_processor=True, supports_binary_output=True ) if is_torch_available(): from transformers.pipelines.pt_utils import ( PipelineChunkIterator, PipelineDataset, PipelineIterator, PipelinePackIterator, ) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_feature_extractor=True, has_image_processor=True)) class Pipeline(_ScikitCompat, PushToHubMixin): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output` constructor argument. If set to `True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: Optional[PreTrainedTokenizer] = None, feature_extractor: Optional[PreTrainedFeatureExtractor] = None, image_processor: Optional[BaseImageProcessor] = None, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, binary_output: bool = False, **kwargs, ): if framework is None: framework, model = infer_framework_load_model(model, config=model.config) self.task = task self.model = model self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.image_processor = image_processor self.modelcard = modelcard self.framework = framework # `accelerate` device map hf_device_map = getattr(self.model, "hf_device_map", None) if hf_device_map is not None and device is not None: raise ValueError( "The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please " "discard the `device` argument when creating your pipeline object." ) if device is None: if hf_device_map is not None: # Take the first device used by `accelerate`. device = next(iter(hf_device_map.values())) else: device = -1 if ( is_torch_mlu_available() or is_torch_cuda_available() or is_torch_npu_available() or is_torch_xpu_available(check_device=True) or is_torch_mps_available() ): logger.warning( "Hardware accelerator e.g. GPU is available in the environment, but no `device` argument" " is passed to the `Pipeline` object. Model will be on CPU." ) if is_torch_available() and self.framework == "pt": if device == -1 and self.model.device is not None: device = self.model.device if isinstance(device, torch.device): if device.type == "xpu" and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = device elif isinstance(device, str): if "xpu" in device and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = torch.device(device) elif device < 0: self.device = torch.device("cpu") elif is_torch_mlu_available(): self.device = torch.device(f"mlu:{device}") elif is_torch_musa_available(): self.device = torch.device(f"musa:{device}") elif is_torch_cuda_available(): self.device = torch.device(f"cuda:{device}") elif is_torch_npu_available(): self.device = torch.device(f"npu:{device}") elif is_torch_xpu_available(check_device=True): self.device = torch.device(f"xpu:{device}") elif is_torch_mps_available(): self.device = torch.device(f"mps:{device}") else: raise ValueError(f"{device} unrecognized or not available.") else: self.device = device if device is not None else -1 self.binary_output = binary_output # We shouldn't call `model.to()` for models loaded with accelerate as well as the case that model is already on device if ( self.framework == "pt" and self.model.device != self.device and not (isinstance(self.device, int) and self.device < 0) and hf_device_map is None ): self.model.to(self.device) # Update config and generation_config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task)) if self.model.can_generate(): self.model.generation_config.update(**task_specific_params.get(task)) # Pipelines calling `generate`: if the tokenizer has a pad token but the model doesn't, set it in the # forward params so that `generate` is aware of the pad token. if ( self.tokenizer is not None and self.model.can_generate() and self.tokenizer.pad_token_id is not None and self.model.generation_config.pad_token_id is None ): self.model.generation_config.pad_token_id = self.tokenizer.pad_token_id self.call_count = 0 self._batch_size = kwargs.pop("batch_size", None) self._num_workers = kwargs.pop("num_workers", None) self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs) if self.image_processor is None and self.feature_extractor is not None: if isinstance(self.feature_extractor, BaseImageProcessor): # Backward compatible change, if users called # ImageSegmentationPipeline(.., feature_extractor=MyFeatureExtractor()) # then we should keep working self.image_processor = self.feature_extractor def save_pretrained( self, save_directory: Union[str, os.PathLike], safe_serialization: bool = True, **kwargs, ): """ Save the pipeline's model and tokenizer. Args: save_directory (`str` or `os.PathLike`): A path to the directory where to saved. It will be created if it doesn't exist. safe_serialization (`str`): Whether to save the model using `safetensors` or the traditional way for PyTorch or Tensorflow. kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if hasattr(self, "_registered_impl"): # Add info to the config pipeline_info = self._registered_impl.copy() custom_pipelines = {} for task, info in pipeline_info.items(): if info["impl"] != self.__class__: continue info = info.copy() module_name = info["impl"].__module__ last_module = module_name.split(".")[-1] # Change classes into their names/full names info["impl"] = f"{last_module}.{info['impl'].__name__}" info["pt"] = tuple(c.__name__ for c in info["pt"]) info["tf"] = tuple(c.__name__ for c in info["tf"]) custom_pipelines[task] = info self.model.config.custom_pipelines = custom_pipelines # Save the pipeline custom code custom_object_save(self, save_directory) kwargs["safe_serialization"] = safe_serialization self.model.save_pretrained(save_directory, **kwargs) if self.tokenizer is not None: self.tokenizer.save_pretrained(save_directory, **kwargs) if self.feature_extractor is not None: self.feature_extractor.save_pretrained(save_directory, **kwargs) if self.image_processor is not None: self.image_processor.save_pretrained(save_directory, **kwargs) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) @property def torch_dtype(self) -> Optional["torch.dtype"]: """ Torch dtype of the model (if it's Pytorch model), `None` otherwise. """ return getattr(self.model, "dtype", None) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples: ```python # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) ```""" if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"): yield else: if self.device.type == "cuda": with torch.cuda.device(self.device): yield elif self.device.type == "mlu": with torch.mlu.device(self.device): yield elif self.device.type == "musa": with torch.musa.device(self.device): yield else: yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored): The tensors to place on `self.device`. Recursive on lists **only**. Return: `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device. """ return self._ensure_tensor_on_device(inputs, self.device) def _ensure_tensor_on_device(self, inputs, device): if isinstance(inputs, ModelOutput): return ModelOutput( {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} ) elif isinstance(inputs, dict): return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} elif isinstance(inputs, UserDict): return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}) elif isinstance(inputs, list): return [self._ensure_tensor_on_device(item, device) for item in inputs] elif isinstance(inputs, tuple): return tuple([self._ensure_tensor_on_device(item, device) for item in inputs]) elif isinstance(inputs, torch.Tensor): return inputs.to(device) else: return inputs def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (`List[str]` or `dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models_names = [] for _, model_name in supported_models.items(): # Mapping can now contain tuples of models for the same configuration. if isinstance(model_name, tuple): supported_models_names.extend(list(model_name)) else: supported_models_names.append(model_name) if hasattr(supported_models, "_model_mapping"): for _, model in supported_models._model_mapping._extra_content.items(): if isinstance(model_name, tuple): supported_models_names.extend([m.__name__ for m in model]) else: supported_models_names.append(model.__name__) supported_models = supported_models_names if self.model.__class__.__name__ not in supported_models: logger.error( f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are" f" {supported_models}." ) @abstractmethod def _sanitize_parameters(self, **pipeline_parameters): """ _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__` methods. It should return 3 dictionaries of the resolved parameters used by the various `preprocess`, `forward` and `postprocess` methods. Do not fill dictionaries if the caller didn't specify a kwargs. This lets you keep defaults in function signatures, which is more "natural". It is not meant to be called directly, it will be automatically called and the final parameters resolved by `__init__` and `__call__` """ raise NotImplementedError("_sanitize_parameters not implemented") @abstractmethod def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]: """ Preprocess will take the `input_` of a specific pipeline and return a dictionary of everything necessary for `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items. """ raise NotImplementedError("preprocess not implemented") @abstractmethod def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput: """ _forward will receive the prepared dictionary from `preprocess` and run it on the model. This method might involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess` and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible. It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part of the code (leading to faster inference). """ raise NotImplementedError("_forward not implemented") @abstractmethod def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any: """ Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into something more friendly. Generally it will output a list or a dict or results (containing just strings and numbers). """ raise NotImplementedError("postprocess not implemented") def get_inference_context(self): return torch.no_grad def forward(self, model_inputs, **forward_params): with self.device_placement(): if self.framework == "tf": model_inputs["training"] = False model_outputs = self._forward(model_inputs, **forward_params) elif self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) model_outputs = self._forward(model_inputs, **forward_params) model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu")) else: raise ValueError(f"Framework {self.framework} is not supported") return model_outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if isinstance(inputs, collections.abc.Sized): dataset = PipelineDataset(inputs, self.preprocess, preprocess_params) else: if num_workers > 1: logger.warning( "For iterable dataset using num_workers>1 is likely to result" " in errors since everything is iterable, setting `num_workers=1`" " to guarantee correctness." ) num_workers = 1 dataset = PipelineIterator(inputs, self.preprocess, preprocess_params) if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs): if args: logger.warning(f"Ignoring args : {args}") if num_workers is None: if self._num_workers is None: num_workers = 0 else: num_workers = self._num_workers if batch_size is None: if self._batch_size is None: batch_size = 1 else: batch_size = self._batch_size preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs) # Fuse __init__ params and __call__ params without modifying the __init__ ones. preprocess_params = {**self._preprocess_params, **preprocess_params} forward_params = {**self._forward_params, **forward_params} postprocess_params = {**self._postprocess_params, **postprocess_params} self.call_count += 1 if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda": logger.warning_once( "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a" " dataset", ) is_dataset = Dataset is not None and isinstance(inputs, Dataset) is_generator = isinstance(inputs, types.GeneratorType) is_list = isinstance(inputs, list) is_iterable = is_dataset or is_generator or is_list # TODO make the get_iterator work also for `tf` (and `flax`). can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list) if is_list: if can_use_iterator: final_iterator = self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) outputs = list(final_iterator) return outputs else: return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params) elif can_use_iterator: return self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) elif is_iterable: return self.iterate(inputs, preprocess_params, forward_params, postprocess_params) elif self.framework == "pt" and isinstance(self, ChunkPipeline): return next( iter( self.get_iterator( [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) ) ) else: return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params): return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs] def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): model_inputs = self.preprocess(inputs, **preprocess_params) model_outputs = self.forward(model_inputs, **forward_params) outputs = self.postprocess(model_outputs, **postprocess_params) return outputs def iterate(self, inputs, preprocess_params, forward_params, postprocess_params): # This function should become `get_iterator` again, this is a temporary # easy solution. for input_ in inputs: yield self.run_single(input_, preprocess_params, forward_params, postprocess_params) Pipeline.push_to_hub = copy_func(Pipeline.push_to_hub) if Pipeline.push_to_hub.__doc__ is not None: Pipeline.push_to_hub.__doc__ = Pipeline.push_to_hub.__doc__.format( object="pipe", object_class="pipeline", object_files="pipeline file" ).replace(".from_pretrained", "") class ChunkPipeline(Pipeline): def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): all_outputs = [] for model_inputs in self.preprocess(inputs, **preprocess_params): model_outputs = self.forward(model_inputs, **forward_params) all_outputs.append(model_outputs) outputs = self.postprocess(all_outputs, **postprocess_params) return outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" if num_workers > 1: logger.warning( "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable," " setting `num_workers=1` to guarantee correctness." ) num_workers = 1 dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params) # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator class PipelineRegistry: def __init__(self, supported_tasks: Dict[str, Any], task_aliases: Dict[str, str]) -> None: self.supported_tasks = supported_tasks self.task_aliases = task_aliases def get_supported_tasks(self) -> List[str]: supported_task = list(self.supported_tasks.keys()) + list(self.task_aliases.keys()) supported_task.sort() return supported_task def check_task(self, task: str) -> Tuple[str, Dict, Any]: if task in self.task_aliases: task = self.task_aliases[task] if task in self.supported_tasks: targeted_task = self.supported_tasks[task] return task, targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = self.supported_tasks["translation"] task = "translation" return task, targeted_task, (tokens[1], tokens[3]) raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format") raise KeyError( f"Unknown task {task}, available tasks are {self.get_supported_tasks() + ['translation_XX_to_YY']}" ) def register_pipeline( self, task: str, pipeline_class: type, pt_model: Optional[Union[type, Tuple[type]]] = None, tf_model: Optional[Union[type, Tuple[type]]] = None, default: Optional[Dict] = None, type: Optional[str] = None, ) -> None: if task in self.supported_tasks: logger.warning(f"{task} is already registered. Overwriting pipeline for task {task}...") if pt_model is None: pt_model = () elif not isinstance(pt_model, tuple): pt_model = (pt_model,) if tf_model is None: tf_model = () elif not isinstance(tf_model, tuple): tf_model = (tf_model,) task_impl = {"impl": pipeline_class, "pt": pt_model, "tf": tf_model} if default is not None: if "model" not in default and ("pt" in default or "tf" in default): default = {"model": default} task_impl["default"] = default if type is not None: task_impl["type"] = type self.supported_tasks[task] = task_impl pipeline_class._registered_impl = {task: task_impl} def to_dict(self): return self.supported_tasks
transformers/src/transformers/pipelines/base.py/0
{ "file_path": "transformers/src/transformers/pipelines/base.py", "repo_id": "transformers", "token_count": 24397 }
386
import inspect import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES def sigmoid(_outputs): return 1.0 / (1.0 + np.exp(-_outputs)) def softmax(_outputs): maxes = np.max(_outputs, axis=-1, keepdims=True) shifted_exp = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class ClassificationFunction(ExplicitEnum): SIGMOID = "sigmoid" SOFTMAX = "softmax" NONE = "none" @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output.""", ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any `ModelForSequenceClassification`. See the [sequence classification examples](../task_summary#sequence-classification) for more information. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") >>> classifier("This movie is disgustingly good !") [{'label': 'POSITIVE', 'score': 1.0}] >>> classifier("Director tried too much.") [{'label': 'NEGATIVE', 'score': 0.996}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This text classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). If multiple classification labels are available (`model.config.num_labels >= 2`), the pipeline will run a softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result. The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-classification). """ return_all_scores = False function_to_apply = ClassificationFunction.NONE def __init__(self, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" preprocess_params = tokenizer_kwargs postprocess_params = {} if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: return_all_scores = self.model.config.return_all_scores if isinstance(top_k, int) or top_k is None: postprocess_params["top_k"] = top_k postprocess_params["_legacy"] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", UserWarning, ) if return_all_scores: postprocess_params["top_k"] = None else: postprocess_params["top_k"] = 1 if isinstance(function_to_apply, str): function_to_apply = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: postprocess_params["function_to_apply"] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self, inputs, **kwargs): """ Classify the text(s) given as inputs. Args: inputs (`str` or `List[str]` or `Dict[str]`, or `List[Dict[str]]`): One or several texts to classify. In order to use text pairs for your classification, you can send a dictionary containing `{"text", "text_pair"}` keys, or a list of those. top_k (`int`, *optional*, defaults to `1`): How many results to return. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: If this argument is not specified, then it will apply the following functions according to the number of labels: - If the model has a single label, will apply the sigmoid function on the output. - If the model has several labels, will apply the softmax function on the output. Possible values are: - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. Return: A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: - **label** (`str`) -- The label predicted. - **score** (`float`) -- The corresponding probability. If `top_k` is used, one such dictionary is returned per label. """ inputs = (inputs,) result = super().__call__(*inputs, **kwargs) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _legacy = "top_k" not in kwargs if isinstance(inputs[0], str) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]: return_tensors = self.framework if isinstance(inputs, dict): return self.tokenizer(**inputs, return_tensors=return_tensors, **tokenizer_kwargs) elif isinstance(inputs, list) and len(inputs) == 1 and isinstance(inputs[0], list) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0], text_pair=inputs[0][1], return_tensors=return_tensors, **tokenizer_kwargs ) elif isinstance(inputs, list): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) def _forward(self, model_inputs): # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False return self.model(**model_inputs) def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: function_to_apply = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: function_to_apply = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: function_to_apply = self.model.config.function_to_apply else: function_to_apply = ClassificationFunction.NONE outputs = model_outputs["logits"][0] if self.framework == "pt": # To enable using fp16 and bf16 outputs = outputs.float().numpy() else: outputs = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: scores = sigmoid(outputs) elif function_to_apply == ClassificationFunction.SOFTMAX: scores = softmax(outputs) elif function_to_apply == ClassificationFunction.NONE: scores = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()} dict_scores = [ {"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) ] if not _legacy: dict_scores.sort(key=lambda x: x["score"], reverse=True) if top_k is not None: dict_scores = dict_scores[:top_k] return dict_scores
transformers/src/transformers/pipelines/text_classification.py/0
{ "file_path": "transformers/src/transformers/pipelines/text_classification.py", "repo_id": "transformers", "token_count": 4261 }
387
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.metadata from typing import TYPE_CHECKING from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging from ..utils.quantization_config import AWQLinearVersion if is_torch_available(): import torch logger = logging.get_logger(__name__) class AwqQuantizer(HfQuantizer): """ 4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978) """ # AWQ requires data callibration - we support only inference requires_calibration = True required_packages = ["awq", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, device_map, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("GPU is required to run AWQ quantized model.") if not is_auto_awq_available(): raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)") if not is_accelerate_available(): raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)") if device_map is None: logger.warning_once( "You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load an AWQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype): if torch_dtype is None: torch_dtype = torch.float16 elif torch_dtype != torch.float16: logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from ..integrations import get_keys_to_not_convert, replace_quantization_scales, replace_with_awq_linear self.modules_to_not_convert = get_keys_to_not_convert(model) if self.quantization_config.modules_to_not_convert is not None: self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) model, has_been_replaced = replace_with_awq_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert ) model = replace_quantization_scales(model, model.config.model_type) if not has_been_replaced: logger.warning( "You are loading an AWQ model but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is a bug." ) def _process_model_after_weight_loading(self, model): if self.quantization_config.do_fuse: from ..integrations import fuse_awq_modules model = fuse_awq_modules(model, self.quantization_config) model._awq_is_fused = True # TODO: consider storing this flag in model.config instead if self.quantization_config.version == AWQLinearVersion.EXLLAMA: from ..integrations import post_init_awq_exllama_modules model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) @property def is_serializable(self): # AWQ through auto-awq has been always serializable, except if the model is fused. if self.quantization_config.do_fuse: logger.warning("You cannot save an AWQ model that uses fused modules!") return False if self.quantization_config.version == AWQLinearVersion.EXLLAMA: logger.warning("You cannot save an AWQ model that uses Exllama backend!") return False return True @property def is_trainable(self): # AWQ supports PEFT fine-tuning from version 0.2.0 MIN_AWQ_VERSION_FOR_PEFT = "0.2.0" return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT)
transformers/src/transformers/quantizers/quantizer_awq.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizer_awq.py", "repo_id": "transformers", "token_count": 1974 }
388
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Time series distributional output classes and utilities. """ from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class AffineTransformed(TransformedDistribution): def __init__(self, base_distribution: Distribution, loc=None, scale=None, event_dim=0): self.scale = 1.0 if scale is None else scale self.loc = 0.0 if loc is None else loc super().__init__(base_distribution, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=event_dim)]) @property def mean(self): """ Returns the mean of the distribution. """ return self.base_dist.mean * self.scale + self.loc @property def variance(self): """ Returns the variance of the distribution. """ return self.base_dist.variance * self.scale**2 @property def stddev(self): """ Returns the standard deviation of the distribution. """ return self.variance.sqrt() class ParameterProjection(nn.Module): def __init__( self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs ) -> None: super().__init__(**kwargs) self.args_dim = args_dim self.proj = nn.ModuleList([nn.Linear(in_features, dim) for dim in args_dim.values()]) self.domain_map = domain_map def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: params_unbounded = [proj(x) for proj in self.proj] return self.domain_map(*params_unbounded) class LambdaLayer(nn.Module): def __init__(self, function): super().__init__() self.function = function def forward(self, x, *args): return self.function(x, *args) class DistributionOutput: distribution_class: type in_features: int args_dim: Dict[str, int] def __init__(self, dim: int = 1) -> None: self.dim = dim self.args_dim = {k: dim * self.args_dim[k] for k in self.args_dim} def _base_distribution(self, distr_args): if self.dim == 1: return self.distribution_class(*distr_args) else: return Independent(self.distribution_class(*distr_args), 1) def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: distr = self._base_distribution(distr_args) if loc is None and scale is None: return distr else: return AffineTransformed(distr, loc=loc, scale=scale, event_dim=self.event_dim) @property def event_shape(self) -> Tuple: r""" Shape of each individual event contemplated by the distributions that this object constructs. """ return () if self.dim == 1 else (self.dim,) @property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object constructs. """ return len(self.event_shape) @property def value_in_support(self) -> float: r""" A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By default 0.0. This value will be used when padding data series. """ return 0.0 def get_parameter_projection(self, in_features: int) -> nn.Module: r""" Return the parameter projection layer that maps the input to the appropriate parameters of the distribution. """ return ParameterProjection( in_features=in_features, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map), ) def domain_map(self, *args: torch.Tensor): r""" Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape. """ raise NotImplementedError() @staticmethod def squareplus(x: torch.Tensor) -> torch.Tensor: r""" Helper to map inputs to the positive orthant by applying the square-plus operation. Reference: https://twitter.com/jon_barron/status/1387167648669048833 """ return (x + torch.sqrt(torch.square(x) + 4.0)) / 2.0 class StudentTOutput(DistributionOutput): """ Student-T distribution output class. """ args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} distribution_class: type = StudentT @classmethod def domain_map(cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) df = 2.0 + cls.squareplus(df) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class NormalOutput(DistributionOutput): """ Normal distribution output class. """ args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distribution_class: type = Normal @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class NegativeBinomialOutput(DistributionOutput): """ Negative Binomial distribution output class. """ args_dim: Dict[str, int] = {"total_count": 1, "logits": 1} distribution_class: type = NegativeBinomial @classmethod def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor): total_count = cls.squareplus(total_count) return total_count.squeeze(-1), logits.squeeze(-1) def _base_distribution(self, distr_args) -> Distribution: total_count, logits = distr_args if self.dim == 1: return self.distribution_class(total_count=total_count, logits=logits) else: return Independent(self.distribution_class(total_count=total_count, logits=logits), 1) # Overwrites the parent class method. We cannot scale using the affine # transformation since negative binomial should return integers. Instead # we scale the parameters. def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None ) -> Distribution: total_count, logits = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
transformers/src/transformers/time_series_utils.py/0
{ "file_path": "transformers/src/transformers/time_series_utils.py", "repo_id": "transformers", "token_count": 2917 }
389
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406] IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225] IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5] IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5] OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
transformers/src/transformers/utils/constants.py/0
{ "file_path": "transformers/src/transformers/utils/constants.py", "repo_id": "transformers", "token_count": 162 }
390
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class BaseImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"]) class ViTImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
transformers/src/transformers/utils/dummy_torchvision_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_torchvision_objects.py", "repo_id": "transformers", "token_count": 175 }
391
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}}. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the {{cookiecutter.modelname}} tokenizer. """ import unittest {% if cookiecutter.has_slow_class == "True" and cookiecutter.has_fast_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}TokenizerFast {% elif cookiecutter.has_slow_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer {% elif cookiecutter.has_fast_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}TokenizerFast {% endif -%} {% if cookiecutter.has_fast_class == "True" and cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} from transformers.testing_utils import require_sentencepiece, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_sentencepiece @require_tokenizers {% elif cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} from transformers.testing_utils import require_sentencepiece from ...test_tokenization_common import TokenizerTesterMixin @require_sentencepiece {% elif cookiecutter.has_fast_class == "True" -%} from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers {% else -%} from ...test_tokenization_common import TokenizerTesterMixin {% endif -%} class {{cookiecutter.camelcase_modelname}}TokenizationTest(TokenizerTesterMixin, unittest.TestCase): {% if cookiecutter.has_slow_class == "True" -%} tokenizer_class = {{cookiecutter.camelcase_modelname}}Tokenizer test_slow_tokenizer = True {% else -%} tokenizer_class = None test_slow_tokenizer = False {% endif -%} {% if cookiecutter.has_fast_class == "True" -%} rust_tokenizer_class = {{cookiecutter.camelcase_modelname}}TokenizerFast test_rust_tokenizer = True {% else -%} rust_tokenizer_class = None test_rust_tokenizer = False {% endif -%} {% if cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} test_sentencepiece = True {% endif -%} # TODO: Check in `TokenizerTesterMixin` if other attributes need to be changed def setUp(self): super().setUp() raise NotImplementedError( "Here you have to implement the saving of a toy tokenizer in " "`self.tmpdirname`." ) # TODO: add tests with hard-coded target values
transformers/templates/adding_a_missing_tokenization_test/cookiecutter-template-{{cookiecutter.modelname}}/test_tokenization_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_missing_tokenization_test/cookiecutter-template-{{cookiecutter.modelname}}/test_tokenization_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 1016 }
392
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import pytest from transformers import load_tool from transformers.agents.agent_types import AGENT_TYPE_MAPPING from transformers.agents.default_tools import BASE_PYTHON_TOOLS from transformers.agents.python_interpreter import InterpreterError, evaluate_python_code from .test_tools_common import ToolTesterMixin # Fake function we will use as tool def add_two(x): return x + 2 class PythonInterpreterToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("python_interpreter", authorized_imports=["sqlite3"]) self.tool.setup() def test_exact_match_arg(self): result = self.tool("(2 / 2) * 4") self.assertEqual(result, "4.0") def test_exact_match_kwarg(self): result = self.tool(code="(2 / 2) * 4") self.assertEqual(result, "4.0") def test_agent_type_output(self): inputs = ["2 * 2"] output = self.tool(*inputs) output_type = AGENT_TYPE_MAPPING[self.tool.output_type] self.assertTrue(isinstance(output, output_type)) def test_agent_types_inputs(self): inputs = ["2 * 2"] _inputs = [] for _input, expected_input in zip(inputs, self.tool.inputs.values()): input_type = expected_input["type"] if isinstance(input_type, list): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error output = self.tool(*inputs) output_type = AGENT_TYPE_MAPPING[self.tool.output_type] self.assertTrue(isinstance(output, output_type)) class PythonInterpreterTester(unittest.TestCase): def test_evaluate_assign(self): code = "x = 3" state = {} result = evaluate_python_code(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3, "print_outputs": ""}) code = "x = y" state = {"y": 5} result = evaluate_python_code(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 5, "y": 5, "print_outputs": ""}) code = "a=1;b=None" result = evaluate_python_code(code, {}, state={}) # evaluate returns the value of the last assignment. assert result is None def test_assignment_cannot_overwrite_tool(self): code = "print = '3'" with pytest.raises(InterpreterError) as e: evaluate_python_code(code, {"print": print}, state={}) assert "Cannot assign to name 'print': doing this would erase the existing tool!" in str(e) def test_evaluate_call(self): code = "y = add_two(x)" state = {"x": 3} result = evaluate_python_code(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "y": 5, "print_outputs": ""}) # Should not work without the tool with pytest.raises(InterpreterError) as e: evaluate_python_code(code, {}, state=state) assert "tried to execute add_two" in str(e.value) def test_evaluate_constant(self): code = "x = 3" state = {} result = evaluate_python_code(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3, "print_outputs": ""}) def test_evaluate_dict(self): code = "test_dict = {'x': x, 'y': add_two(x)}" state = {"x": 3} result = evaluate_python_code(code, {"add_two": add_two}, state=state) self.assertDictEqual(result, {"x": 3, "y": 5}) self.assertDictEqual(state, {"x": 3, "test_dict": {"x": 3, "y": 5}, "print_outputs": ""}) def test_evaluate_expression(self): code = "x = 3\ny = 5" state = {} result = evaluate_python_code(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 3, "y": 5, "print_outputs": ""}) def test_evaluate_f_string(self): code = "text = f'This is x: {x}.'" state = {"x": 3} result = evaluate_python_code(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(state, {"x": 3, "text": "This is x: 3.", "print_outputs": ""}) def test_evaluate_if(self): code = "if x <= 3:\n y = 2\nelse:\n y = 5" state = {"x": 3} result = evaluate_python_code(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(state, {"x": 3, "y": 2, "print_outputs": ""}) state = {"x": 8} result = evaluate_python_code(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 8, "y": 5, "print_outputs": ""}) def test_evaluate_list(self): code = "test_list = [x, add_two(x)]" state = {"x": 3} result = evaluate_python_code(code, {"add_two": add_two}, state=state) self.assertListEqual(result, [3, 5]) self.assertDictEqual(state, {"x": 3, "test_list": [3, 5], "print_outputs": ""}) def test_evaluate_name(self): code = "y = x" state = {"x": 3} result = evaluate_python_code(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3, "y": 3, "print_outputs": ""}) def test_evaluate_subscript(self): code = "test_list = [x, add_two(x)]\ntest_list[1]" state = {"x": 3} result = evaluate_python_code(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "test_list": [3, 5], "print_outputs": ""}) code = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" state = {"x": 3} result = evaluate_python_code(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "test_dict": {"x": 3, "y": 5}, "print_outputs": ""}) def test_evaluate_for(self): code = "x = 0\nfor i in range(3):\n x = i" state = {} result = evaluate_python_code(code, {"range": range}, state=state) assert result == 2 self.assertDictEqual(state, {"x": 2, "i": 2, "print_outputs": ""}) def test_evaluate_binop(self): code = "y + x" state = {"x": 3, "y": 6} result = evaluate_python_code(code, {}, state=state) assert result == 9 self.assertDictEqual(state, {"x": 3, "y": 6, "print_outputs": ""}) def test_recursive_function(self): code = """ def recur_fibo(n): if n <= 1: return n else: return(recur_fibo(n-1) + recur_fibo(n-2)) recur_fibo(6)""" result = evaluate_python_code(code, {}, state={}) assert result == 8 def test_evaluate_string_methods(self): code = "'hello'.replace('h', 'o').split('e')" result = evaluate_python_code(code, {}, state={}) assert result == ["o", "llo"] def test_evaluate_slicing(self): code = "'hello'[1:3][::-1]" result = evaluate_python_code(code, {}, state={}) assert result == "le" def test_access_attributes(self): code = "integer = 1\nobj_class = integer.__class__\nobj_class" result = evaluate_python_code(code, {}, state={}) assert result is int def test_list_comprehension(self): code = "sentence = 'THESEAGULL43'\nmeaningful_sentence = '-'.join([char.lower() for char in sentence if char.isalpha()])" result = evaluate_python_code(code, {}, state={}) assert result == "t-h-e-s-e-a-g-u-l-l" def test_string_indexing(self): code = """text_block = [ "THESE", "AGULL" ] sentence = "" for block in text_block: for col in range(len(text_block[0])): sentence += block[col] """ result = evaluate_python_code(code, {"len": len, "range": range}, state={}) assert result == "THESEAGULL" def test_tuples(self): code = "x = (1, 2, 3)\nx[1]" result = evaluate_python_code(code, {}, state={}) assert result == 2 code = """ digits, i = [1, 2, 3], 1 digits[i], digits[i + 1] = digits[i + 1], digits[i]""" evaluate_python_code(code, {"range": range, "print": print, "int": int}, {}) code = """ def calculate_isbn_10_check_digit(number): total = sum((10 - i) * int(digit) for i, digit in enumerate(number)) remainder = total % 11 check_digit = 11 - remainder if check_digit == 10: return 'X' elif check_digit == 11: return '0' else: return str(check_digit) # Given 9-digit numbers numbers = [ "478225952", "643485613", "739394228", "291726859", "875262394", "542617795", "031810713", "957007669", "871467426" ] # Calculate check digits for each number check_digits = [calculate_isbn_10_check_digit(number) for number in numbers] print(check_digits) """ state = {} evaluate_python_code( code, {"range": range, "print": print, "sum": sum, "enumerate": enumerate, "int": int, "str": str}, state ) def test_listcomp(self): code = "x = [i for i in range(3)]" result = evaluate_python_code(code, {"range": range}, state={}) assert result == [0, 1, 2] def test_break_continue(self): code = "for i in range(10):\n if i == 5:\n break\ni" result = evaluate_python_code(code, {"range": range}, state={}) assert result == 5 code = "for i in range(10):\n if i == 5:\n continue\ni" result = evaluate_python_code(code, {"range": range}, state={}) assert result == 9 def test_call_int(self): code = "import math\nstr(math.ceil(149))" result = evaluate_python_code(code, {"str": lambda x: str(x)}, state={}) assert result == "149" def test_lambda(self): code = "f = lambda x: x + 2\nf(3)" result = evaluate_python_code(code, {}, state={}) assert result == 5 def test_dictcomp(self): code = "x = {i: i**2 for i in range(3)}" result = evaluate_python_code(code, {"range": range}, state={}) assert result == {0: 0, 1: 1, 2: 4} code = "{num: name for num, name in {101: 'a', 102: 'b'}.items() if name not in ['a']}" result = evaluate_python_code(code, {"print": print}, state={}, authorized_imports=["pandas"]) assert result == {102: "b"} code = """ shifts = {'A': ('6:45', '8:00'), 'B': ('10:00', '11:45')} shift_minutes = {worker: ('a', 'b') for worker, (start, end) in shifts.items()} """ result = evaluate_python_code(code, {}, state={}) assert result == {"A": ("a", "b"), "B": ("a", "b")} def test_tuple_assignment(self): code = "a, b = 0, 1\nb" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == 1 def test_while(self): code = "i = 0\nwhile i < 3:\n i += 1\ni" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == 3 # test infinite loop code = "i = 0\nwhile i < 3:\n i -= 1\ni" with pytest.raises(InterpreterError) as e: evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert "iterations in While loop exceeded" in str(e) # test lazy evaluation code = """ house_positions = [0, 7, 10, 15, 18, 22, 22] i, n, loc = 0, 7, 30 while i < n and house_positions[i] <= loc: i += 1 """ state = {} evaluate_python_code(code, BASE_PYTHON_TOOLS, state=state) def test_generator(self): code = "a = [1, 2, 3, 4, 5]; b = (i**2 for i in a); list(b)" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == [1, 4, 9, 16, 25] def test_boolops(self): code = """if (not (a > b and a > c)) or d > e: best_city = "Brooklyn" else: best_city = "Manhattan" best_city """ result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}) assert result == "Brooklyn" code = """if d > e and a < b: best_city = "Brooklyn" elif d < e and a < b: best_city = "Sacramento" else: best_city = "Manhattan" best_city """ result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}) assert result == "Sacramento" def test_if_conditions(self): code = """char='a' if char.isalpha(): print('2')""" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == "2" def test_imports(self): code = "import math\nmath.sqrt(4)" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == 2.0 code = "from random import choice, seed\nseed(12)\nchoice(['win', 'lose', 'draw'])" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == "lose" code = "import time, re\ntime.sleep(0.1)" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result is None code = "from queue import Queue\nq = Queue()\nq.put(1)\nq.get()" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == 1 code = "import itertools\nlist(itertools.islice(range(10), 3))" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == [0, 1, 2] code = "import re\nre.search('a', 'abc').group()" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == "a" code = "import stat\nstat.S_ISREG(0o100644)" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result code = "import statistics\nstatistics.mean([1, 2, 3, 4, 4])" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == 2.8 code = "import unicodedata\nunicodedata.name('A')" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == "LATIN CAPITAL LETTER A" # Test submodules are handled properly, thus not raising error code = "import numpy.random as rd\nrng = rd.default_rng(12345)\nrng.random()" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}, authorized_imports=["numpy"]) code = "from numpy.random import default_rng as d_rng\nrng = d_rng(12345)\nrng.random()" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}, authorized_imports=["numpy"]) def test_additional_imports(self): code = "import numpy as np" evaluate_python_code(code, authorized_imports=["numpy"], state={}) code = "import numpy.random as rd" evaluate_python_code(code, authorized_imports=["numpy.random"], state={}) evaluate_python_code(code, authorized_imports=["numpy"], state={}) with pytest.raises(InterpreterError): evaluate_python_code(code, authorized_imports=["random"], state={}) def test_multiple_comparators(self): code = "0 <= -1 < 4 and 0 <= -5 < 4" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert not result code = "0 <= 1 < 4 and 0 <= -5 < 4" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert not result code = "0 <= 4 < 4 and 0 <= 3 < 4" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert not result code = "0 <= 3 < 4 and 0 <= 3 < 4" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result def test_print_output(self): code = "print('Hello world!')\nprint('Ok no one cares')" state = {} result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state=state) assert result == "Ok no one cares" assert state["print_outputs"] == "Hello world!\nOk no one cares\n" # test print in function code = """ print("1") def function(): print("2") function()""" state = {} evaluate_python_code(code, {"print": print}, state=state) assert state["print_outputs"] == "1\n2\n" def test_tuple_target_in_iterator(self): code = "for a, b in [('Ralf Weikert', 'Austria'), ('Samuel Seungwon Lee', 'South Korea')]:res = a.split()[0]" result = evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert result == "Samuel" def test_classes(self): code = """ class Animal: species = "Generic Animal" def __init__(self, name, age): self.name = name self.age = age def sound(self): return "The animal makes a sound." def __str__(self): return f"{self.name}, {self.age} years old" class Dog(Animal): species = "Canine" def __init__(self, name, age, breed): super().__init__(name, age) self.breed = breed def sound(self): return "The dog barks." def __str__(self): return f"{self.name}, {self.age} years old, {self.breed}" class Cat(Animal): def sound(self): return "The cat meows." def __str__(self): return f"{self.name}, {self.age} years old, {self.species}" # Testing multiple instances dog1 = Dog("Fido", 3, "Labrador") dog2 = Dog("Buddy", 5, "Golden Retriever") # Testing method with built-in function animals = [dog1, dog2, Cat("Whiskers", 2)] num_animals = len(animals) # Testing exceptions in methods class ExceptionTest: def method_that_raises(self): raise ValueError("An error occurred") try: exc_test = ExceptionTest() exc_test.method_that_raises() except ValueError as e: exception_message = str(e) # Collecting results dog1_sound = dog1.sound() dog1_str = str(dog1) dog2_sound = dog2.sound() dog2_str = str(dog2) cat = Cat("Whiskers", 2) cat_sound = cat.sound() cat_str = str(cat) """ state = {} evaluate_python_code(code, {"print": print, "len": len, "super": super, "str": str, "sum": sum}, state=state) # Assert results assert state["dog1_sound"] == "The dog barks." assert state["dog1_str"] == "Fido, 3 years old, Labrador" assert state["dog2_sound"] == "The dog barks." assert state["dog2_str"] == "Buddy, 5 years old, Golden Retriever" assert state["cat_sound"] == "The cat meows." assert state["cat_str"] == "Whiskers, 2 years old, Generic Animal" assert state["num_animals"] == 3 assert state["exception_message"] == "An error occurred" def test_variable_args(self): code = """ def var_args_method(self, *args, **kwargs): return sum(args) + sum(kwargs.values()) var_args_method(1, 2, 3, x=4, y=5) """ state = {} result = evaluate_python_code(code, {"sum": sum}, state=state) assert result == 15 def test_exceptions(self): code = """ def method_that_raises(self): raise ValueError("An error occurred") try: method_that_raises() except ValueError as e: exception_message = str(e) """ state = {} evaluate_python_code(code, {"print": print, "len": len, "super": super, "str": str, "sum": sum}, state=state) assert state["exception_message"] == "An error occurred" def test_subscript(self): code = "vendor = {'revenue': 31000, 'rent': 50312}; vendor['ratio'] = round(vendor['revenue'] / vendor['rent'], 2)" state = {} evaluate_python_code(code, {"min": min, "print": print, "round": round}, state=state) assert state["vendor"] == {"revenue": 31000, "rent": 50312, "ratio": 0.62} def test_print(self): code = "print(min([1, 2, 3]))" state = {} result = evaluate_python_code(code, {"min": min, "print": print}, state=state) assert result == "1" assert state["print_outputs"] == "1\n" def test_types_as_objects(self): code = "type_a = float(2); type_b = str; type_c = int" state = {} result = evaluate_python_code(code, {"float": float, "str": str, "int": int}, state=state) assert result is int def test_tuple_id(self): code = """ food_items = {"apple": 2, "banana": 3, "orange": 1, "pear": 1} unique_food_items = [item for item, count in food_item_counts.items() if count == 1] """ state = {} result = evaluate_python_code(code, {}, state=state) assert result == ["orange", "pear"] def test_nonsimple_augassign(self): code = """ counts_dict = {'a': 0} counts_dict['a'] += 1 counts_list = [1, 2, 3] counts_list += [4, 5, 6] class Counter: self.count = 0 a = Counter() a.count += 1 """ state = {} evaluate_python_code(code, {}, state=state) assert state["counts_dict"] == {"a": 1} assert state["counts_list"] == [1, 2, 3, 4, 5, 6] assert state["a"].count == 1 def test_adding_int_to_list_raises_error(self): code = """ counts = [1, 2, 3] counts += 1""" with pytest.raises(InterpreterError) as e: evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert "Cannot add non-list value 1 to a list." in str(e) def test_error_highlights_correct_line_of_code(self): code = """# Ok this is a very long code # It has many commented lines a = 1 b = 2 # Here is another piece counts = [1, 2, 3] counts += 1 b += 1""" with pytest.raises(InterpreterError) as e: evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert "Evaluation stopped at line 'counts += 1" in str(e) def test_assert(self): code = """ assert 1 == 1 assert 1 == 2 """ with pytest.raises(AssertionError) as e: evaluate_python_code(code, BASE_PYTHON_TOOLS, state={}) assert "1 == 2" in str(e) and "1 == 1" not in str(e) def test_with_context_manager(self): code = """ class SimpleLock: def __init__(self): self.locked = False def __enter__(self): self.locked = True return self def __exit__(self, exc_type, exc_value, traceback): self.locked = False lock = SimpleLock() with lock as l: assert l.locked == True assert lock.locked == False """ state = {} tools = {} evaluate_python_code(code, tools, state=state) def test_default_arg_in_function(self): code = """ def f(a, b=333, n=1000): return b + n n = f(1, n=667) """ res = evaluate_python_code(code, {}, {}) assert res == 1000 def test_set(self): code = """ S1 = {'a', 'b', 'c'} S2 = {'b', 'c', 'd'} S3 = S1.difference(S2) S4 = S1.intersection(S2) """ state = {} evaluate_python_code(code, {}, state=state) assert state["S3"] == {"a"} assert state["S4"] == {"b", "c"} def test_break(self): code = """ i = 0 while True: i+= 1 if i==3: break i""" result = evaluate_python_code(code, {"print": print, "round": round}, state={}) assert result == 3 def test_return(self): # test early returns code = """ def add_one(n, shift): if True: return n + shift return n add_one(1, 1) """ state = {} result = evaluate_python_code(code, {"print": print, "range": range, "ord": ord, "chr": chr}, state=state) assert result == 2 # test returning None code = """ def returns_none(a): return returns_none(1) """ state = {} result = evaluate_python_code(code, {"print": print, "range": range, "ord": ord, "chr": chr}, state=state) assert result is None def test_nested_for_loop(self): code = """ all_res = [] for i in range(10): subres = [] for j in range(i): subres.append(j) all_res.append(subres) out = [i for sublist in all_res for i in sublist] out[:10] """ state = {} result = evaluate_python_code(code, {"print": print, "range": range}, state=state) assert result == [0, 0, 1, 0, 1, 2, 0, 1, 2, 3] def test_pandas(self): code = """ import pandas as pd df = pd.DataFrame.from_dict({'SetCount': ['5', '4', '5'], 'Quantity': [1, 0, -1]}) df['SetCount'] = pd.to_numeric(df['SetCount'], errors='coerce') parts_with_5_set_count = df[df['SetCount'] == 5.0] parts_with_5_set_count[['Quantity', 'SetCount']].values[1] """ state = {} result = evaluate_python_code(code, {}, state=state, authorized_imports=["pandas"]) assert np.array_equal(result, [-1, 5]) code = """ import pandas as pd df = pd.DataFrame.from_dict({"AtomicNumber": [111, 104, 105], "ok": [0, 1, 2]}) print("HH0") # Filter the DataFrame to get only the rows with outdated atomic numbers filtered_df = df.loc[df['AtomicNumber'].isin([104])] """ result = evaluate_python_code(code, {"print": print}, state={}, authorized_imports=["pandas"]) assert np.array_equal(result.values[0], [104, 1]) code = """import pandas as pd data = pd.DataFrame.from_dict([ {"Pclass": 1, "Survived": 1}, {"Pclass": 2, "Survived": 0}, {"Pclass": 2, "Survived": 1} ]) survival_rate_by_class = data.groupby('Pclass')['Survived'].mean() """ result = evaluate_python_code(code, {}, state={}, authorized_imports=["pandas"]) assert result.values[1] == 0.5 def test_starred(self): code = """ from math import radians, sin, cos, sqrt, atan2 def haversine(lat1, lon1, lat2, lon2): R = 6371000 # Radius of the Earth in meters lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2]) dlat = lat2 - lat1 dlon = lon2 - lon1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = R * c return distance coords_geneva = (46.1978, 6.1342) coords_barcelona = (41.3869, 2.1660) distance_geneva_barcelona = haversine(*coords_geneva, *coords_barcelona) """ result = evaluate_python_code(code, {"print": print, "map": map}, state={}, authorized_imports=["math"]) assert round(result, 1) == 622395.4 def test_for(self): code = """ shifts = { "Worker A": ("6:45 pm", "8:00 pm"), "Worker B": ("10:00 am", "11:45 am") } shift_intervals = {} for worker, (start, end) in shifts.items(): shift_intervals[worker] = end shift_intervals """ result = evaluate_python_code(code, {"print": print, "map": map}, state={}) assert result == {"Worker A": "8:00 pm", "Worker B": "11:45 am"}
transformers/tests/agents/test_python_interpreter.py/0
{ "file_path": "transformers/tests/agents/test_python_interpreter.py", "repo_id": "transformers", "token_count": 12009 }
393
{ "add_copied_from": true, "old_model_type": "distilbert", "new_model_patterns": { "model_name": "BERT New", "checkpoint": "huggingface/bert-new-base", "model_type": "bert-new", "model_lower_cased": "bert_new", "model_camel_cased": "BertNew", "model_upper_cased": "BERT_NEW", "config_class": "BertNewConfig", "tokenizer_class": "DistilBertTokenizer" }, "frameworks": [ "pt", "tf", "flax" ] }
transformers/tests/fixtures/add_distilbert_like_config.json/0
{ "file_path": "transformers/tests/fixtures/add_distilbert_like_config.json", "repo_id": "transformers", "token_count": 266 }
394
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def ids_tensor(shape, vocab_size, rng=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = np.array(values, dtype=jnp.int32).reshape(shape) return output def random_attention_mask(shape, rng=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=rng) # make sure that at least one token is attended to for each batch attn_mask[:, -1] = 1 return attn_mask @require_flax class FlaxGenerationTesterMixin: model_tester = None all_generative_model_classes = () def _get_input_ids_and_config(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 max_batch_size = 2 sequence_length = inputs["input_ids"].shape[-1] // 2 input_ids = inputs["input_ids"][:max_batch_size, :sequence_length] attention_mask = jnp.ones_like(input_ids) attention_mask = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens max_length = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` config.pad_token_id = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def test_greedy_generate_pt_fx(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = False config.max_length = max_length config.decoder_start_token_id = 0 for model_class in self.all_generative_model_classes: flax_model = model_class(config) pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, flax_model.params) flax_generation_outputs = flax_model.generate(input_ids).sequences pt_generation_outputs = pt_model.generate(torch.tensor(input_ids, dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: flax_generation_outputs = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist()) def test_greedy_generate(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = False config.max_length = max_length for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_sample_generate(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = True config.max_length = max_length for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_beam_search_generate(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = False config.max_length = max_length config.num_beams = 2 for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_beam_search_generate_num_return_sequences(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = False config.max_length = max_length config.num_beams = 2 config.num_return_sequences = 2 for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences) def test_sample_generate_logits_warper(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.do_sample = True config.max_length = max_length config.temperature = 0.8 config.top_k = 10 config.top_p = 0.3 config.min_length = 1 config.forced_bos_token_id = 8 config.forced_eos_token_id = 9 for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_greedy_generate_logits_warper(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.max_length = max_length config.min_length = 1 config.forced_bos_token_id = 8 config.forced_eos_token_id = 9 for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_beam_search_generate_logits_warper(self): config, input_ids, _, max_length = self._get_input_ids_and_config() config.max_length = max_length config.num_beams = 2 config.min_length = 1 config.forced_bos_token_id = 8 config.forced_eos_token_id = 9 for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_greedy_generate_attn_mask(self): config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() # pad attention mask on the left attention_mask = attention_mask.at[(0, 0)].set(0) config.do_sample = False config.max_length = max_length for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_sample_generate_attn_mask(self): config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() # pad attention mask on the left attention_mask = attention_mask.at[(0, 0)].set(0) config.do_sample = True config.max_length = max_length for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def test_beam_search_generate_attn_mask(self): config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() # pad attention mask on the left attention_mask = attention_mask.at[(0, 0)].set(0) config.num_beams = 2 config.max_length = max_length for model_class in self.all_generative_model_classes: model = model_class(config) generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences self.assertEqual(generation_outputs.shape[-1], max_length) jit_generate = jit(model.generate) jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) @require_flax class FlaxGenerationIntegrationTests(unittest.TestCase): def test_validate_generation_inputs(self): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") model = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") encoder_input_str = "Hello world" input_ids = tokenizer(encoder_input_str, return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(ValueError, "do_samples"): model.generate(input_ids, do_samples=True) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(ValueError, "foo"): fake_model_kwargs = {"foo": "bar"} model.generate(input_ids, **fake_model_kwargs)
transformers/tests/generation/test_flax_utils.py/0
{ "file_path": "transformers/tests/generation/test_flax_utils.py", "repo_id": "transformers", "token_count": 5082 }
395
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch BEiT model.""" import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( BeitBackbone, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class BeitModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=4, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[1, 2, 3, 4], out_features=["stage1", "stage2", "stage3", "stage4"], ): self.parent = parent self.vocab_size = vocab_size self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.out_features = out_features self.num_labels = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, out_features=self.out_features, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = BeitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_backbone(self, config, pixel_values, labels, pixel_labels): model = BeitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) expected_height = expected_width = self.image_size // config.patch_size self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width] ) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = BeitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width] ) # verify channels self.parent.assertEqual(len(model.channels), 1) def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels): model = BeitForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = BeitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = BeitForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = BeitForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = BeitModelTester(self) self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds") def test_inputs_embeds(self): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="BEiT does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(), "BeitForMaskedImageModeling", ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(), "BeitForMaskedImageModeling", ] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def test_model_from_pretrained(self): model_name = "microsoft/beit-base-patch16-224" model = BeitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BeitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def test_inference_masked_image_modeling_head(self): model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device) image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device) # prepare bool_masked_pos bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 196, 8192)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(torch_device) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2)) @slow def test_inference_image_classification_head_imagenet_1k(self): model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 281 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_image_classification_head_imagenet_22k(self): model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 21841)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 2396 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_semantic_segmentation(self): model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") model = model.to(torch_device) image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image = Image.open(ds[0]["file"]) inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 150, 160, 160)) self.assertEqual(logits.shape, expected_shape) is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_9: expected_slice = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ], device=torch_device, ) else: expected_slice = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) @slow def test_post_processing_semantic_segmentation(self): model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") model = model.to(torch_device) image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image = Image.open(ds[0]["file"]) inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((160, 160)) self.assertEqual(segmentation[0].shape, expected_shape) @slow def test_inference_interpolate_pos_encoding(self): model_name = "microsoft/beit-base-patch16-224-pt22k" model = BeitModel.from_pretrained(model_name, **{"use_absolute_position_embeddings": True}).to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") processor = BeitImageProcessor.from_pretrained(model_name) inputs = processor(images=image, return_tensors="pt", size={"height": 480, "width": 480}) pixel_values = inputs.pixel_values.to(torch_device) # with interpolate_pos_encoding being False an exception should be raised with higher resolution # images than what the model supports. self.assertFalse(processor.do_center_crop) with torch.no_grad(): with self.assertRaises(ValueError, msg="doesn't match model"): model(pixel_values, interpolate_pos_encoding=False) # with interpolate_pos_encoding being True the model should process the higher resolution image # successfully and produce the expected output. with torch.no_grad(): outputs = model(pixel_values, interpolate_pos_encoding=True) expected_shape = torch.Size((1, 1801, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) @require_torch class BeitBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (BeitBackbone,) if is_torch_available() else () config_class = BeitConfig def setUp(self): self.model_tester = BeitModelTester(self)
transformers/tests/models/beit/test_modeling_beit.py/0
{ "file_path": "transformers/tests/models/beit/test_modeling_beit.py", "repo_id": "transformers", "token_count": 10138 }
396
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch BlenderbotSmall model.""" import tempfile import unittest from transformers import BlenderbotSmallConfig, is_torch_available from transformers.testing_utils import ( require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallTokenizer from transformers.models.blenderbot_small.modeling_blenderbot_small import ( BlenderbotSmallDecoder, BlenderbotSmallEncoder, BlenderbotSmallForCausalLM, ) def prepare_blenderbot_small_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class BlenderbotSmallModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_blenderbot_small_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BlenderbotSmallModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = BlenderbotSmallModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = BlenderbotSmallEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = BlenderbotSmallDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class BlenderbotSmallModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (BlenderbotSmallModel, BlenderbotSmallForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (BlenderbotSmallForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BlenderbotSmallModel, "summarization": BlenderbotSmallForConditionalGeneration, "text-generation": BlenderbotSmallForCausalLM, "text2text-generation": BlenderbotSmallForConditionalGeneration, "translation": BlenderbotSmallForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return pipeline_test_casse_name == "TextGenerationPipelineTests" def setUp(self): self.model_tester = BlenderbotSmallModelTester(self) self.config_tester = ConfigTester(self, config_class=BlenderbotSmallConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = BlenderbotSmallForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) @require_torch class Blenderbot90MIntegrationTests(unittest.TestCase): ckpt = "facebook/blenderbot-90M" @cached_property def model(self): model = BlenderbotSmallForConditionalGeneration.from_pretrained(self.ckpt).to(torch_device) if torch_device == "cuda": model = model.half() return model @cached_property def tokenizer(self): return BlenderbotSmallTokenizer.from_pretrained(self.ckpt) @slow def test_90_generation_from_long_input(self): src_text = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel" " like i'm going to throw up.\nand why is that?" ] model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device) assert isinstance(self.tokenizer, BlenderbotSmallTokenizer) generated_ids = self.model.generate(**model_inputs)[0] reply = self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) assert reply in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", ) @slow def test_90_generation_from_short_input(self): model_inputs = self.tokenizer(["sam"], return_tensors="pt").to(torch_device) generated_utterances = self.model.generate(**model_inputs) clean_txt = self.tokenizer.decode( generated_utterances[0], skip_special_tokens=True, clean_up_tokenization_spaces=True ) assert clean_txt in ( "have you ever been to a sam club? it's a great club in the south.", "have you ever heard of sam harris? he's an american singer, songwriter, and actor.", ) class BlenderbotSmallStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = BlenderbotSmallDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = BlenderbotSmallDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class BlenderbotSmallStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BlenderbotSmallDecoder, BlenderbotSmallForCausalLM) if is_torch_available() else () all_generative_model_classes = (BlenderbotSmallForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = BlenderbotSmallStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=BlenderbotSmallConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) @unittest.skip(reason="decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): return
transformers/tests/models/blenderbot_small/test_modeling_blenderbot_small.py/0
{ "file_path": "transformers/tests/models/blenderbot_small/test_modeling_blenderbot_small.py", "repo_id": "transformers", "token_count": 9804 }
397
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import BloomConfig, BloomTokenizerFast, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax.numpy as jnp from transformers import FlaxBloomForCausalLM, FlaxBloomModel def prepare_bloom_inputs_dict(config, input_ids, attention_mask=None): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_flax class FlaxBloomModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, n_layer=2, n_head=4, hidden_act="gelu", hidden_dropout=0.1, attention_probs_dropout_prob=0.1, eos_token_id=2, pad_token_id=1, bos_token_id=0, initializer_range=0.02, apply_residual_connection_post_layernorm=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = n_layer self.num_attention_heads = n_head self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_probs_dropout_prob = attention_probs_dropout_prob self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.initializer_range = initializer_range self.is_encoder_decoder = False self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) config = BloomConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_probs_dropout_prob, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=False, use_cache=False, ) inputs_dict = prepare_bloom_inputs_dict(config, input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids = inputs_dict["input_ids"] attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4") past_key_values = model.init_cache(input_ids.shape[0], max_length) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, ) outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids, attention_mask = ( inputs_dict["input_ids"], inputs_dict["attention_mask"], ) attention_mask_cache = jnp.concatenate( [ attention_mask, jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_length) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, ) outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxBloomModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): all_model_classes = (FlaxBloomModel, FlaxBloomForCausalLM) if is_flax_available() else () all_generative_model_classes = () if is_flax_available() else () def setUp(self): self.model_tester = FlaxBloomModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("bigscience/bloom-560m") input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @slow @require_flax class FlaxBloomGenerationTest(unittest.TestCase): all_model_classes = (FlaxBloomForCausalLM,) if is_flax_available() else () all_generative_model_classes = () if is_flax_available() else () def setUp(self): self.model_id = "bigscience/bloom-560m" self.tokenizer = BloomTokenizerFast.from_pretrained(self.model_id, padding_side="left") self.model_tester = FlaxBloomModelTester(self) self.model = FlaxBloomForCausalLM.from_pretrained(self.model_id, from_pt=True, revision="gs555750") def test_model_batched_gen(self): # tests if the model outputs the same generation for the same batched input input_sentences = [ "Hello there is this string is definitely longer I believe that", "Hello there is this string is definitely longer I believe that", ] inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True) sequences_fx = self.model.generate(**inputs, max_length=20).sequences self.assertEqual(sequences_fx[0].tolist(), sequences_fx[1].tolist()) def test_model_batched_padding_left(self): # tests if the model outputs the same generation for an input that is part of a batch # and a single input input_sentences_batch = [ "Hello there is this string is definitely longer I believe that", "Hi I want to order", ] inputs = self.tokenizer(input_sentences_batch, return_tensors="np", padding=True, truncation=True) sequences_fx_batch = self.model.generate(**inputs, max_length=20).sequences input_sentence_simple = "Hi I want to order" inputs_simple = self.tokenizer(input_sentence_simple, return_tensors="np") sequences_fx_simple = self.model.generate(**inputs_simple, max_length=20).sequences self.assertEqual(sequences_fx_batch[1][6:].tolist(), sequences_fx_simple[0][:-6].tolist()) def test_batch_generated_text(self): input_sentences = [ "Hello what is", "Running a quick test with the", ] inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True) generated_ids = self.model.generate(**inputs, max_length=20).sequences generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # these generations match those of the PyTorch model, ensuring correctness EXPECTED_GENERATIONS = [ "Hello what is the best way to get the data from the server? I have tried", "Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2", ] self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
transformers/tests/models/bloom/test_modeling_flax_bloom.py/0
{ "file_path": "transformers/tests/models/bloom/test_modeling_flax_bloom.py", "repo_id": "transformers", "token_count": 4307 }
398
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Cohere model.""" import unittest from transformers import CohereConfig, is_torch_available from transformers.testing_utils import ( require_bitsandbytes, require_torch, require_torch_multi_gpu, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, CohereForCausalLM, CohereModel # Copied from transformers.tests.models.llama.LlamaModelTester with Llama->Cohere class CohereModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels # Ignore copy def get_config(self): return CohereConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, eos_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = CohereModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = CohereModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = CohereForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = CohereForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class CohereModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CohereModel, CohereForCausalLM) if is_torch_available() else () all_generative_model_classes = (CohereForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": CohereModel, "text-generation": CohereForCausalLM, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False fx_compatible = True # Need to use `0.8` instead of `0.9` for `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.7, 0.8] def setUp(self): self.model_tester = CohereModelTester(self) self.config_tester = ConfigTester(self, config_class=CohereConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @require_bitsandbytes @require_torch_sdpa @require_torch_multi_gpu @slow def test_eager_matches_sdpa_generate(self): """ Overwritting the common test as the test is flaky on tiny models """ max_new_tokens = 30 model_id = "CohereForAI/c4ai-command-r-v01-4bit" tokenizer = AutoTokenizer.from_pretrained(model_id) model_sdpa = CohereForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = CohereForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, attn_implementation="eager", device_map="auto" ) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") texts = [ "hi here's a longer context, getting longer and", "Hello this is a very long sentence my friend, very long for real", "Today I am in Paris and", ] for padding_side in ["left", "right"]: tokenizer.padding_side = padding_side tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device) res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) with self.subTest(f"{padding_side}"): torch.testing.assert_close( res_eager, res_sdpa, msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}", ) @require_torch @slow class CohereIntegrationTest(unittest.TestCase): @require_torch_multi_gpu @require_bitsandbytes def test_batched_4bit(self): model_id = "CohereForAI/c4ai-command-r-v01-4bit" EXPECTED_TEXT = [ 'Hello today I am going to show you how to make a simple and easy card using the new stamp set called "Hello" from the Occasions catalog. This set is so versatile and can be used for many occasions. I used the new In', "Hi there, here we are again with another great collection of free fonts for your next project. This time we have gathered 10 free fonts that you can download and use in your designs. These fonts are perfect for any kind", ] model = CohereForCausalLM.from_pretrained(model_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token text = ["Hello today I am going to show you how to", "Hi there, here we are"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=40, do_sample=False) self.assertEqual(tokenizer.batch_decode(output, skip_special_tokens=True), EXPECTED_TEXT) @require_torch_sdpa def test_batched_small_model_logits(self): # Since the model is very large, we created a random cohere model so that we can do a simple # logits check on it. model_id = "hf-internal-testing/cohere-random" EXPECTED_LOGITS = torch.Tensor( [ [[0.0000, 0.1866, -0.1997], [0.0000, -0.0736, 0.1785], [0.0000, -0.1965, -0.0569]], [[0.0000, -0.0302, 0.1488], [0.0000, -0.0402, 0.1351], [0.0000, -0.0341, 0.1116]], ] ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) model = CohereForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) tokenizer.pad_token = tokenizer.eos_token text = ["Hello today I am going to show you how to", "Hi there, here we are"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) with torch.no_grad(): output = model(**inputs) logits = output.logits self.assertTrue(torch.allclose(EXPECTED_LOGITS, logits[:, :3, :3], rtol=1e-3, atol=1e-3))
transformers/tests/models/cohere/test_modeling_cohere.py/0
{ "file_path": "transformers/tests/models/cohere/test_modeling_cohere.py", "repo_id": "transformers", "token_count": 7168 }
399
# coding=utf-8 # Copyright 2018 HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.models.cpm.tokenization_cpm import CpmTokenizer from transformers.testing_utils import custom_tokenizers from ..xlnet.test_modeling_xlnet import XLNetModelTest @custom_tokenizers class CpmTokenizationTest(XLNetModelTest): # There is no `CpmModel` def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def test_pre_tokenization(self): tokenizer = CpmTokenizer.from_pretrained("TsinghuaAI/CPM-Generate") text = "Hugging Face大法好,谁用谁知道。" normalized_text = "Hugging Face大法好,谁用谁知道。<unk>" bpe_tokens = "▁Hu gg ing ▁ ▂ ▁F ace ▁大法 ▁好 ▁ , ▁谁 ▁用 ▁谁 ▁知 道 ▁ 。".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [13789, 13283, 1421, 8, 10, 1164, 13608, 16528, 63, 8, 9, 440, 108, 440, 121, 90, 8, 12, 0] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) reconstructed_text = tokenizer.decode(input_bpe_tokens) self.assertEqual(reconstructed_text, normalized_text)
transformers/tests/models/cpm/test_tokenization_cpm.py/0
{ "file_path": "transformers/tests/models/cpm/test_tokenization_cpm.py", "repo_id": "transformers", "token_count": 733 }
400
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.file_utils import is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import DPTImageProcessor class DPTImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): super().__init__() size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class DPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = DPTImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = DPTImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "size_divisor")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_padding(self): image_processing = self.image_processing_class(**self.image_processor_dict) image = np.random.randn(3, 249, 491) # test individual method image = image_processing.pad_image(image, size_divisor=4) self.assertTrue(image.shape[1] % 4 == 0) self.assertTrue(image.shape[2] % 4 == 0) # test by calling pixel_values = image_processing.preprocess( image, do_rescale=False, do_resize=False, do_pad=True, size_divisor=4, return_tensors="pt" ).pixel_values self.assertTrue(pixel_values.shape[2] % 4 == 0) self.assertTrue(pixel_values.shape[3] % 4 == 0) def test_keep_aspect_ratio(self): size = {"height": 512, "width": 512} image_processor = DPTImageProcessor(size=size, keep_aspect_ratio=True, ensure_multiple_of=32) image = np.zeros((489, 640, 3)) pixel_values = image_processor(image, return_tensors="pt").pixel_values self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
transformers/tests/models/dpt/test_image_processing_dpt.py/0
{ "file_path": "transformers/tests/models/dpt/test_image_processing_dpt.py", "repo_id": "transformers", "token_count": 2122 }
401
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer from transformers.testing_utils import slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin # using a different tiny model than the one used for default params defined in init to ensure proper testing FSMT_TINY2 = "stas/tiny-wmt19-en-ru" class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "stas/tiny-wmt19-en-de" tokenizer_class = FSMTTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.langs = ["en", "ru"] config = { "langs": self.langs, "src_vocab_size": 10, "tgt_vocab_size": 20, } self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"]) self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"]) config_file = os.path.join(self.tmpdirname, "tokenizer_config.json") self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) with open(config_file, "w") as fp: fp.write(json.dumps(config)) @cached_property def tokenizer_ru_en(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en") @cached_property def tokenizer_en_ru(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru") def test_online_tokenizer_config(self): """this just tests that the online tokenizer files get correctly fetched and loaded via its tokenizer_config.json and it's not slow so it's run by normal CI """ tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2) self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"]) self.assertEqual(tokenizer.src_vocab_size, 21) self.assertEqual(tokenizer.tgt_vocab_size, 21) def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_ru_en text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == text + [2] assert encoded_pair == text + [2] + text_2 + [2] @slow def test_match_encode_decode(self): tokenizer_enc = self.tokenizer_en_ru tokenizer_dec = self.tokenizer_ru_en targets = [ [ "Here's a little song I wrote. Don't worry, be happy.", [2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2], ], ["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]], ] # if data needs to be recreated or added, run: # import torch # model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe") # for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""") for src_text, tgt_input_ids in targets: encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None) self.assertListEqual(encoded_ids, tgt_input_ids) # and decode backward, using the reversed languages model decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True) self.assertEqual(decoded_text, src_text) @slow def test_tokenizer_lower(self): tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True) tokens = tokenizer.tokenize("USA is United States of America") expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"] self.assertListEqual(tokens, expected) @unittest.skip(reason="FSMTConfig.__init__ requires non-optional args") def test_torch_encode_plus_sent_to_model(self): pass @unittest.skip(reason="FSMTConfig.__init__ requires non-optional args") def test_np_encode_plus_sent_to_model(self): pass
transformers/tests/models/fsmt/test_tokenization_fsmt.py/0
{ "file_path": "transformers/tests/models/fsmt/test_tokenization_fsmt.py", "repo_id": "transformers", "token_count": 2974 }
402
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from huggingface_hub import hf_hub_download from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel if is_vision_available(): from PIL import Image class GitVisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=16, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return GitVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = GitVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GitVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (GitVisionModel,) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = GitVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="GIT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip def test_training(self): pass @unittest.skip def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "microsoft/git-base" model = GitVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class GitModelTester: def __init__( self, parent, num_channels=3, image_size=32, patch_size=16, batch_size=13, text_seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.batch_size = batch_size self.text_seq_length = text_seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # make sure the BOS, EOS and PAD tokens are within the vocab self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 # for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, input_ids, input_mask, pixel_values def get_config(self): """ Returns a tiny configuration by default. """ return GitConfig( vision_config={ "num_channels": self.num_channels, "image_size": self.image_size, "patch_size": self.patch_size, "hidden_size": self.hidden_size, "projection_dim": 32, "num_hidden_layers": self.num_hidden_layers, "num_attention_heads": self.num_attention_heads, }, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, ) def create_and_check_model(self, config, input_ids, input_mask, pixel_values): model = GitModel(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size)) # training result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertTrue(result.loss.item() > 0) def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids, attention_mask=input_mask, pixel_values=pixel_values, do_sample=False, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def _test_batched_generate_captioning(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids=None, # captioning -> no input_ids attention_mask=None, pixel_values=pixel_values, do_sample=False, min_length=20, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, pixel_values, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else () all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": GitModel, "image-to-text": GitForCausalLM, "text-generation": GitForCausalLM} if is_torch_available() else {} ) fx_compatible = False test_torchscript = False # special case for GitForCausalLM model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = GitModelTester(self) self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_beam_search_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_beam_search_generate(*config_and_inputs) def test_batched_generate_captioning(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_batched_generate_captioning(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "microsoft/git-base" model = GitModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="GIT has pixel values as additional input") def test_beam_search_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_greedy_generate_dict_outputs_use_cache(self): pass @require_torch @require_vision @slow class GitModelIntegrationTest(unittest.TestCase): def test_forward_pass(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, 201, 30522)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) def test_inference_image_captioning(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) outputs = model.generate( pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True ) generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 9)) self.assertEqual(outputs.sequences.shape, expected_shape) self.assertEqual(generated_caption, "two cats laying on a pink blanket") self.assertTrue(outputs.scores[-1].shape, expected_shape) expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device) self.assertTrue(torch.allclose(outputs.scores[-1][0, :3], expected_slice, atol=1e-4)) def test_visual_question_answering(self): processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa") model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa") model.to(torch_device) # prepare image file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") image = Image.open(file_path).convert("RGB") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # prepare question question = "what does the front of the bus say at the top?" input_ids = processor(text=question, add_special_tokens=False).input_ids input_ids = [processor.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 15)) self.assertEqual(generated_ids.shape, expected_shape) self.assertEqual(generated_caption, "what does the front of the bus say at the top? special") def test_batched_generation(self): processor = GitProcessor.from_pretrained("microsoft/git-base-coco") model = GitForCausalLM.from_pretrained("microsoft/git-base-coco") model.to(torch_device) # create batch of size 2 image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=[image, image], return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # we have to prepare `input_ids` with the same batch size as `pixel_values` start_token_id = model.config.bos_token_id input_ids = torch.tensor([[start_token_id], [start_token_id]], device=torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2)
transformers/tests/models/git/test_modeling_git.py/0
{ "file_path": "transformers/tests/models/git/test_modeling_git.py", "repo_id": "transformers", "token_count": 9543 }
403
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast, GroundingDinoProcessor from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_torch_available(): import torch from transformers.models.grounding_dino.modeling_grounding_dino import GroundingDinoObjectDetectionOutput if is_vision_available(): from PIL import Image from transformers import GroundingDinoImageProcessor @require_torch @require_vision class GroundingDinoProcessorTest(ProcessorTesterMixin, unittest.TestCase): from_pretrained_id = "IDEA-Research/grounding-dino-base" processor_class = GroundingDinoProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab_tokens = ["[UNK]","[CLS]","[SEP]","[PAD]","[MASK]","want","##want","##ed","wa","un","runn","##ing",",","low","lowest"] # fmt: skip self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "do_resize": True, "size": None, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], "do_rescale": True, "rescale_factor": 1 / 255, "do_pad": True, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) image_processor = GroundingDinoImageProcessor() tokenizer = BertTokenizer.from_pretrained(self.from_pretrained_id) processor = GroundingDinoProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) self.batch_size = 7 self.num_queries = 5 self.embed_dim = 5 self.seq_length = 5 # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_tokenizer with CLIP->Bert def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_rust_tokenizer with CLIP->Bert def get_rust_tokenizer(self, **kwargs): return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_image_processor with CLIP->GroundingDino def get_image_processor(self, **kwargs): return GroundingDinoImageProcessor.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.tearDown def tearDown(self): shutil.rmtree(self.tmpdirname) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.prepare_image_inputs def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def get_fake_grounding_dino_output(self): torch.manual_seed(42) return GroundingDinoObjectDetectionOutput( pred_boxes=torch.rand(self.batch_size, self.num_queries, 4), logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim), ) def get_fake_grounding_dino_input_ids(self): input_ids = torch.tensor([101, 1037, 4937, 1012, 102]) return torch.stack([input_ids] * self.batch_size, dim=0) def test_post_process_grounded_object_detection(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) grounding_dino_output = self.get_fake_grounding_dino_output() grounding_dino_input_ids = self.get_fake_grounding_dino_input_ids() post_processed = processor.post_process_grounded_object_detection( grounding_dino_output, grounding_dino_input_ids ) self.assertEqual(len(post_processed), self.batch_size) self.assertEqual(list(post_processed[0].keys()), ["scores", "labels", "boxes"]) self.assertEqual(post_processed[0]["boxes"].shape, (self.num_queries, 4)) self.assertEqual(post_processed[0]["scores"].shape, (self.num_queries,)) expected_scores = torch.tensor([0.7050, 0.7222, 0.7222, 0.6829, 0.7220]) self.assertTrue(torch.allclose(post_processed[0]["scores"], expected_scores, atol=1e-4)) expected_box_slice = torch.tensor([0.6908, 0.4354, 1.0737, 1.3947]) self.assertTrue(torch.allclose(post_processed[0]["boxes"][0], expected_box_slice, atol=1e-4)) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_save_load_pretrained_default with CLIP->GroundingDino,GroundingDinoTokenizer->BertTokenizer def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = GroundingDinoProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = GroundingDinoProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = GroundingDinoProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = GroundingDinoProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, GroundingDinoImageProcessor) self.assertIsInstance(processor_fast.image_processor, GroundingDinoImageProcessor) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_save_load_pretrained_additional_features with CLIP->GroundingDino,GroundingDinoTokenizer->BertTokenizer def test_save_load_pretrained_additional_features(self): processor = GroundingDinoProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = GroundingDinoProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, BertTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, GroundingDinoImageProcessor) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_image_processor with CLIP->GroundingDino def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_tokenizer with CLIP->GroundingDino def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_tokenizer_decode with CLIP->GroundingDino def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) # Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_model_input_names with CLIP->GroundingDino def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers/tests/models/grounding_dino/test_processor_grounding_dino.py/0
{ "file_path": "transformers/tests/models/grounding_dino/test_processor_grounding_dino.py", "repo_id": "transformers", "token_count": 4638 }
404
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch InstructBlipVideo model.""" import inspect import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import ( CONFIG_MAPPING, InstructBlipVideoConfig, InstructBlipVideoProcessor, InstructBlipVideoQFormerConfig, InstructBlipVideoVisionConfig, ) from transformers.testing_utils import ( require_accelerate, require_bitsandbytes, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask, ) if is_torch_available(): import torch from torch import nn from transformers import InstructBlipVideoForConditionalGeneration, InstructBlipVideoVisionModel if is_vision_available(): pass class InstructBlipVideoVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, frames=4, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.frames = frames self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size * self.frames, self.num_channels, self.image_size, self.image_size] ) config = self.get_config() return config, pixel_values def get_config(self): return InstructBlipVideoVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = InstructBlipVideoVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size * self.frames, num_patches + 1, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.frames, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class InstructBlipVideoVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as InstructBlipVideo's vision encoder does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (InstructBlipVideoVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = InstructBlipVideoVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=InstructBlipVideoVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="InstructBlipVideo's vision encoder does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="InstructBlipVideo's vision encoder is an nn.Embeddings layer") def test_model_get_set_embeddings(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip( reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training" ) def test_training(self): pass @unittest.skip( reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "Salesforce/instructblip-vicuna-7b" model = InstructBlipVideoVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class InstructBlipVideoQFormerModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask def get_config(self): return InstructBlipVideoQFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) # this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py class InstructBlipVideoTextModelDecoderOnlyTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, num_labels=3, word_embed_proj_dim=16, type_sequence_label_size=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.num_labels = num_labels self.type_sequence_label_size = type_sequence_label_size self.word_embed_proj_dim = word_embed_proj_dim self.is_encoder_decoder = False def prepare_config_and_inputs(self): config = self.get_config() input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3) input_ids[:, -1] = self.eos_token_id # Eos Token attention_mask = input_ids.ne(self.pad_token_id) return config, input_ids, attention_mask def get_config(self): return CONFIG_MAPPING["opt"]( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, is_encoder_decoder=False, word_embed_proj_dim=self.word_embed_proj_dim, ) # this model tester uses a decoder-only language model (OPT) class InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester: def __init__( self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10 ): if vision_kwargs is None: vision_kwargs = {} if qformer_kwargs is None: qformer_kwargs = {} if text_kwargs is None: text_kwargs = {} self.parent = parent self.vision_model_tester = InstructBlipVideoVisionModelTester(parent, **vision_kwargs) self.qformer_model_tester = InstructBlipVideoQFormerModelTester(parent, **qformer_kwargs) self.text_model_tester = InstructBlipVideoTextModelDecoderOnlyTester(parent, **text_kwargs) self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests self.is_training = is_training self.num_query_tokens = num_query_tokens def prepare_config_and_inputs(self): _, pixel_values = self.vision_model_tester.prepare_config_and_inputs() _, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs() _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() frames = self.vision_model_tester.frames _, c, h, w = pixel_values.shape pixel_values = pixel_values.reshape(-1, frames, c, h, w) config = self.get_config() return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values def get_config(self): return InstructBlipVideoConfig.from_vision_qformer_text_configs( vision_config=self.vision_model_tester.get_config(), qformer_config=self.qformer_model_tester.get_config(), text_config=self.text_model_tester.get_config(), num_query_tokens=self.num_query_tokens, ) def create_and_check_for_conditional_generation( self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values ): model = InstructBlipVideoForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model( pixel_values, input_ids=input_ids, attention_mask=attention_mask, qformer_input_ids=qformer_input_ids, qformer_attention_mask=qformer_attention_mask, ) expected_seq_length = ( self.num_query_tokens * self.vision_model_tester.frames ) + self.text_model_tester.seq_length self.parent.assertEqual( result.logits.shape, (self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "qformer_input_ids": qformer_input_ids, "qformer_attention_mask": qformer_attention_mask, "labels": input_ids, } return config, inputs_dict @require_torch class InstructBlipVideoForConditionalGenerationDecoderOnlyTest( ModelTesterMixin, GenerationTesterMixin, unittest.TestCase ): all_model_classes = (InstructBlipVideoForConditionalGeneration,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester(self) def test_for_conditional_generation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="InstructBlipVideoForConditionalGeneration doesn't support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Tied weights are tested in individual model tests") def test_tied_weights_keys(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="InstructBlipVideoModel does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="There's no base InstructBlipVideoModel") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="There's no base InstructBlipVideoModel") def test_save_load_fast_init_to_base(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_vision_qformer_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = InstructBlipVideoVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoQFormerConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) qformer_config = InstructBlipVideoQFormerConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict()) @slow def test_model_from_pretrained(self): model_name = "Salesforce/instructblip-vicuna-7b" model = InstructBlipVideoForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_video(): video_file = hf_hub_download( repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset" ) video = np.load(video_file)[::2] # sample every 2nd frame to get 4 frames total return video @require_vision @require_torch @require_bitsandbytes @require_accelerate @slow class InstructBlipVideoModelIntegrationTest(unittest.TestCase): def test_inference_vicuna_7b(self): processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") model = InstructBlipVideoForConditionalGeneration.from_pretrained( "Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True ) clip = prepare_video() prompt = "Explain what is happening in this short video." inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, torch.float16) # verify generation outputs = model.generate(**inputs, max_new_tokens=30) generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() self.assertEqual( generated_text, "a baby girl wearing glasses is reading a book on the bed 1080p", ) def test_expansion_in_processing(self): processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") model = InstructBlipVideoForConditionalGeneration.from_pretrained( "Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True ) clip = prepare_video() prompt = "Explain what is happening in this short video." # Make sure we will go the legacy path by setting these args to None processor.num_query_tokens = None model.config.video_token_index = None inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Add args to the config to trigger new logic when inputs are expanded in processing file processor.num_query_tokens = model.config.num_query_tokens processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<video>"]}) model.config.video_token_index = len(processor.tokenizer) - 1 model.resize_token_embeddings(len(processor.tokenizer), pad_to_multiple_of=64) # Generate again with new inputs inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15) generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip() self.assertTrue(generated_text_expanded == generated_text)
transformers/tests/models/instructblipvideo/test_modeling_instructblipvideo.py/0
{ "file_path": "transformers/tests/models/instructblipvideo/test_modeling_instructblipvideo.py", "repo_id": "transformers", "token_count": 10269 }
405
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch LeViT model.""" import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class LevitConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) class LevitModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, kernel_size=3, stride=2, padding=1, patch_size=16, hidden_sizes=[16, 32, 48], num_attention_heads=[1, 2, 3], depths=[2, 3, 4], key_dim=[8, 8, 8], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], initializer_range=0.02, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.hidden_sizes = hidden_sizes self.num_attention_heads = num_attention_heads self.depths = depths self.key_dim = key_dim self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.attention_ratio = attention_ratio self.mlp_ratio = mlp_ratio self.initializer_range = initializer_range self.down_ops = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.initializer_range = initializer_range def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def create_and_check_model(self, config, pixel_values, labels): model = LevitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) width = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = LevitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Levit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = LevitModelTester(self) self.config_tester = ConfigTester( self, config_class=LevitConfig, has_text_modality=False, common_properties=["image_size", "num_channels"] ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Levit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Levit does not support input and output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Levit does not output attentions") def test_attention_outputs(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depths) + 1 self.assertEqual(len(hidden_states), expected_num_layers) image_size = (self.model_tester.image_size, self.model_tester.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) width = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]), [ height * width, self.model_tester.hidden_sizes[0], ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # special case for LevitForImageClassificationWithTeacher model def test_training(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class.__name__ in MODEL_MAPPING_NAMES.values() or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class.__name__ not in [ *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def test_model_from_pretrained(self): model_name = "facebook/levit-128S" model = LevitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class LevitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LevitImageProcessor.from_pretrained("facebook/levit-128S") @slow def test_inference_image_classification_head(self): model = LevitForImageClassificationWithTeacher.from_pretrained("facebook/levit-128S").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([1.0448, -0.3745, -1.8317]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/levit/test_modeling_levit.py/0
{ "file_path": "transformers/tests/models/levit/test_modeling_levit.py", "repo_id": "transformers", "token_count": 7146 }
406
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Llava-NeXT-Video model.""" import gc import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import ( AutoProcessor, LlavaNextVideoConfig, LlavaNextVideoForConditionalGeneration, is_torch_available, is_vision_available, ) from transformers.testing_utils import ( require_bitsandbytes, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, ) if is_torch_available(): import torch else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class LlavaNextVideoVisionText2TextModelTester: def __init__( self, parent, ignore_index=-100, image_token_index=0, video_token_index=1, projector_hidden_act="gelu", seq_length=7, vision_feature_select_strategy="default", vision_feature_layer=-1, text_config={ "model_type": "llama", "seq_length": 7, "is_training": True, "use_input_mask": True, "use_token_type_ids": False, "use_labels": True, "vocab_size": 99, "hidden_size": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 580, "type_vocab_size": 16, "type_sequence_label_size": 2, "initializer_range": 0.02, "num_labels": 3, "num_choices": 4, "pad_token_id": 0, }, is_training=True, vision_config={ "image_size": 16, "patch_size": 2, "num_channels": 3, "is_training": True, "hidden_size": 32, "projection_dim": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "dropout": 0.1, "attention_dropout": 0.1, "initializer_range": 0.02, }, ): self.parent = parent self.ignore_index = ignore_index self.image_token_index = image_token_index self.video_token_index = video_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.text_config = text_config self.vision_config = vision_config self.seq_length = seq_length self.num_hidden_layers = text_config["num_hidden_layers"] self.vocab_size = text_config["vocab_size"] self.hidden_size = text_config["hidden_size"] self.num_attention_heads = text_config["num_attention_heads"] self.is_training = is_training self.batch_size = 3 self.num_channels = 3 self.image_size = 30 self.encoder_seq_length = 469 self.image_grid_pinpoints = [[32, 32]] def get_config(self): return LlavaNextVideoConfig( text_config=self.text_config, vision_config=self.vision_config, ignore_index=self.ignore_index, image_token_index=self.image_token_index, video_token_index=self.video_token_index, projector_hidden_act=self.projector_hidden_act, vision_feature_select_strategy=self.vision_feature_select_strategy, vision_feature_layer=self.vision_feature_layer, image_grid_pinpoints=self.image_grid_pinpoints, ) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [ self.batch_size, 5, self.vision_config["num_channels"], self.vision_config["image_size"], self.vision_config["image_size"], ] ) pixel_values_videos = floats_tensor( [ self.batch_size, 8, self.vision_config["num_channels"], self.vision_config["image_size"], self.vision_config["image_size"], ] ) config = self.get_config() return config, pixel_values, pixel_values_videos def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_values_videos = self.prepare_config_and_inputs() input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2 attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device) # we are giving 3 images and videos let's make sure we pass in 3 special tokens input_ids[:, 1] = config.image_token_index input_ids[:, 2] = config.video_token_index labels = torch.zeros((self.batch_size, self.seq_length), dtype=torch.long, device=torch_device) # maskout where the image/video token is labels[:, 1] == self.ignore_index labels[:, 2] == self.ignore_index inputs_dict = { "pixel_values": pixel_values, "pixel_values_videos": pixel_values_videos, "image_sizes": torch.tensor( [[self.vision_config["image_size"], self.vision_config["image_size"]]] * self.batch_size ), "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, } return config, inputs_dict def create_and_check_llava_next_video_model_fp16_forward( self, config, input_ids, pixel_values, pixel_values_videos, attention_mask, image_sizes ): model = LlavaNextVideoForConditionalGeneration(config=config) model.to(torch_device) model.half() model.eval() logits = model( input_ids=input_ids, attention_mask=attention_mask, image_sizes=image_sizes, pixel_values=pixel_values.to(torch.bfloat16), pixel_values_videos=pixel_values_videos.to(torch.bfloat16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) def create_and_check_llava_next_video_model_fp16_autocast_forward( self, config, input_ids, pixel_values, pixel_values_videos, attention_mask, image_sizes ): config.torch_dtype = torch.float16 model = LlavaNextVideoForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.autocast(device_type="cuda", dtype=torch.float16): logits = model( input_ids=input_ids, attention_mask=attention_mask, image_sizes=image_sizes, pixel_values=pixel_values.to(torch.bfloat16), pixel_values_videos=pixel_values_videos.to(torch.bfloat16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) @require_torch class LlavaNextVideoForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): """ Model tester for `LlavaNextVideoForConditionalGeneration`. """ all_model_classes = (LlavaNextVideoForConditionalGeneration,) if is_torch_available() else () test_pruning = False test_head_masking = False def setUp(self): self.model_tester = LlavaNextVideoVisionText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=LlavaNextVideoConfig, has_text_modality=False) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "image_newline" in name: continue elif param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] del inputs["pixel_values_videos"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(input_ids) with torch.no_grad(): model(**inputs) # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs # while some other models require pixel_values to be present def test_inputs_embeds_matches_input_ids(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] del inputs["pixel_values_videos"] inputs_embeds = model.get_input_embeddings()(input_ids) with torch.no_grad(): out_ids = model(input_ids=input_ids, **inputs)[0] out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0] self.assertTrue(torch.allclose(out_embeds, out_ids)) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Feedforward chunking is not yet supported") def test_feed_forward_chunking(self): pass @unittest.skip(reason="CPU offload is not yet supported") def test_cpu_offload(self): pass @unittest.skip( reason="Compile not yet supported because in LLava models (https://github.com/huggingface/transformers/issues/29891)" ) def test_sdpa_can_compile_dynamic(self): pass @unittest.skip( reason="Compile not yet supported because in LLava models (https://github.com/huggingface/transformers/issues/29891)" ) def test_sdpa_can_dispatch_on_flash(self): pass @require_torch class LlavaNextVideoForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf") image_file = hf_hub_download( repo_id="raushan-testing-hf/images_test", filename="llava_v1_5_radar.jpg", repo_type="dataset" ) video_file = hf_hub_download( repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset" ) self.image = Image.open(image_file) self.video = np.load(video_file) self.prompt_image = "USER: <image>\nWhat is shown in this image? ASSISTANT:" self.prompt_video = "USER: <video>\nWhy is this video funny? ASSISTANT:" def tearDown(self): gc.collect() torch.cuda.empty_cache() @slow @require_bitsandbytes def test_small_model_integration_test(self): model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True, cache_dir="./" ) inputs = self.processor(self.prompt_video, videos=self.video, return_tensors="pt") expected_input_ids = [ 1, 3148, 1001, 29901, 29871, 32000, 13, 11008, 338, 445, 4863, 2090, 1460, 29973, 319, 1799, 9047, 13566, 29901, ] self.assertListEqual(expected_input_ids, inputs.input_ids[0].tolist()) # verify single forward pass inputs = inputs.to(torch_device) with torch.no_grad(): output = model(**inputs) # verify generation output = model.generate(**inputs, do_sample=False, max_new_tokens=40) EXPECTED_DECODED_TEXT = 'USER: \nWhy is this video funny? ASSISTANT: The humor in this video comes from the unexpected and exaggerated reactions of the child to the book. The child appears to be reading a book, but instead of a calm and focused reading experience' # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_batch(self): model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True, cache_dir="./" ) inputs = self.processor( [self.prompt_video, self.prompt_video], videos=[self.video, self.video], return_tensors="pt", padding=True, ).to(torch_device) output = model.generate(**inputs, do_sample=False, max_new_tokens=20) EXPECTED_DECODED_TEXT = ['USER: \nWhy is this video funny? ASSISTANT: The humor in this video comes from the unexpected and exaggerated reactions of the child to the', 'USER: \nWhy is this video funny? ASSISTANT: The humor in this video comes from the unexpected and exaggerated reactions of the child to the'] # fmt: skip self.assertEqual( self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_batch_different_vision_types(self): model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True, cache_dir="./", ) inputs = self.processor( [self.prompt_image, self.prompt_video], images=self.image, videos=self.video, return_tensors="pt", padding=True, ).to(torch_device) # check loss when labels are passed inputs["labels"] = inputs["input_ids"].clone() with torch.no_grad(): output = model(**inputs) self.assertTrue(output.loss is not None) # verify generation output = model.generate(**inputs, do_sample=False, max_new_tokens=50) EXPECTED_DECODED_TEXT = 'USER: \nWhat is shown in this image? ASSISTANT: The image appears to be a graphical representation of a benchmark test for a machine learning model. It shows the performance of various models on a task, with the x-axis representing the number of parameters (measured in millions) and the y' # fmt: skip self.assertEqual(self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT) @slow @require_bitsandbytes def test_small_model_integration_test_batch_matches_single(self): model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True, cache_dir="./" ) inputs_batched = self.processor( [self.prompt_video, self.prompt_image], images=[self.image], videos=[self.video], return_tensors="pt", padding=True, ).to(torch_device) inputs_single = self.processor(self.prompt_video, videos=[self.video], return_tensors="pt").to(torch_device) # verify generation output_batched = model.generate(**inputs_batched, do_sample=False, max_new_tokens=50) output_single = model.generate(**inputs_single, do_sample=False, max_new_tokens=50) self.assertEqual( self.processor.decode(output_batched[0], skip_special_tokens=True), self.processor.decode(output_single[0], skip_special_tokens=True), ) @slow @require_bitsandbytes def test_padding_side_when_merging_inputs(self): model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True ) inputs_batched = self.processor( [self.prompt_video, self.prompt_image], images=[self.image], videos=[self.video], return_tensors="pt", padding=True, ).to(torch_device) # model is in eval mode by default so we should get pad on the left side # we can check the first hidden-states (aka inputs embeds) # the first element was lo-res image and we expect the first 1482 tokens to be all pads output_eval = model(**inputs_batched, output_hidden_states=True) self.assertTrue((output_eval.hidden_states[0][0, :1482, ...] == 0).all().item()) # otherwise padding is on the right side, so it's last 1482 tokens self.processor.padding_side = "right" inputs_batched = self.processor( [self.prompt_video, self.prompt_image], images=[self.image], videos=[self.video], return_tensors="pt", padding=True, ).to(torch_device) model.train() with torch.no_grad(): output_train = model(**inputs_batched, output_hidden_states=True) self.assertTrue((output_train.hidden_states[0][0, -1482:, ...] == 0).all().item()) with self.assertLogs("transformers", level="WARNING") as logs: model.padding_side = "left" model.train() model(**inputs_batched, output_hidden_states=True) self.assertIn( "Padding side is set to 'left' but the model is in training mode. For training", logs.output[0] ) with self.assertLogs("transformers", level="WARNING") as logs: model.padding_side = "right" model.eval() model(**inputs_batched, output_hidden_states=True) self.assertIn( "Padding side is set to 'right' but the model is in inference mode. For correct", logs.output[0] ) @slow @require_bitsandbytes def test_expansion_in_processing(self): model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf" model = LlavaNextVideoForConditionalGeneration.from_pretrained( "llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True ) processor = AutoProcessor.from_pretrained(model_id) # check processing with expansion of inputs processor.vision_feature_select_strategy = "default" processor.patch_size = 14 inputs_expanded = processor(self.prompt_video, videos=[self.video], return_tensors="pt").to(torch_device) self.assertTrue(inputs_expanded.input_ids.shape[-1] == 1170) # check processing without expansion of inputs (legacy behavior) processor.vision_feature_select_strategy = None processor.patch_size = None inputs = processor(self.prompt_video, videos=[self.video], return_tensors="pt").to(torch_device) self.assertTrue(inputs.input_ids.shape[-1] == 19) # generate exactly 20 tokens output = model.generate(**inputs, min_new_tokens=20, max_new_tokens=20) output_expanded = model.generate(**inputs_expanded, min_new_tokens=20, max_new_tokens=20) # check that both inputs are handled correctly and generate the same output self.assertListEqual(output_expanded[:, -20:].tolist(), output[:, -20:].tolist())
transformers/tests/models/llava_next_video/test_modeling_llava_next_video.py/0
{ "file_path": "transformers/tests/models/llava_next_video/test_modeling_llava_next_video.py", "repo_id": "transformers", "token_count": 9806 }
407
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch M2M100 model.""" import copy import tempfile import unittest import pytest from transformers import M2M100Config, is_torch_available from transformers.testing_utils import ( require_flash_attn, require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, require_torch_gpu, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder def prepare_m2m_100_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class M2M100ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = self.get_config() inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return M2M100Config( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = M2M100Model(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = M2M100Model(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": M2M100Model, "summarization": M2M100ForConditionalGeneration, "text2text-generation": M2M100ForConditionalGeneration, "translation": M2M100ForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @unittest.skip( reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245" ) def test_load_save_without_tied_weights(self): pass def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class M2M100ModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") def test_inference_no_head(self): model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device) input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) # change to intended input input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_seq_to_seq_generation(self): """ Overwritting the common test as the test is flaky on tiny models """ model = M2M100ForConditionalGeneration.from_pretrained( "facebook/m2m100_418M", attn_implementation="flash_attention_2" ).to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en
transformers/tests/models/m2m_100/test_modeling_m2m_100.py/0
{ "file_path": "transformers/tests/models/m2m_100/test_modeling_m2m_100.py", "repo_id": "transformers", "token_count": 8709 }
408
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the MusicGen processor.""" import random import shutil import tempfile import unittest import numpy as np from transformers import T5Tokenizer, T5TokenizerFast from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio from transformers.utils.import_utils import is_torchaudio_available if is_torchaudio_available(): from transformers import MusicgenMelodyFeatureExtractor, MusicgenMelodyProcessor global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_sentencepiece @require_torchaudio # Copied from tests.models.musicgen.test_processing_musicgen.MusicgenProcessorTest with Musicgen->MusicgenMelody, Encodec->MusicgenMelody, padding_mask->attention_mask, input_values->input_features class MusicgenMelodyProcessorTest(unittest.TestCase): def setUp(self): # Ignore copy self.checkpoint = "facebook/musicgen-melody" self.tmpdirname = tempfile.mkdtemp() def get_tokenizer(self, **kwargs): return T5Tokenizer.from_pretrained(self.checkpoint, **kwargs) def get_feature_extractor(self, **kwargs): return MusicgenMelodyFeatureExtractor.from_pretrained(self.checkpoint, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = MusicgenMelodyProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, MusicgenMelodyFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = MusicgenMelodyProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = MusicgenMelodyProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, MusicgenMelodyFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(sequences=predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", ) # Ignore copy def test_decode_audio(self): feature_extractor = self.get_feature_extractor(padding_side="left") tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) attention_mask = np.zeros((3, 20)) attention_mask[0, -5:] = 1 attention_mask[1, -20:] = 1 attention_mask[2, -10:] = 1 generated_speech = np.asarray(floats_list((3, 20)))[:, None, :] decoded_audios = processor.batch_decode(generated_speech, attention_mask=attention_mask) self.assertIsInstance(decoded_audios, list) for audio in decoded_audios: self.assertIsInstance(audio, np.ndarray) self.assertTrue(decoded_audios[0].shape == (1, 5)) self.assertTrue(decoded_audios[1].shape == (1, 20)) self.assertTrue(decoded_audios[2].shape == (1, 10))
transformers/tests/models/musicgen_melody/test_processor_musicgen_melody.py/0
{ "file_path": "transformers/tests/models/musicgen_melody/test_processor_musicgen_melody.py", "repo_id": "transformers", "token_count": 2636 }
409
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch OLMo model.""" import unittest from parameterized import parameterized from transformers import OlmoConfig, is_torch_available, set_seed from transformers.models.auto.tokenization_auto import AutoTokenizer from transformers.models.gpt_neox.tokenization_gpt_neox_fast import GPTNeoXTokenizerFast from transformers.testing_utils import ( is_flaky, require_tokenizers, require_torch, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OlmoForCausalLM, OlmoModel, ) class OlmoModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="silu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return OlmoConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = OlmoModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = OlmoModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = OlmoForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = OlmoForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class OlmoModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (OlmoModel, OlmoForCausalLM) if is_torch_available() else () all_generative_model_classes = (OlmoForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": OlmoModel, "text-generation": OlmoForCausalLM, } if is_torch_available() else {} ) test_pruning = False fx_compatible = False # Need to use `0.8` instead of `0.9` for `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.7, 0.8] def setUp(self): self.model_tester = OlmoModelTester(self) self.config_tester = ConfigTester(self, config_class=OlmoConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="OLMo does not support head pruning.") def test_headmasking(self): pass def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="OLMo buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass # TODO: @Fxmarty @is_flaky(max_attempts=3, description="flaky on some models.") @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): super().test_eager_matches_sdpa_generate() @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = OlmoModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = OlmoModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class OlmoIntegrationTest(unittest.TestCase): @slow def test_model_1b_logits(self): input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]] model = OlmoForCausalLM.from_pretrained("allenai/OLMo-1B-hf", device_map="auto") out = model(torch.tensor(input_ids)).logits # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[2.2869, 0.3315, 0.9876, 1.4146, 1.8804, 2.0430, 1.7055, 1.2065]]) torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2) # slicing logits[0, 0, 0:30] EXPECTED_SLICE = torch.tensor([2.5551, -1.1230, 11.0510, 12.4977, 7.9651, 7.2342, 6.1885, 7.8340, 9.9847, 12.6695, 12.2345, 10.7970, 8.4749, 14.2483, 12.9588, 13.9233, 11.0496, 5.5749, 7.4466, 7.7914, 6.8440, 5.8951, 4.8180, 4.1935, 4.5216, 4.7256, 3.9553, 12.2870, 12.4990, 8.1591]) # fmt: skip torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-2, rtol=1e-2) @slow def test_model_7b_logits(self): input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]] model = OlmoForCausalLM.from_pretrained("allenai/OLMo-7B-hf", device_map="auto") out = model(torch.tensor(input_ids)).logits # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[0.0271, 0.0249, -0.0578, -0.0870, 0.0167, 0.0710, 0.1002, 0.0677]]) torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2) # slicing logits[0, 0, 0:30] EXPECTED_SLICE = torch.tensor([-1.7433, -1.6685, 7.4941, 6.1506, 0.1364, -0.1127, 1.3224, 4.5458, 4.2068, 5.8296, 7.4723, 2.7925, 3.1245, 10.8872, 10.0758, 10.6717, 7.0945, 1.2398, 3.6766, 4.2365, 2.5655, 2.2222, 1.7418, 0.5223, 0.7753, 1.0938, 0.6723, 6.2522, 6.2264, 1.8105]) # fmt: skip torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-2, rtol=1e-2) @slow def test_model_7b_twin_2t_logits(self): input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]] model = OlmoForCausalLM.from_pretrained("allenai/OLMo-7B-Twin-2T-hf", device_map="auto") out = model(torch.tensor(input_ids)).logits # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[-0.3636, -0.3825, -0.4800, -0.3696, -0.8388, -0.9737, -0.9849, -0.8356]]) torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2) # slicing logits[0, 0, 0:30] EXPECTED_SLICE = torch.tensor([-2.0833, -1.9234, 8.7312, 7.8049, 1.0372, 0.8941, 3.1548, 1.8502, 5.5511, 5.5793, 8.1166, 4.5906, 1.8691, 11.6377, 8.9858, 11.6447, 7.4549, 1.4725, 2.8399, 2.7568, 1.4011, 1.6958, 0.5572, 0.5231, 0.3068, 0.5364, 0.6769, 7.9636, 8.2379, 1.7950]) # fmt: skip torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-2, rtol=1e-2) @slow def test_model_7b_greedy_generation(self): EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that \nthe speed of light is the same for all observers.\n\nThe theory of relativity is a theory of physics that describes the \nmovement of objects in space and time.\n\nThe theory of relativity is a theory of physics that describes the \nmovement of objects in space and time.\n\n""" prompt = "Simply put, the theory of relativity states that " tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-hf", device_map="auto") input_ids = tokenizer.encode(prompt, return_tensors="pt") model = OlmoForCausalLM.from_pretrained("allenai/OLMo-7B-hf", device_map="auto") # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) @require_tokenizers def test_fast_special_tokens(self): fast_tokenizer = GPTNeoXTokenizerFast.from_pretrained("allenai/OLMo-1B-hf") original_add_eos_token = fast_tokenizer.add_eos_token fast_tokenizer.add_eos_token = False fast = fast_tokenizer.encode("A sample test") self.assertEqual(fast, [34, 3410, 1071]) fast_tokenizer.add_eos_token = True fast = fast_tokenizer.encode("A sample test") self.assertEqual(fast, [34, 3410, 1071, 50279]) fast_tokenizer.add_eos_token = original_add_eos_token @require_tokenizers def test_simple_encode_decode(self): rust_tokenizer = GPTNeoXTokenizerFast.from_pretrained("allenai/OLMo-1B-hf") self.assertEqual(rust_tokenizer.encode("This is a test"), [1552, 310, 247, 1071]) self.assertEqual(rust_tokenizer.decode([1552, 310, 247, 1071], skip_special_tokens=True), "This is a test") # bytefallback showcase self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [20025, 46549, 5225, 48561, 33656, 238, 12105]) # fmt: skip self.assertEqual( rust_tokenizer.decode([20025, 46549, 5225, 48561, 33656, 238, 12105], skip_special_tokens=True), "生活的真谛是", ) # Inner spaces showcase self.assertEqual(rust_tokenizer.encode("Hi Hello"), [12764, 50276, 12092]) self.assertEqual(rust_tokenizer.decode([12764, 50276, 12092], skip_special_tokens=True), "Hi Hello") self.assertEqual(rust_tokenizer.encode("Hi Hello"), [12764, 50275, 12092]) self.assertEqual(rust_tokenizer.decode([12764, 50275, 12092], skip_special_tokens=True), "Hi Hello") self.assertEqual(rust_tokenizer.encode(""), []) self.assertEqual(rust_tokenizer.encode(" "), [209]) self.assertEqual(rust_tokenizer.encode(" "), [50276]) self.assertEqual(rust_tokenizer.encode(" Hello"), [24387])
transformers/tests/models/olmo/test_modeling_olmo.py/0
{ "file_path": "transformers/tests/models/olmo/test_modeling_olmo.py", "repo_id": "transformers", "token_count": 8669 }
410
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch PEGASUS-X model.""" import copy import math import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import PegasusTokenizer, PegasusXConfig, PegasusXForConditionalGeneration, PegasusXModel from transformers.models.pegasus_x.modeling_pegasus_x import PegasusXDecoder, PegasusXEncoder def prepare_pegasus_x_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } @require_torch class PegasusXModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = PegasusXConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, stagger_local_blocks=False, ) inputs_dict = prepare_pegasus_x_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = PegasusXModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = PegasusXModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = PegasusXEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = PegasusXDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class PegasusXModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (PegasusXModel, PegasusXForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (PegasusXForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": PegasusXModel, "summarization": PegasusXForConditionalGeneration, "text2text-generation": PegasusXForConditionalGeneration, "translation": PegasusXForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True test_pruning = False test_head_masking = False test_missing_keys = False def setUp(self): self.model_tester = PegasusXModelTester(self) self.config_tester = ConfigTester(self, config_class=PegasusXConfig) @unittest.skip( "`PegasusXGlobalLocalAttention` returns attentions as dictionary - not compatible with torchscript " ) def test_torchscript_output_attentions(self): pass def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (PegasusXModel, PegasusXForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = PegasusXForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0]["local"].shape[-4:]), [ self.model_tester.num_attention_heads, math.ceil(encoder_seq_length / model.config.block_size), model.config.block_size, model.config.block_size + model.config.num_global_tokens, ], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0]["local"].shape[-4:]), [ self.model_tester.num_attention_heads, math.ceil(encoder_seq_length / model.config.block_size), model.config.block_size, model.config.block_size + model.config.num_global_tokens, ], ) def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length): encoder_expected_shape = ( batch_size, config.num_attention_heads, math.ceil(seq_length / config.block_size), config.block_size, config.block_size + config.num_global_tokens, ) self.assertIsInstance(attentions, tuple) self.assertListEqual( [layer_attentions["local"].shape for layer_attentions in attentions], [encoder_expected_shape] * len(attentions), ) def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length): encoder_expected_shape = (batch_size, self.round_up(seq_length, config.block_size), config.hidden_size) self.assertIsInstance(hidden_states, tuple) # Only the last layer will have the hidden states truncated back to token level self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in hidden_states[:-1]], [encoder_expected_shape] * (len(hidden_states) - 1), ) # Only the last layer will have the hidden states truncated back to token level self.assertEqual( hidden_states[-1][0].shape, (batch_size, seq_length, config.hidden_size), ) def test_hidden_states_output(self): def _check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.round_up(seq_length, config.block_size), self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True _check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True _check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] if config.is_encoder_decoder: # Seq2Seq models encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() if self.has_attentions: encoder_attentions = outputs.encoder_attentions[0] encoder_attentions["local"].retain_grad() encoder_attentions["global"].retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) if self.has_attentions: self.assertIsNotNone(encoder_attentions["local"].grad) self.assertIsNotNone(encoder_attentions["global"].grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) else: # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: attentions = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) @classmethod def round_up(cls, n, k): return math.ceil(n / k) * k def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class PegasusXModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return PegasusTokenizer.from_pretrained("google/pegasus-x-base") def test_inference_no_head(self): model = PegasusXModel.from_pretrained("google/pegasus-x-base").to(torch_device) input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) decoder_input_ids = _long_tensor([[2, 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588]]) inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[0.0702, -0.1552, 0.1192], [0.0836, -0.1848, 0.1304], [0.0673, -0.1686, 0.1045]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base").to(torch_device) # change to intended input input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[0.0, 9.5705185, 1.5897303], [0.0, 9.833374, 1.5828674], [0.0, 10.429961, 1.5643371]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): hf = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base-arxiv").to(torch_device) tok = PegasusTokenizer.from_pretrained("google/pegasus-x-base") batch_input = [ "While large pretrained Transformer models have proven highly capable at tackling natural language tasks," " handling long sequence inputs continues to be a significant challenge. One such task is long input" " summarization, where inputs are longer than the maximum input context of most pretrained models. Through" " an extensive set of experiments, we investigate what model architectural changes and pretraining" " paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that" " a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance" " and efficiency, and that an additional pretraining phase on long sequences meaningfully improves" " downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the" " PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X" " achieves strong performance on long input summarization tasks comparable with much larger models while" " adding few additional parameters and not requiring model parallelism to train." ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tok.batch_encode_plus( batch_input, max_length=512, padding="max_length", truncation_strategy="only_first", truncation=True, return_tensors="pt", ) hypotheses_batch = hf.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=2, max_length=32, ) EXPECTED = [ "we investigate the performance of a new pretrained model for long input summarization. <n> the model is a" " superposition of two well -" ] generated = tok.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == EXPECTED class PegasusXStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = PegasusXConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = PegasusXDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = PegasusXDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class PegasusXStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (PegasusXDecoder,) if is_torch_available() else () all_generative_model_classes = () test_pruning = False is_encoder_decoder = False test_head_masking = False def setUp( self, ): self.model_tester = PegasusXStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=PegasusXConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): return
transformers/tests/models/pegasus_x/test_modeling_pegasus_x.py/0
{ "file_path": "transformers/tests/models/pegasus_x/test_modeling_pegasus_x.py", "repo_id": "transformers", "token_count": 16604 }
411
from __future__ import annotations import json import os import shutil import tempfile import unittest from unittest.mock import patch import numpy as np from transformers import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.tokenization_dpr import DPRQuestionEncoderTokenizer from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property, is_datasets_available, is_faiss_available, is_tf_available if is_tf_available() and is_datasets_available() and is_faiss_available(): import faiss import tensorflow as tf from datasets import Dataset from transformers import ( AutoConfig, RagConfig, RagRetriever, RagTokenizer, TFAutoModel, TFAutoModelForSeq2SeqLM, TFRagModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) from transformers.modeling_tf_outputs import TFBaseModelOutput from ..bart.test_modeling_tf_bart import TFBartModelTester from ..dpr.test_modeling_tf_dpr import TFDPRModelTester TOLERANCE = 1e-3 def require_retrieval(test_case): """ Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with [`RagRetriever`]. These tests are skipped when respective libraries are not installed. """ if not (is_tf_available() and is_datasets_available() and is_faiss_available()): test_case = unittest.skip("test requires tensorflow, datasets and faiss")(test_case) return test_case @require_tf @require_retrieval @require_sentencepiece class TFRagTestMixin: all_model_classes = ( (TFRagModel, TFRagTokenForGeneration, TFRagSequenceForGeneration) if is_tf_available() and is_datasets_available() and is_faiss_available() else () ) all_generative_model_classes = ( (TFRagTokenForGeneration, TFRagSequenceForGeneration) if is_tf_available() and is_datasets_available() and is_faiss_available() else () ) retrieval_vector_size = 32 n_docs = 3 max_combined_length = 16 def setUp(self): self.tmpdirname = tempfile.mkdtemp() # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) @cached_property def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_retriever(self, config): dataset = Dataset.from_dict( { "id": ["0", "1", "3"], "text": ["foo", "bar", "qux"], "title": ["Foo", "Bar", "Qux"], "embeddings": [ np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size), 3 * np.ones(self.retrieval_vector_size), ], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) tokenizer = self.bart_tokenizer with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.dpr_tokenizer, generator_tokenizer=tokenizer, ) return retriever def check_model_with_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)) self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_generate_from_context_input_ids( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for i, model_class in enumerate(self.all_generative_model_classes): model = model_class(config) self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.numpy(), prefix=config.generator.prefix, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul(tf.expand_dims(question_hidden_states, axis=[1]), retrieved_doc_embeds, transpose_b=True), axis=[1], ) outputs = model.generate( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, ) self.assertIsNotNone(outputs) def check_model_generate( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_generative_model_classes: model = model_class(config, retriever=self.get_retriever(config)) self.assertTrue(model.config.is_encoder_decoder) input_ids = tf.cast(input_ids, tf.int32) outputs = model.generate( input_ids=input_ids, num_beams=2, num_return_sequences=2, decoder_start_token_id=config.generator.eos_token_id, max_new_tokens=5, ) self.assertIsNotNone(outputs) def check_model_without_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config) self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.numpy(), prefix=config.generator.prefix, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul(tf.expand_dims(question_hidden_states, axis=[1]), retrieved_doc_embeds, transpose_b=True), axis=[1], ) outputs = model( input_ids=None, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_custom_n_docs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config) self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.numpy(), prefix=config.generator.prefix, return_tensors="tf", n_docs=n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul(tf.expand_dims(question_hidden_states, axis=[1]), retrieved_doc_embeds, transpose_b=True), axis=[1], ) outputs = model( input_ids=None, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=n_docs, ) # logits self.assertEqual( outputs.logits.shape, (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs)) def check_model_with_mismatch_n_docs_value( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, retriever_n_docs, generator_n_docs, **kwargs, ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config) self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.numpy(), prefix=config.generator.prefix, return_tensors="tf", n_docs=retriever_n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul(tf.expand_dims(question_hidden_states, axis=[1]), retrieved_doc_embeds, transpose_b=True), axis=[1], ) self.assertRaises( AssertionError, model.__call__, input_ids=None, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=generator_n_docs, ) def check_model_with_encoder_outputs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)) self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) encoder_outputs = TFBaseModelOutput(outputs.generator_enc_last_hidden_state) # run only generator outputs = model( input_ids=None, encoder_outputs=encoder_outputs, doc_scores=outputs.doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def test_model_with_retriever(self): inputs_dict = self.config_and_inputs self.check_model_with_retriever(**inputs_dict) def test_model_without_retriever(self): inputs_dict = self.config_and_inputs self.check_model_without_retriever(**inputs_dict) @slow def test_model_generate_from_context_input_ids(self): inputs_dict = self.config_and_inputs self.check_model_generate_from_context_input_ids(**inputs_dict) def test_model_with_encoder_outputs(self): inputs_dict = self.config_and_inputs self.check_model_with_encoder_outputs(**inputs_dict) @slow def test_model_generate(self): inputs_dict = self.config_and_inputs self.check_model_generate(**inputs_dict) def test_model_with_custom_n_docs(self): inputs_dict = self.config_and_inputs inputs_dict["n_docs"] = 1 self.check_model_custom_n_docs(**inputs_dict) def test_model_with_mismatch_n_docs_value(self): inputs_dict = self.config_and_inputs inputs_dict["retriever_n_docs"] = 3 inputs_dict["generator_n_docs"] = 2 self.check_model_with_mismatch_n_docs_value(**inputs_dict) @require_tf @require_retrieval class TFRagDPRBartTest(TFRagTestMixin, unittest.TestCase): @cached_property def config_and_inputs(self): question_encoder_tester = TFDPRModelTester(self) dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs() generator_tester = TFBartModelTester(self) bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common() (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs (generator_config, bart_inputs_dict) = bart_config_and_inputs decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"] config = RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, n_docs=self.n_docs, retrieval_vector_size=self.retrieval_vector_size, max_combined_length=self.max_combined_length, ) return { "config": config, "input_ids": input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } @require_tf @require_retrieval @require_sentencepiece @require_tokenizers class TFRagModelIntegrationTests(unittest.TestCase): @cached_property def token_model(self): return TFRagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) @cached_property def sequence_model(self): return TFRagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) def token_model_nq_checkpoint(self, retriever): return TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, dataset_revision="b24a417", ) @slow def test_rag_sequence_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_sequence = self.sequence_model rag_sequence.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids output = rag_sequence( input_ids, labels=decoder_input_ids, ) expected_shape = tf.TensorShape([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = tf.convert_to_tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]) expected_loss = tf.convert_to_tensor([36.7368]) tf.debugging.assert_near(output.loss, expected_loss, atol=1e-3) tf.debugging.assert_near(output.doc_scores, expected_doc_scores, atol=1e-3) @slow def test_rag_token_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids output = rag_token( input_ids, labels=decoder_input_ids, ) expected_shape = tf.TensorShape([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = tf.convert_to_tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]) expected_loss = tf.convert_to_tensor([36.3557]) tf.debugging.assert_near(output.loss, expected_loss, atol=1e-3) tf.debugging.assert_near(output.doc_scores, expected_doc_scores, atol=1e-3) @slow def test_rag_token_inference_nq_checkpoint(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model_nq_checkpoint(retriever=rag_retriever) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: rag_token.save_pretrained(tmpdirname) rag_token = TFRagTokenForGeneration.from_pretrained(tmpdirname, retriever=rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids output = rag_token( input_ids, labels=decoder_input_ids, ) expected_shape = tf.TensorShape([5, 5, 50265]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = tf.convert_to_tensor([[62.9402, 62.7107, 62.2382, 62.1194, 61.8578]]) expected_loss = tf.convert_to_tensor([32.521812]) tf.debugging.assert_near(output.loss, expected_loss, atol=1e-3) tf.debugging.assert_near(output.doc_scores, expected_doc_scores, atol=1e-3) @slow def test_rag_token_inference_save_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # model must run once to be functional before loading/saving works rag_token( input_ids, labels=decoder_input_ids, ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: rag_token.save_pretrained(tmpdirname) rag_token = TFRagTokenForGeneration.from_pretrained(tmpdirname, retriever=rag_retriever) output = rag_token( input_ids, labels=decoder_input_ids, ) expected_shape = tf.TensorShape([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = tf.convert_to_tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]) expected_loss = tf.convert_to_tensor([36.3557]) tf.debugging.assert_near(output.loss, expected_loss, atol=1e-3) tf.debugging.assert_near(output.doc_scores, expected_doc_scores, atol=1e-3) @slow def test_init_and_from_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_config = RagConfig.from_pretrained("facebook/rag-sequence-base") rag = TFRagTokenForGeneration(rag_config, retriever=rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids rag( input_ids, decoder_input_ids=decoder_input_ids, ) # this should not give any warnings with tempfile.TemporaryDirectory() as tmpdirname: rag.save_pretrained(tmpdirname) rag = TFRagTokenForGeneration.from_pretrained(tmpdirname, retriever=rag_retriever) @property def test_data_questions(self): return [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", ] @slow def test_rag_token_greedy_search(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True, dataset_revision="b24a417" ) rag_token = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) # check first two questions input_dict = tokenizer( self.test_data_questions[:2], return_tensors="tf", padding=True, truncation=True, ) input_ids = input_dict.input_ids attention_mask = input_dict.attention_mask # make sure only 1 beam is used rag_token.config.num_beams = 1 output_ids = rag_token.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " september 22, 2017", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_token_generate_batch(self): # NOTE: gold labels comes from num_beam=4, so this is effectively beam-search test tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True, dataset_revision="b24a417" ) rag_token = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) input_dict = tokenizer( self.test_data_questions, return_tensors="tf", padding=True, truncation=True, ) input_ids = input_dict.input_ids attention_mask = input_dict.attention_mask EXPECTED_OUTPUTS = [ " albert einstein", " september 22, 2017", " amplitude modulation", " stefan persson", " april 20, 2018", " the 1970s", " 7.1. 2", " 13", ] # Split into 2 batches of 4 examples to avoid GPU OOM. output_ids = rag_token.generate( input_ids[:4], attention_mask=attention_mask[:4], ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(outputs, EXPECTED_OUTPUTS[:4]) output_ids = rag_token.generate( input_ids[4:], attention_mask=attention_mask[4:], ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(outputs, EXPECTED_OUTPUTS[4:]) @slow def test_rag_sequence_generate_batch(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True, dataset_revision="b24a417", ) rag_sequence = TFRagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) input_dict = tokenizer( self.test_data_questions, return_tensors="tf", padding=True, truncation=True, ) input_ids = input_dict.input_ids attention_mask = input_dict.attention_mask output_ids = rag_sequence.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_sequence_generate_batch_from_context_input_ids(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True, dataset_revision="b24a417" ) rag_sequence = TFRagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) input_dict = tokenizer( self.test_data_questions, return_tensors="tf", padding=True, truncation=True, ) input_ids = input_dict.input_ids question_hidden_states = rag_sequence.question_encoder(input_ids)[0] docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") doc_scores = tf.squeeze( tf.matmul( tf.expand_dims(question_hidden_states, axis=[1]), docs_dict["retrieved_doc_embeds"], transpose_b=True ), axis=[1], ) output_ids = rag_sequence.generate( context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, do_deduplication=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @require_tf @require_retrieval class TFRagModelSaveLoadTests(unittest.TestCase): def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, dataset_revision="b24a417", ) @slow def test_rag_sequence_from_pretrained(self): load_weight_prefix = "tf_rag_model_1" rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids with tempfile.TemporaryDirectory() as tmp_dirname: rag_sequence = TFRagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, ) rag_sequence.build_in_name_scope() # check that the from pretrained methods work rag_sequence.save_pretrained(tmp_dirname) rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever) output = rag_sequence(input_ids, labels=decoder_input_ids) loss_pretrained = output.loss del rag_sequence question_encoder = TFAutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = TFAutoModelForSeq2SeqLM.from_pretrained( "facebook/bart-large-cnn", load_weight_prefix=load_weight_prefix, name="generator" ) rag_sequence = TFRagSequenceForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) output = rag_sequence(input_ids, labels=decoder_input_ids) loss_init = output.loss self.assertAlmostEqual(loss_pretrained, loss_init, places=4) @slow def test_rag_token_from_pretrained(self): load_weight_prefix = "tf_rag_model_1" rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="tf" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids with tempfile.TemporaryDirectory() as tmp_dirname: rag_token = TFRagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, ) rag_token.build_in_name_scope() # check that the from pretrained methods work rag_token.save_pretrained(tmp_dirname) rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever) output = rag_token(input_ids, labels=decoder_input_ids) loss_pretrained = output.loss del rag_token question_encoder = TFAutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = TFAutoModelForSeq2SeqLM.from_pretrained( "facebook/bart-large-cnn", load_weight_prefix=load_weight_prefix, name="generator" ) rag_token = TFRagTokenForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) output = rag_token(input_ids, labels=decoder_input_ids) loss_init = output.loss self.assertAlmostEqual(loss_pretrained, loss_init, places=4)
transformers/tests/models/rag/test_modeling_tf_rag.py/0
{ "file_path": "transformers/tests/models/rag/test_modeling_tf_rag.py", "repo_id": "transformers", "token_count": 19806 }
412
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch SpeechT5 model.""" import copy import inspect import tempfile import unittest from transformers import SpeechT5Config, SpeechT5HifiGanConfig from transformers.testing_utils import ( is_torch_available, require_deterministic_for_xpu, require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from transformers.trainer_utils import set_seed from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SpeechT5ForSpeechToSpeech, SpeechT5ForSpeechToText, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Model, SpeechT5Processor, ) def prepare_inputs_dict( config, input_ids=None, input_values=None, decoder_input_ids=None, decoder_input_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if input_ids is not None: encoder_dict = {"input_ids": input_ids} else: encoder_dict = {"input_values": input_values} if decoder_input_ids is not None: decoder_dict = {"decoder_input_ids": decoder_input_ids} else: decoder_dict = {"decoder_input_values": decoder_input_values} if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { **encoder_dict, **decoder_dict, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_torch class SpeechT5ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=False, vocab_size=81, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, intermediate_size=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0) decoder_attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() inputs_dict = prepare_inputs_dict( config, input_values=input_values, decoder_input_values=decoder_input_values, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return SpeechT5Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, ) def create_and_check_model_forward(self, config, inputs_dict): model = SpeechT5Model(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] decoder_input_values = inputs_dict["decoder_input_values"] result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) @require_torch class SpeechT5ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (SpeechT5Model,) if is_torch_available() else () pipeline_model_mapping = ( {"automatic-speech-recognition": SpeechT5ForSpeechToText, "feature-extraction": SpeechT5Model} if is_torch_available() else {} ) is_encoder_decoder = True test_pruning = False test_headmasking = False test_resize_embeddings = False input_name = "input_values" def setUp(self): self.model_tester = SpeechT5ModelTester(self) self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_values", "attention_mask", "decoder_input_values", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @unittest.skip(reason="Model has no input_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Model has no input_embeds") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): pass @slow @unittest.skip(reason="Model does not have decoder_input_ids") def test_torchscript_output_attentions(self): pass @slow @unittest.skip(reason="Model does not have decoder_input_ids") def test_torchscript_output_hidden_state(self): pass @slow @unittest.skip(reason="Model does not have decoder_input_ids") def test_torchscript_simple(self): pass @require_torch class SpeechT5ForSpeechToTextTester: def __init__( self, parent, batch_size=13, encoder_seq_length=1024, # speech is longer decoder_seq_length=7, is_training=False, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, intermediate_size=4, conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, vocab_size=81, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.vocab_size = vocab_size def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size).clamp(2) decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) config = self.get_config() inputs_dict = prepare_inputs_dict( config, input_values=input_values, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return SpeechT5Config( hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, vocab_size=self.vocab_size, ) def create_and_check_model_forward(self, config, inputs_dict): model = SpeechT5ForSpeechToText(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] decoder_input_ids = inputs_dict["decoder_input_ids"] result = model(input_values, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.decoder_seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = SpeechT5ForSpeechToText(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) @require_torch class SpeechT5ForSpeechToTextTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else () all_generative_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_headmasking = False input_name = "input_values" def setUp(self): self.model_tester = SpeechT5ForSpeechToTextTester(self) self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( encoder_seq_length ) subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( encoder_key_length ) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_values", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "feature_projection.projection.weight", "feature_projection.projection.bias", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # this model has no inputs_embeds @unittest.skip(reason="Model has no input_embeds") def test_inputs_embeds(self): pass def test_resize_embeddings_untied(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is set to False") original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: self.skipTest(reason="Model cannot untie embeddings") for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_resize_tokens_embeddings(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is set to False") for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # make sure that decoder_input_ids are resized if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients pass @unittest.skip(reason="Training is not supported yet") def test_training(self): pass @unittest.skip(reason="Training is not supported yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @require_torch @require_sentencepiece @require_tokenizers @slow class SpeechT5ForSpeechToTextIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(1) input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device) generated_ids = model.generate(input_values) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(audio=input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) generated_ids = model.generate(input_values, attention_mask=attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister quilter's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and rosebeaf looming before us" " similars drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick latin's work is really greek after all and can discover in it" " but little of rocky ithica", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS) @require_torch class SpeechT5ForTextToSpeechTester: def __init__( self, parent, batch_size=13, encoder_seq_length=7, decoder_seq_length=1024, # speech is longer is_training=False, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, intermediate_size=4, vocab_size=81, num_mel_bins=20, reduction_factor=2, speech_decoder_postnet_layers=2, speech_decoder_postnet_units=32, speech_decoder_prenet_units=32, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.reduction_factor = reduction_factor self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_prenet_units = speech_decoder_prenet_units def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2) attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0) decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) config = self.get_config() inputs_dict = prepare_inputs_dict( config, input_ids=input_ids, decoder_input_values=decoder_input_values, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return SpeechT5Config( hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, vocab_size=self.vocab_size, num_mel_bins=self.num_mel_bins, reduction_factor=self.reduction_factor, speech_decoder_postnet_layers=self.speech_decoder_postnet_layers, speech_decoder_postnet_units=self.speech_decoder_postnet_units, speech_decoder_prenet_units=self.speech_decoder_prenet_units, ) def create_and_check_model_forward(self, config, inputs_dict): model = SpeechT5ForTextToSpeech(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] decoder_input_values = inputs_dict["decoder_input_values"] result = model(input_ids, attention_mask=attention_mask, decoder_input_values=decoder_input_values) self.parent.assertEqual( result.spectrogram.shape, (self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins), ) @require_torch class SpeechT5ForTextToSpeechTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else () all_generative_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_headmasking = False input_name = "input_ids" def setUp(self): self.model_tester = SpeechT5ForTextToSpeechTester(self) self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_model_forward_with_labels(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() model = SpeechT5ForTextToSpeech(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] decoder_attention_mask = inputs_dict["decoder_attention_mask"] labels = inputs_dict["decoder_input_values"] result = model( input_ids, attention_mask=attention_mask, labels=labels, decoder_attention_mask=decoder_attention_mask ) self.assertEqual( result.spectrogram.shape, (self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.num_mel_bins), ) @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_decoder_model_past_with_large_inputs(self): pass @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_determinism(self): pass @unittest.skip(reason="skipped because there is always dropout in SpeechT5SpeechDecoderPrenet") def test_batching_equivalence(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_values", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="Model has no inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_save_load(self): pass @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_output_attentions(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_output_hidden_state(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_simple(self): # disabled because this model doesn't have decoder_input_ids pass @unittest.skip(reason="training is not supported yet") def test_training(self): pass @unittest.skip(reason="training is not supported yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) @require_torch @require_sentencepiece @require_tokenizers class SpeechT5ForTextToSpeechIntegrationTests(unittest.TestCase): @cached_property def default_model(self): return SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(torch_device) @cached_property def default_processor(self): return SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") @cached_property def default_vocoder(self): return SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(torch_device) def test_generation(self): model = self.default_model processor = self.default_processor input_text = "Mister Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." input_ids = processor(text=input_text, return_tensors="pt").input_ids.to(torch_device) speaker_embeddings = torch.zeros((1, 512), device=torch_device) # Generate speech and validate output dimensions set_seed(555) # Ensure deterministic behavior generated_speech = model.generate_speech(input_ids, speaker_embeddings=speaker_embeddings) num_mel_bins = model.config.num_mel_bins self.assertEqual( generated_speech.shape[1], num_mel_bins, "Generated speech output has an unexpected number of mel bins." ) # Validate generation with additional kwargs using model.generate; # same method than generate_speech set_seed(555) # Reset seed for consistent results generated_speech_with_generate = model.generate( input_ids, attention_mask=None, speaker_embeddings=speaker_embeddings ) self.assertEqual( generated_speech_with_generate.shape, generated_speech.shape, "Shape mismatch between generate_speech and generate methods.", ) @require_deterministic_for_xpu def test_one_to_many_generation(self): model = self.default_model processor = self.default_processor vocoder = self.default_vocoder input_text = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister quilter's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and rosebeaf looming before us", ] inputs = processor(text=input_text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device) speaker_embeddings = torch.zeros((1, 512), device=torch_device) # Generate spectrograms set_seed(555) # Ensure deterministic behavior spectrograms, spectrogram_lengths = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], return_output_lengths=True, ) # Validate generated spectrogram dimensions expected_batch_size = len(input_text) num_mel_bins = model.config.num_mel_bins actual_batch_size, _, actual_num_mel_bins = spectrograms.shape self.assertEqual(actual_batch_size, expected_batch_size, "Batch size of generated spectrograms is incorrect.") self.assertEqual( actual_num_mel_bins, num_mel_bins, "Number of mel bins in batch generated spectrograms is incorrect." ) # Generate waveforms using the vocoder waveforms = vocoder(spectrograms) waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] # Validate generation with integrated vocoder set_seed(555) # Reset seed for consistent results waveforms_with_vocoder, waveform_lengths_with_vocoder = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], vocoder=vocoder, return_output_lengths=True, ) # Check consistency between waveforms generated with and without standalone vocoder self.assertTrue( torch.allclose(waveforms, waveforms_with_vocoder, atol=1e-8), "Mismatch in waveforms generated with and without the standalone vocoder.", ) self.assertEqual( waveform_lengths, waveform_lengths_with_vocoder, "Waveform lengths differ between standalone and integrated vocoder generation.", ) # Test generation consistency without returning lengths set_seed(555) # Reset seed for consistent results waveforms_with_vocoder_no_lengths = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], vocoder=vocoder, return_output_lengths=False, ) # Validate waveform consistency without length information self.assertTrue( torch.allclose(waveforms_with_vocoder_no_lengths, waveforms_with_vocoder, atol=1e-8), "Waveforms differ when generated with and without length information.", ) # Validate batch vs. single instance generation consistency for i, text in enumerate(input_text): inputs = processor(text=text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device) set_seed(555) # Reset seed for consistent results spectrogram = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, ) # Check spectrogram shape consistency self.assertEqual( spectrogram.shape, spectrograms[i][: spectrogram_lengths[i]].shape, "Mismatch in spectrogram shape between batch and single instance generation.", ) # Generate and validate waveform for single instance waveform = vocoder(spectrogram) self.assertEqual( waveform.shape, waveforms[i][: waveform_lengths[i]].shape, "Mismatch in waveform shape between batch and single instance generation.", ) # Check waveform consistency with integrated vocoder set_seed(555) # Reset seed for consistent results waveform_with_integrated_vocoder = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, vocoder=vocoder, ) self.assertTrue( torch.allclose(waveform, waveform_with_integrated_vocoder, atol=1e-8), "Mismatch in waveform between standalone and integrated vocoder for single instance generation.", ) def test_batch_generation(self): model = self.default_model processor = self.default_processor vocoder = self.default_vocoder input_text = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister quilter's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and rosebeaf looming before us", ] inputs = processor(text=input_text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device) set_seed(555) # Ensure deterministic behavior speaker_embeddings = torch.randn((len(input_text), 512), device=torch_device) # Generate spectrograms set_seed(555) # Reset seed for consistent results spectrograms, spectrogram_lengths = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], return_output_lengths=True, ) # Validate generated spectrogram dimensions expected_batch_size = len(input_text) num_mel_bins = model.config.num_mel_bins actual_batch_size, _, actual_num_mel_bins = spectrograms.shape self.assertEqual( actual_batch_size, expected_batch_size, "Batch size of generated spectrograms is incorrect.", ) self.assertEqual( actual_num_mel_bins, num_mel_bins, "Number of mel bins in batch generated spectrograms is incorrect.", ) # Generate waveforms using the vocoder waveforms = vocoder(spectrograms) waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] # Validate generation with integrated vocoder set_seed(555) # Reset seed for consistent results waveforms_with_vocoder, waveform_lengths_with_vocoder = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], vocoder=vocoder, return_output_lengths=True, ) # Check consistency between waveforms generated with and without standalone vocoder self.assertTrue( torch.allclose(waveforms, waveforms_with_vocoder, atol=1e-8), "Mismatch in waveforms generated with and without the standalone vocoder.", ) self.assertEqual( waveform_lengths, waveform_lengths_with_vocoder, "Waveform lengths differ between standalone and integrated vocoder generation.", ) # Test generation consistency without returning lengths set_seed(555) # Reset seed for consistent results waveforms_with_vocoder_no_lengths = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=speaker_embeddings, attention_mask=inputs["attention_mask"], vocoder=vocoder, return_output_lengths=False, ) # Validate waveform consistency without length information self.assertTrue( torch.allclose(waveforms_with_vocoder_no_lengths, waveforms_with_vocoder, atol=1e-8), "Waveforms differ when generated with and without length information.", ) # Validate batch vs. single instance generation consistency for i, text in enumerate(input_text): inputs = processor(text=text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device) current_speaker_embedding = speaker_embeddings[i].unsqueeze(0) set_seed(555) # Reset seed for consistent results spectrogram = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=current_speaker_embedding, ) # Check spectrogram shape consistency self.assertEqual( spectrogram.shape, spectrograms[i][: spectrogram_lengths[i]].shape, "Mismatch in spectrogram shape between batch and single instance generation.", ) # Generate and validate waveform for single instance waveform = vocoder(spectrogram) self.assertEqual( waveform.shape, waveforms[i][: waveform_lengths[i]].shape, "Mismatch in waveform shape between batch and single instance generation.", ) # Check waveform consistency with integrated vocoder set_seed(555) # Reset seed for consistent results waveform_with_integrated_vocoder = model.generate_speech( input_ids=inputs["input_ids"], speaker_embeddings=current_speaker_embedding, vocoder=vocoder, ) self.assertTrue( torch.allclose(waveform, waveform_with_integrated_vocoder, atol=1e-8), "Mismatch in waveform between standalone and integrated vocoder for single instance generation.", ) @require_torch class SpeechT5ForSpeechToSpeechTester: def __init__( self, parent, batch_size=13, encoder_seq_length=1024, # speech is longer decoder_seq_length=1024, is_training=False, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, intermediate_size=4, conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, vocab_size=81, num_mel_bins=20, reduction_factor=2, speech_decoder_postnet_layers=2, speech_decoder_postnet_units=32, speech_decoder_prenet_units=32, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.reduction_factor = reduction_factor self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_prenet_units = speech_decoder_prenet_units def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0) decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) config = self.get_config() inputs_dict = prepare_inputs_dict( config, input_values=input_values, decoder_input_values=decoder_input_values, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return SpeechT5Config( hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, vocab_size=self.vocab_size, num_mel_bins=self.num_mel_bins, reduction_factor=self.reduction_factor, speech_decoder_postnet_layers=self.speech_decoder_postnet_layers, speech_decoder_postnet_units=self.speech_decoder_postnet_units, speech_decoder_prenet_units=self.speech_decoder_prenet_units, ) def create_and_check_model_forward(self, config, inputs_dict): model = SpeechT5ForSpeechToSpeech(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] decoder_input_values = inputs_dict["decoder_input_values"] result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values) self.parent.assertEqual( result.spectrogram.shape, (self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins), ) @require_torch class SpeechT5ForSpeechToSpeechTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else () all_generative_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_headmasking = False test_resize_embeddings = False input_name = "input_values" def setUp(self): self.model_tester = SpeechT5ForSpeechToSpeechTester(self) self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_model_forward_with_labels(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() model = SpeechT5ForSpeechToSpeech(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] decoder_attention_mask = inputs_dict["decoder_attention_mask"] labels = inputs_dict["decoder_input_values"] result = model( input_values, attention_mask=attention_mask, labels=labels, decoder_attention_mask=decoder_attention_mask ) self.assertEqual( result.spectrogram.shape, (self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.num_mel_bins), ) @unittest.skip(reason="There is always dropout in SpeechT5SpeechDecoderPrenet") def test_decoder_model_past_with_large_inputs(self): pass @unittest.skip(reason="There is always dropout in SpeechT5SpeechDecoderPrenet") def test_determinism(self): pass @unittest.skip(reason="skipped because there is always dropout in SpeechT5SpeechDecoderPrenet") def test_batching_equivalence(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( encoder_seq_length ) subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( encoder_key_length ) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_values", "attention_mask", "decoder_input_values", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "feature_projection.projection.weight", "feature_projection.projection.bias", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="Model has no input_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Model has no input_embeds") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Dropout is always present in SpeechT5SpeechDecoderPrenet") def test_save_load(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_output_attentions(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_output_hidden_state(self): pass @slow @unittest.skip(reason="Model doesn't have decoder_input_ids") def test_torchscript_simple(self): pass @unittest.skip(reason="Training is not supported yet") def test_training(self): pass @unittest.skip(reason="Training is not supported yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @require_torch @require_sentencepiece @require_tokenizers @slow class SpeechT5ForSpeechToSpeechIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(1) input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device) speaker_embeddings = torch.zeros((1, 512), device=torch_device) generated_speech = model.generate_speech(input_values, speaker_embeddings=speaker_embeddings) self.assertEqual(generated_speech.shape[1], model.config.num_mel_bins) self.assertGreaterEqual(generated_speech.shape[0], 300) self.assertLessEqual(generated_speech.shape[0], 310) class SpeechT5HifiGanTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=False, num_mel_bins=20, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.num_mel_bins = num_mel_bins def prepare_config_and_inputs(self): input_values = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0) config = self.get_config() return config, input_values def get_config(self): return SpeechT5HifiGanConfig( model_in_dim=self.num_mel_bins, upsample_initial_channel=32, ) def create_and_check_model(self, config, input_values): model = SpeechT5HifiGan(config=config).to(torch_device).eval() result = model(input_values) self.parent.assertEqual(result.shape, (self.seq_length * 256,)) def prepare_config_and_inputs_for_common(self): config, input_values = self.prepare_config_and_inputs() inputs_dict = {"spectrogram": input_values} return config, inputs_dict @require_torch class SpeechT5HifiGanTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (SpeechT5HifiGan,) if is_torch_available() else () test_torchscript = False test_pruning = False test_resize_embeddings = False test_resize_position_embeddings = False test_head_masking = False test_mismatched_shapes = False test_missing_keys = False test_model_parallel = False is_encoder_decoder = False has_attentions = False input_name = "spectrogram" def setUp(self): self.model_tester = SpeechT5HifiGanTester(self) self.config_tester = ConfigTester(self, config_class=SpeechT5HifiGanConfig) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "spectrogram", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @unittest.skip(reason="Model does not output hidden states") def test_hidden_states_output(self): pass @unittest.skip def test_initialization(self): pass @unittest.skip(reason="Model has no input_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Model has no input_embeds") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Model does not support all arguments tested") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="Model does not output hidden states") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Fails on automapping of SpeechT5HifiGanConfig") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Fails on automapping of SpeechT5HifiGanConfig") def test_save_load_fast_init_to_base(self): pass def test_batched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() batched_inputs = inputs["spectrogram"].unsqueeze(0).repeat(2, 1, 1) with torch.no_grad(): batched_outputs = model(batched_inputs.to(torch_device)) self.assertEqual( batched_inputs.shape[0], batched_outputs.shape[0], msg="Got different batch dims for input and output" ) def test_unbatched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(inputs["spectrogram"].to(torch_device)) self.assertTrue(outputs.dim() == 1, msg="Got un-batched inputs but batched output")
transformers/tests/models/speecht5/test_modeling_speecht5.py/0
{ "file_path": "transformers/tests/models/speecht5/test_modeling_speecht5.py", "repo_id": "transformers", "token_count": 36285 }
413
# coding=utf-8 # Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.image_transforms import PaddingMode from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import TvpImageProcessor class TvpImageProcessingTester(unittest.TestCase): def __init__( self, parent, do_resize: bool = True, size: Dict[str, int] = {"longest_edge": 40}, do_center_crop: bool = False, crop_size: Dict[str, int] = None, do_rescale: bool = False, rescale_factor: Union[int, float] = 1 / 255, do_pad: bool = True, pad_size: Dict[str, int] = {"height": 80, "width": 80}, fill: int = None, pad_mode: PaddingMode = None, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073], image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711], batch_size=2, min_resolution=40, max_resolution=80, num_channels=3, num_frames=2, ): super().__init__() self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.pad_size = pad_size self.fill = fill self.pad_mode = pad_mode self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.num_frames = num_frames def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "do_center_crop": self.do_center_crop, "do_pad": self.do_pad, "pad_size": self.pad_size, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to TvpImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: return (int(self.pad_size["height"]), int(self.pad_size["width"])) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_video_inputs( batch_size=self.batch_size, num_frames=self.num_frames, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class TvpImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = TvpImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = TvpImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "pad_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"longest_edge": 40}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size={"longest_edge": 12}) self.assertEqual(image_processor.size, {"longest_edge": 12}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL videos video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], Image.Image) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy_4_channels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing( video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing( video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) self.image_processor_tester.num_channels = 3 def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], torch.Tensor) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
transformers/tests/models/tvp/test_image_processing_tvp.py/0
{ "file_path": "transformers/tests/models/tvp/test_image_processing_tvp.py", "repo_id": "transformers", "token_count": 5480 }
414
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch UperNet framework.""" import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import ( require_timm, require_torch, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UperNetModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 1, 1], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.out_features = out_features self.num_labels = num_labels self.scope = scope self.num_hidden_layers = num_stages def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_backbone_config(self): return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def get_config(self): return UperNetConfig( backbone_config=self.get_backbone_config(), backbone=None, hidden_size=64, pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=32, auxiliary_num_convs=1, auxiliary_concat_input=False, loss_ignore_index=255, num_labels=self.num_labels, ) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels): model = UperNetForSemanticSegmentation(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as UperNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (UperNetForSemanticSegmentation,) if is_torch_available() else () pipeline_model_mapping = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = UperNetModelTester(self) self.config_tester = ConfigTester( self, config_class=UperNetConfig, has_text_modality=False, hidden_size=37, common_properties=["hidden_size"], ) def test_config(self): self.config_tester.run_common_tests() def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) @unittest.skip(reason="UperNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="UperNet does not support input and output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="UperNet does not have a base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="UperNet does not have a base model") def test_save_load_fast_init_to_base(self): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def test_multi_gpu_data_parallel_forward(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) configs_no_init.backbone_config = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_timm def test_backbone_selection(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() config.backbone_config = None config.backbone_kwargs = {"out_indices": [1, 2, 3]} config.use_pretrained_backbone = True # Load a timm backbone # We can't load transformer checkpoint with timm backbone, as we can't specify features_only and out_indices config.backbone = "resnet18" config.use_timm_backbone = True for model_class in self.all_model_classes: model = model_class(config).to(torch_device).eval() if model.__class__.__name__ == "UperNetForUniversalSegmentation": self.assertEqual(model.backbone.out_indices, [1, 2, 3]) # Load a HF backbone config.backbone = "microsoft/resnet-18" config.use_timm_backbone = False for model_class in self.all_model_classes: model = model_class(config).to(torch_device).eval() if model.__class__.__name__ == "UperNetForUniversalSegmentation": self.assertEqual(model.backbone.out_indices, [1, 2, 3]) @unittest.skip(reason="UperNet does not have tied weights") def test_tied_model_weights_key_ignore(self): pass @slow def test_model_from_pretrained(self): model_name = "openmmlab/upernet-convnext-tiny" model = UperNetForSemanticSegmentation.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of ADE20k def prepare_img(): filepath = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg" ) image = Image.open(filepath).convert("RGB") return image @require_torch @require_vision @slow class UperNetModelIntegrationTest(unittest.TestCase): def test_inference_swin_backbone(self): processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny") model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(torch_device) image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4)) def test_inference_convnext_backbone(self): processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(torch_device) image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/upernet/test_modeling_upernet.py/0
{ "file_path": "transformers/tests/models/upernet/test_modeling_upernet.py", "repo_id": "transformers", "token_count": 5303 }
415
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import gc import glob import inspect import math import multiprocessing import os import tempfile import traceback import unittest import numpy as np import pytest from datasets import load_dataset from huggingface_hub import snapshot_download from transformers import Wav2Vec2Config, is_tf_available from transformers.testing_utils import ( CaptureLogger, is_flaky, is_pt_tf_cross_test, require_librosa, require_pyctcdecode, require_tf, run_test_in_subprocess, slow, ) from transformers.utils import is_librosa_available, is_pyctcdecode_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoFeatureExtractor, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification, TFWav2Vec2Model, Wav2Vec2Processor, ) from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices if is_pyctcdecode_available(): import pyctcdecode.decoder from transformers import Wav2Vec2ProcessorWithLM from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm if is_librosa_available(): import librosa def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout): error = None try: _ = in_queue.get(timeout=timeout) downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # use a spawn pool, which should trigger a warning if different than fork with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork multiprocessing.set_start_method("spawn", force=True) with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl: transcription = processor.batch_decode(logits.numpy()).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() @require_tf class TFWav2Vec2ModelTester: def __init__( self, parent, batch_size=3, seq_length=1024, is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0 attention_mask = tf.ones_like(input_values) config = Wav2Vec2Config( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, do_stable_layer_norm=self.do_stable_layer_norm, ) return config, input_values, attention_mask def create_and_check_model(self, config, input_values, attention_mask): model = TFWav2Vec2Model(config) result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 config.layerdrop = 0.0 model = TFWav2Vec2Model(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice, training=False).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2) def check_seq_classifier_loss(self, loss, config, input_values, *args): model = TFWav2Vec2ForSequenceClassification(config) input_values = input_values[:3] attention_mask = tf.ones(input_values.shape, dtype=tf.int32) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 training = False masked_loss = ( model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item() ) unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item() assert isinstance(masked_loss, float) assert isinstance(unmasked_loss, float) assert masked_loss != unmasked_loss def check_training(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) input_values = input_values * length_mask pad_size = max(max_length_labels) - labels.shape[1] labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100) loss = model(input_values, labels=labels, training=True).loss self.parent.assertFalse(tf.math.is_inf(loss)) def check_labels_out_of_vocab(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 500) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_tf class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) pipeline_model_mapping = ( {"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model} if is_tf_available() else {} ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) @is_flaky() def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester( self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True, scope="robust", ) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_batched_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_batch_inference(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) # TODO (Joao): fix me @unittest.skip("Broke with TF 2.10") def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual( tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)] ) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in tf.reduce_sum(mask, -1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_tf @slow class TFWav2Vec2ModelIntegrationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test", trust_remote_code=True) return ds[:num_samples] def test_inference_ctc_normal(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(2) input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_robust_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_pool(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # test user-managed pool with multiprocessing.get_context("fork").Pool(2) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # user-managed pool + num_processes should trigger a warning with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool( 2 ) as pool: transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text self.assertIn("num_process", cl.out) self.assertIn("it will be ignored", cl.out) self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_invalid_pool(self): run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None) def test_inference_keyword_spotting(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks") input_data = self._load_superb("ks", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [7, 6, 10, 9] expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_intent_classification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic") input_data = self._load_superb("ic", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits_action, predicted_ids_action = ( tf.math.reduce_max(outputs.logits[:, :6], axis=-1), tf.argmax(outputs.logits[:, :6], axis=-1), ) predicted_logits_object, predicted_ids_object = ( tf.math.reduce_max(outputs.logits[:, 6:20], axis=-1), tf.argmax(outputs.logits[:, 6:20], axis=-1), ) predicted_logits_location, predicted_ids_location = ( tf.math.reduce_max(outputs.logits[:, 20:24], axis=-1), tf.argmax(outputs.logits[:, 20:24], axis=-1), ) expected_labels_action = [0, 0, 2, 3] expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841]) expected_labels_object = [3, 10, 3, 4] expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318]) expected_labels_location = [0, 0, 0, 1] expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569]) self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action) self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object) self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location) self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2)) def test_inference_speaker_identification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid") input_data = self._load_superb("si", 4) output_logits = [] for example in input_data["speech"]: input = processor(example, return_tensors="tf", padding=True) output = model(input.input_values, attention_mask=None) output_logits.append(output.logits[0]) output_logits = tf.stack(output_logits) predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1) expected_labels = [251, 1, 1, 3] expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_emotion_recognition(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er") input_data = self._load_superb("er", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [1, 1, 2, 2] # s3prl logits for the same batch expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py/0
{ "file_path": "transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "repo_id": "transformers", "token_count": 17509 }
416
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import WhisperFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torch_gpu from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class WhisperFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=10, hop_length=160, chunk_length=8, padding_value=0.0, sampling_rate=4_000, return_attention_mask=False, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize self.feature_size = feature_size self.chunk_length = chunk_length self.hop_length = hop_length def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = WhisperFeatureExtractor def setUp(self): self.feat_extract_tester = WhisperFeatureExtractionTester(self) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_from_pretrained_kwargs(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained( tmpdirname, feature_size=2 * self.feat_extract_dict["feature_size"] ) mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(2 * mel_1.shape[1] == mel_2.shape[1]) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test truncation required speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs] np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) @require_torch def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch_gpu @require_torch def test_torch_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="pt").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) @unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False) def test_numpy_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = np.array( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="np").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) audio = self._load_datasamples(1)[0] audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0] self.assertTrue(np.all(np.mean(audio) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3)) @require_torch_gpu @require_torch def test_torch_integration_batch(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ], [ -0.4696, -0.0751, 0.0276, -0.0312, -0.0540, -0.0383, 0.1295, 0.0568, -0.2071, -0.0548, 0.0389, -0.0316, -0.2346, -0.1068, -0.0322, 0.0475, -0.1709, -0.0041, 0.0872, 0.0537, 0.0075, -0.0392, 0.0371, 0.0189, -0.1522, -0.0270, 0.0744, 0.0738, -0.0245, -0.0667 ], [ -0.2337, -0.0060, -0.0063, -0.2353, -0.0431, 0.1102, -0.1492, -0.0292, 0.0787, -0.0608, 0.0143, 0.0582, 0.0072, 0.0101, -0.0444, -0.1701, -0.0064, -0.0027, -0.0826, -0.0730, -0.0099, -0.0762, -0.0170, 0.0446, -0.1153, 0.0960, -0.0361, 0.0652, 0.1207, 0.0277 ] ] ) # fmt: on input_speech = self._load_datasamples(3) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="pt").input_features self.assertEqual(input_features.shape, (3, 80, 3000)) self.assertTrue(torch.allclose(input_features[:, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
transformers/tests/models/whisper/test_feature_extraction_whisper.py/0
{ "file_path": "transformers/tests/models/whisper/test_feature_extraction_whisper.py", "repo_id": "transformers", "token_count": 6468 }
417
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "FacebookAI/xlm-mlm-en-2048" tokenizer_class = XLMTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = XLMTokenizer(self.vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_2 + [1]
transformers/tests/models/xlm/test_tokenization_xlm.py/0
{ "file_path": "transformers/tests/models/xlm/test_tokenization_xlm.py", "repo_id": "transformers", "token_count": 1536 }
418
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch YOLOS model.""" import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class YolosModelTester: def __init__( self, parent, batch_size=13, image_size=[30, 30], patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, n_targets=8, num_detection_tokens=10, attn_implementation="eager", ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.n_targets = n_targets self.num_detection_tokens = num_detection_tokens self.attn_implementation = attn_implementation # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size) self.expected_seq_len = num_patches + 1 + self.num_detection_tokens def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, labels def get_config(self): return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, attn_implementation=self.attn_implementation, ) def create_and_check_model(self, config, pixel_values, labels): model = YolosModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_object_detection(self, config, pixel_values, labels): model = YolosForObjectDetection(config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) result = model(pixel_values=pixel_values, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False # special case for head model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "YolosForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = YolosModelTester(self) self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="YOLOS does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in YOLOS, the seq_len is different seq_len = self.model_tester.expected_seq_len for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # YOLOS has a different seq_length seq_length = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_object_detection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "hustvl/yolos-small" model = YolosModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class YolosModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None @slow def test_inference_object_detection_head(self): model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs.pixel_values) # verify outputs expected_shape = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice_logits = torch.tensor( [[-23.7219, -10.3165, -14.9083], [-41.5429, -15.2403, -24.1478], [-29.3909, -12.7173, -19.4650]], device=torch_device, ) expected_slice_boxes = torch.tensor( [[0.2536, 0.5449, 0.4643], [0.2037, 0.7735, 0.3672], [0.7692, 0.4056, 0.4549]], device=torch_device ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.9991, 0.9801, 0.9978, 0.9875, 0.9848]).to(torch_device) expected_labels = [75, 75, 17, 63, 17] expected_slice_boxes = torch.tensor([331.8438, 80.5440, 369.9546, 188.0579]).to(torch_device) self.assertEqual(len(results["scores"]), 5) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
transformers/tests/models/yolos/test_modeling_yolos.py/0
{ "file_path": "transformers/tests/models/yolos/test_modeling_yolos.py", "repo_id": "transformers", "token_count": 6792 }
419
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import ( MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline, pipeline, ) from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torch_accelerator, slow, torch_device, ) from .test_pipelines_common import ANY VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]] # These 2 model types require different inputs than those of the usual text models. _TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class TokenClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING if model_mapping is not None: model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: tf_model_mapping = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def get_test_pipeline(self, model, tokenizer, processor, torch_dtype="float32"): token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, torch_dtype=torch_dtype) return token_classifier, ["A simple string", "A simple string that is quite a bit longer"] def run_pipeline_test(self, token_classifier, _): model = token_classifier.model tokenizer = token_classifier.tokenizer if not tokenizer.is_fast: return # Slow tokenizers do not return offsets mappings, so this test will fail outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(n) ], ) outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"]) self.assertIsInstance(outputs, list) self.assertEqual(len(outputs), 2) n = len(outputs[0]) m = len(outputs[1]) self.assertEqual( nested_simplify(outputs), [ [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(n) ], [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(m) ], ], ) self.run_aggregation_strategy(model, tokenizer) def run_aggregation_strategy(self, model, tokenizer): token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="average" ) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) with self.assertWarns(UserWarning): token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) with self.assertWarns(UserWarning): token_classifier = pipeline( task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True ) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) @slow @require_torch def test_chunking(self): NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) tokenizer.model_max_length = 10 stride = 5 sentence = ( "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. " "The company, based in New York City was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf." ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) @require_torch def test_chunking_fast(self): # Note: We cannot run the test on "conflicts" on the chunking. # The problem is that the model is random, and thus the results do heavily # depend on the chunking, so we cannot expect "abcd" and "bcd" to find # the same entities. We defer to slow tests for this. pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification") sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs" results = pipe(sentence, aggregation_strategy="first") # This is what this random model gives on the full sentence self.assertEqual( nested_simplify(results), [ # This is 2 actual tokens {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, ], ) # This will force the tokenizer to split after "city was". pipe.tokenizer.model_max_length = 12 self.assertEqual( pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)), "[CLS] the company, based in new york city was [SEP]", ) stride = 4 results = pipe(sentence, aggregation_strategy="first", stride=stride) self.assertEqual( nested_simplify(results), [ {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, # This is an extra entity found by this random model, but at least both original # entities are there {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"}, {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, ], ) @require_torch @slow def test_spanish_bert(self): # https://github.com/huggingface/transformers/pull/4987 NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses.""" token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1}, {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2}, {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4}, {"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114}, ], ) @require_torch_accelerator @slow def test_accelerator(self): sentence = "This is dummy sentence" ner = pipeline( "token-classification", device=torch_device, aggregation_strategy=AggregationStrategy.SIMPLE, ) output = ner(sentence) self.assertEqual(nested_simplify(output), []) @require_torch @slow def test_dbmdz_english(self): # Other sentence NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) sentence = """Enzo works at the UN""" token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1}, {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2}, {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) @require_torch @slow def test_aggregation_strategy_byte_level_tokenizer(self): sentence = "Groenlinks praat over Schiphol." ner = pipeline("ner", model="FacebookAI/xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max") self.assertEqual( nested_simplify(ner(sentence)), [ {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"}, {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31}, ], ) @require_torch def test_aggregation_strategy_no_b_i_prefix(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"} example = [ { "scores": np.array([0, 0, 0, 0, 0.9968166351318359]), # fmt : skip "index": 1, "is_subword": False, "word": "En", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0, 0.9957635998725891]), # fmt : skip "index": 2, "is_subword": True, "word": "##zo", "start": 2, "end": 4, }, { "scores": np.array([0, 0, 0, 0.9986497163772583, 0]), # fmt : skip "index": 7, "word": "UN", "is_subword": False, "start": 11, "end": 13, }, ] self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), [ {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1}, {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), [ {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) @require_torch def test_aggregation_strategy(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test self.assertEqual( token_classifier.model.config.id2label, {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, ) example = [ { "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]), # fmt : skip "index": 1, "is_subword": False, "word": "En", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]), # fmt : skip "index": 2, "is_subword": True, "word": "##zo", "start": 2, "end": 4, }, { "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0]), # fmt : skip "index": 7, "word": "UN", "is_subword": False, "start": 11, "end": 13, }, ] self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), [ {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1}, {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), [ {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), [ {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) @require_torch def test_aggregation_strategy_example2(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test self.assertEqual( token_classifier.model.config.id2label, {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, ) example = [ { # Necessary for AVERAGE "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]), "is_subword": False, "index": 1, "word": "Ra", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]), "is_subword": True, "word": "##ma", "start": 2, "end": 4, "index": 2, }, { # 4th score will have the higher average # 4th score is B-PER for this model # It's does not correspond to any of the subtokens. "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]), "is_subword": True, "word": "##zotti", "start": 11, "end": 13, "index": 3, }, ] self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.NONE), [ {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1}, {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2}, {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3}, ], ) self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.FIRST), [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}], ) self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.MAX), [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}], ) @require_torch @slow def test_aggregation_strategy_offsets_with_leading_space(self): sentence = "We're from New York" model_name = "brandon25/deberta-base-finetuned-ner" ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max") self.assertEqual( nested_simplify(ner(sentence)), [ {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10}, {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19}, ], ) @require_torch def test_gather_pre_entities(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") sentence = "Hello there" tokens = tokenizer( sentence, return_attention_mask=False, return_tensors="pt", truncation=True, return_special_tokens_mask=True, return_offsets_mapping=True, ) offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] input_ids = tokens["input_ids"].numpy()[0] # First element in [CLS] scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]]) pre_entities = token_classifier.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy=AggregationStrategy.NONE, ) self.assertEqual( nested_simplify(pre_entities), [ {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1}, { "word": "there", "scores": [0.8, 0.1, 0.1], "index": 2, "start": 6, "end": 11, "is_subword": False, }, ], ) @require_torch def test_word_heuristic_leading_space(self): model_name = "hf-internal-testing/tiny-random-deberta-v2" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") sentence = "I play the theremin" tokens = tokenizer( sentence, return_attention_mask=False, return_tensors="pt", return_special_tokens_mask=True, return_offsets_mapping=True, ) offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] input_ids = tokens["input_ids"].numpy()[0] scores = np.array([[1, 0] for _ in input_ids]) # values irrelevant for heuristic pre_entities = token_classifier.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy=AggregationStrategy.FIRST, ) # ensure expected tokenization and correct is_subword values self.assertEqual( [(entity["word"], entity["is_subword"]) for entity in pre_entities], [("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)], ) @require_tf def test_tf_only(self): model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version # We test that if we don't specificy framework='tf', it gets detected automatically token_classifier = pipeline(task="ner", model=model_name) self.assertEqual(token_classifier.framework, "tf") @require_tf def test_small_model_tf(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" token_classifier = pipeline(task="token-classification", model=model_name, framework="tf") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], ) @require_torch def test_no_offset_tokenizer(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None}, ], ) @require_torch def test_small_model_pt(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], ) token_classifier = pipeline( task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"] ) outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [], ) token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") # Overload offset_mapping outputs = token_classifier( "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)] ) self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2}, ], ) # Batch size does not affect outputs (attention_mask are required) sentences = ["This is a test !", "Another test this is with longer sentence"] outputs = token_classifier(sentences) outputs_batched = token_classifier(sentences, batch_size=2) # Batching does not make a difference in predictions self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs)) self.assertEqual( nested_simplify(outputs_batched), [ [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], [], ], ) @require_torch def test_pt_ignore_subwords_slow_tokenizer_raises(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) with self.assertRaises(ValueError): pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST) with self.assertRaises(ValueError): pipeline( task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE ) with self.assertRaises(ValueError): pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX) @slow @require_torch def test_simple(self): token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True) sentence = "Hello Sarah Jessica Parker who Jessica lives in New York" sentence2 = "This is a simple test" output = token_classifier(sentence) output_ = nested_simplify(output) self.assertEqual( output_, [ { "entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26, }, {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, ], ) output = token_classifier([sentence, sentence2]) output_ = nested_simplify(output) self.assertEqual( output_, [ [ {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26}, {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, ], [], ], ) class TokenClassificationArgumentHandlerTestCase(unittest.TestCase): def setUp(self): self.args_parser = TokenClassificationArgumentHandler() def test_simple(self): string = "This is a simple input" inputs, offset_mapping = self.args_parser(string) self.assertEqual(inputs, [string]) self.assertEqual(offset_mapping, None) inputs, offset_mapping = self.args_parser([string, string]) self.assertEqual(inputs, [string, string]) self.assertEqual(offset_mapping, None) inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)]) self.assertEqual(inputs, [string]) self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]]) inputs, offset_mapping = self.args_parser( [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]] ) self.assertEqual(inputs, [string, string]) self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) def test_errors(self): string = "This is a simple input" # 2 sentences, 1 offset_mapping, args with self.assertRaises(TypeError): self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]]) # 2 sentences, 1 offset_mapping, args with self.assertRaises(TypeError): self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)]) # 2 sentences, 1 offset_mapping, input_list with self.assertRaises(ValueError): self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]]) # 2 sentences, 1 offset_mapping, input_list with self.assertRaises(ValueError): self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)]) # 1 sentences, 2 offset_mapping with self.assertRaises(ValueError): self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) # 0 sentences, 1 offset_mapping with self.assertRaises(TypeError): self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])
transformers/tests/pipelines/test_pipelines_token_classification.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_token_classification.py", "repo_id": "transformers", "token_count": 20561 }
420
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) BERT_TEST_FILE = os.path.join("tests", "models", "bert", "test_modeling_bert.py") BLIP_TEST_FILE = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class GetTestInfoTester(unittest.TestCase): def test_get_test_to_tester_mapping(self): bert_test_tester_mapping = get_test_to_tester_mapping(BERT_TEST_FILE) blip_test_tester_mapping = get_test_to_tester_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = {"BertModelTest": "BertModelTester"} EXPECTED_BLIP_MAPPING = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(bert_test_tester_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_test_tester_mapping), EXPECTED_BLIP_MAPPING) def test_get_model_to_test_mapping(self): bert_model_test_mapping = get_model_to_test_mapping(BERT_TEST_FILE) blip_model_test_mapping = get_model_to_test_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } EXPECTED_BLIP_MAPPING = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(bert_model_test_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_model_test_mapping), EXPECTED_BLIP_MAPPING) def test_get_model_to_tester_mapping(self): bert_model_tester_mapping = get_model_to_tester_mapping(BERT_TEST_FILE) blip_model_tester_mapping = get_model_to_tester_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } EXPECTED_BLIP_MAPPING = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(bert_model_tester_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_model_tester_mapping), EXPECTED_BLIP_MAPPING)
transformers/tests/repo_utils/test_get_test_info.py/0
{ "file_path": "transformers/tests/repo_utils/test_get_test_info.py", "repo_id": "transformers", "token_count": 2131 }
421
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class FeatureExtractionSavingTestMixin: test_cast_dtype = None def test_feat_extract_to_json_string(self): feat_extract = self.feature_extraction_class(**self.feat_extract_dict) obj = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key], value) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) def test_init_without_params(self): feat_extract = self.feature_extraction_class() self.assertIsNotNone(feat_extract)
transformers/tests/test_feature_extraction_common.py/0
{ "file_path": "transformers/tests/test_feature_extraction_common.py", "repo_id": "transformers", "token_count": 828 }
422
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, EarlyStoppingCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainerState, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch from transformers.trainer_callback import ExportableState if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS, TRAINER_STATE_NAME from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class MyTestExportableCallback(TrainerCallback, ExportableState): def __init__(self, my_test_state="test"): self.my_test_state = my_test_state def state(self): return { "args": { "my_test_state": self.my_test_state, }, } class MyTestTrainerCallback(TrainerCallback): "A callback that registers the events that goes through." def __init__(self, my_test_state="test"): self.events = [] self.my_test_state = my_test_state def on_init_end(self, args, state, control, **kwargs): self.events.append("on_init_end") def on_train_begin(self, args, state, control, **kwargs): self.events.append("on_train_begin") def on_train_end(self, args, state, control, **kwargs): self.events.append("on_train_end") def on_epoch_begin(self, args, state, control, **kwargs): self.events.append("on_epoch_begin") def on_epoch_end(self, args, state, control, **kwargs): self.events.append("on_epoch_end") def on_step_begin(self, args, state, control, **kwargs): self.events.append("on_step_begin") def on_optimizer_step(self, args, state, control, **kwargs): self.events.append("on_optimizer_step") def on_step_end(self, args, state, control, **kwargs): self.events.append("on_step_end") def on_evaluate(self, args, state, control, **kwargs): self.events.append("on_evaluate") def on_predict(self, args, state, control, **kwargs): self.events.append("on_predict") def on_save(self, args, state, control, **kwargs): self.events.append("on_save") def on_log(self, args, state, control, **kwargs): self.events.append("on_log") def on_prediction_step(self, args, state, control, **kwargs): self.events.append("on_prediction_step") @require_torch class TrainerCallbackTest(unittest.TestCase): def setUp(self): self.output_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.output_dir) def get_trainer(self, a=0, b=0, train_len=64, eval_len=64, callbacks=None, disable_tqdm=False, **kwargs): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. train_dataset = RegressionDataset(length=train_len) eval_dataset = RegressionDataset(length=eval_len) config = RegressionModelConfig(a=a, b=b) model = RegressionPreTrainedModel(config) args = TrainingArguments(self.output_dir, disable_tqdm=disable_tqdm, report_to=[], **kwargs) return Trainer( model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, callbacks=callbacks, ) def check_callbacks_equality(self, cbs1, cbs2): self.assertEqual(len(cbs1), len(cbs2)) # Order doesn't matter cbs1 = sorted(cbs1, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__) cbs2 = sorted(cbs2, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__) for cb1, cb2 in zip(cbs1, cbs2): if isinstance(cb1, type) and isinstance(cb2, type): self.assertEqual(cb1, cb2) elif isinstance(cb1, type) and not isinstance(cb2, type): self.assertEqual(cb1, cb2.__class__) elif not isinstance(cb1, type) and isinstance(cb2, type): self.assertEqual(cb1.__class__, cb2) else: self.assertEqual(cb1, cb2) def get_expected_events(self, trainer): expected_events = ["on_init_end", "on_train_begin"] step = 0 train_dl_len = len(trainer.get_eval_dataloader()) evaluation_events = ["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs): expected_events.append("on_epoch_begin") for _ in range(train_dl_len): step += 1 expected_events += ["on_step_begin", "on_optimizer_step", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log") if trainer.args.eval_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0 or step == trainer.state.max_steps: expected_events.append("on_save") expected_events.append("on_epoch_end") if trainer.args.eval_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def test_init_callback(self): trainer = self.get_trainer() expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) # Callbacks passed at init are added to the default callbacks trainer = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(MyTestTrainerCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback trainer = self.get_trainer(disable_tqdm=True) expected_callbacks = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) def test_add_remove_callback(self): expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback] trainer = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(DefaultFlowCallback) expected_callbacks.remove(DefaultFlowCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) trainer = self.get_trainer() cb = trainer.pop_callback(DefaultFlowCallback) self.assertEqual(cb.__class__, DefaultFlowCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) trainer.add_callback(DefaultFlowCallback) expected_callbacks.insert(0, DefaultFlowCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) # We can also add, pop, or remove by instance trainer = self.get_trainer() cb = trainer.callback_handler.callbacks[0] trainer.remove_callback(cb) expected_callbacks.remove(DefaultFlowCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) trainer = self.get_trainer() cb1 = trainer.callback_handler.callbacks[0] cb2 = trainer.pop_callback(cb1) self.assertEqual(cb1, cb2) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) trainer.add_callback(cb1) expected_callbacks.insert(0, DefaultFlowCallback) self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks) def test_event_flow(self): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=UserWarning) trainer = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) # Independent log/save/eval trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5) trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5) trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, eval_strategy="steps") trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_strategy="epoch") trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) # A bit of everything trainer = self.get_trainer( callbacks=[MyTestTrainerCallback], logging_steps=3, save_steps=10, eval_steps=5, eval_strategy="steps", ) trainer.train() events = trainer.callback_handler.callbacks[-2].events self.assertEqual(events, self.get_expected_events(trainer)) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning") as warn_mock: trainer = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback], ) assert str(MyTestTrainerCallback) in warn_mock.call_args[0][0] def test_stateful_callbacks(self): # Use something with non-defaults cb = EarlyStoppingCallback(early_stopping_patience=5, early_stopping_threshold=0.2) trainer = self.get_trainer( callbacks=[cb], load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, ) trainer.train() # Create a new trainer with defaults trainer = self.get_trainer( callbacks=[EarlyStoppingCallback()], load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, restore_callback_states_from_checkpoint=True, ) # Load it back in and verify values checkpoint = os.path.join(self.output_dir, "checkpoint-2") trainer.train(resume_from_checkpoint=checkpoint) cb = [ callback for callback in trainer.callback_handler.callbacks if isinstance(callback, EarlyStoppingCallback) ][0] assert cb.early_stopping_patience == 5 assert cb.early_stopping_threshold == 0.2 def test_stateful_mixed_callbacks(self): # Use two callbacks, one stateful one not # Use something with non-defaults cbs = [ MyTestTrainerCallback(my_test_state="another value"), EarlyStoppingCallback(early_stopping_patience=5, early_stopping_threshold=0.2), ] trainer = self.get_trainer( callbacks=cbs, load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, ) trainer.train() # Create a new trainer with defaults trainer = self.get_trainer( callbacks=[EarlyStoppingCallback(), MyTestTrainerCallback()], load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, restore_callback_states_from_checkpoint=True, ) # Load it back in and verify values checkpoint = os.path.join(self.output_dir, "checkpoint-2") trainer.train(resume_from_checkpoint=checkpoint) cbs = [ callback for callback in trainer.callback_handler.callbacks if isinstance(callback, (EarlyStoppingCallback, MyTestTrainerCallback)) ] assert len(cbs) == 2 my_test, early_stopping = cbs assert early_stopping.early_stopping_patience == 5 assert early_stopping.early_stopping_threshold == 0.2 assert my_test.my_test_state == "test" def test_stateful_duplicate_callbacks(self): # Use something with non-defaults cbs = [MyTestExportableCallback("first"), MyTestExportableCallback("second")] trainer = self.get_trainer( callbacks=cbs, load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, ) trainer.train() # Create a new trainer with defaults trainer = self.get_trainer( callbacks=[MyTestExportableCallback(), MyTestExportableCallback()], load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, restore_callback_states_from_checkpoint=True, ) # Load it back in and verify values checkpoint = os.path.join(self.output_dir, "checkpoint-2") trainer.train(resume_from_checkpoint=checkpoint) cbs = [ callback for callback in trainer.callback_handler.callbacks if isinstance(callback, MyTestExportableCallback) ] assert len(cbs) == 2 assert cbs[0].my_test_state == "first" assert cbs[1].my_test_state == "second" def test_missing_stateful_callback(self): cb = EarlyStoppingCallback() trainer = self.get_trainer( callbacks=[cb], load_best_model_at_end=True, save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, ) trainer.train() # Create a new trainer with defaults trainer = self.get_trainer( save_strategy="steps", eval_strategy="steps", save_steps=2, eval_steps=2, max_steps=2, restore_callback_states_from_checkpoint=True, ) # Load it back in and verify values checkpoint = os.path.join(self.output_dir, "checkpoint-2") # warning should be emitted for not-present callbacks with patch("transformers.trainer.logger.warning") as warn_mock: trainer.train(resume_from_checkpoint=checkpoint) assert "EarlyStoppingCallback" in warn_mock.call_args[0][0] def test_stateful_control(self): trainer = self.get_trainer( max_steps=2, save_strategy="steps", save_steps=2, ) trainer.train() # Load it back in and verify values trainer = self.get_trainer(max_steps=2, restore_callback_states_from_checkpoint=True) checkpoint = os.path.join(self.output_dir, "checkpoint-2") trainer.state = TrainerState.load_from_json(os.path.join(checkpoint, TRAINER_STATE_NAME)) trainer._load_callback_state() assert trainer.control.should_training_stop
transformers/tests/trainer/test_trainer_callback.py/0
{ "file_path": "transformers/tests/trainer/test_trainer_callback.py", "repo_id": "transformers", "token_count": 7411 }
423
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import warnings from parameterized import parameterized from transformers import __version__ from transformers.utils.deprecation import deprecate_kwarg INFINITE_VERSION = "9999.0.0" class DeprecationDecoratorTester(unittest.TestCase): def test_rename_kwarg(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") @deprecate_kwarg("deprecated_name", new_name="new_name", version=INFINITE_VERSION) def dummy_function(new_name=None, other_name=None): return new_name, other_name # Test keyword argument is renamed value, other_value = dummy_function(deprecated_name="old_value") self.assertEqual(value, "old_value") self.assertIsNone(other_value) # Test deprecated keyword argument not passed value, other_value = dummy_function(new_name="new_value") self.assertEqual(value, "new_value") self.assertIsNone(other_value) # Test other keyword argument value, other_value = dummy_function(other_name="other_value") self.assertIsNone(value) self.assertEqual(other_value, "other_value") # Test deprecated and new args are passed, the new one should be returned value, other_value = dummy_function(deprecated_name="old_value", new_name="new_value") self.assertEqual(value, "new_value") self.assertIsNone(other_value) def test_rename_multiple_kwargs(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") @deprecate_kwarg("deprecated_name1", new_name="new_name1", version=INFINITE_VERSION) @deprecate_kwarg("deprecated_name2", new_name="new_name2", version=INFINITE_VERSION) def dummy_function(new_name1=None, new_name2=None, other_name=None): return new_name1, new_name2, other_name # Test keyword argument is renamed value1, value2, other_value = dummy_function(deprecated_name1="old_value1", deprecated_name2="old_value2") self.assertEqual(value1, "old_value1") self.assertEqual(value2, "old_value2") self.assertIsNone(other_value) # Test deprecated keyword argument is not passed value1, value2, other_value = dummy_function(new_name1="new_value1", new_name2="new_value2") self.assertEqual(value1, "new_value1") self.assertEqual(value2, "new_value2") self.assertIsNone(other_value) # Test other keyword argument is passed and correctly returned value1, value2, other_value = dummy_function(other_name="other_value") self.assertIsNone(value1) self.assertIsNone(value2) self.assertEqual(other_value, "other_value") def test_warnings(self): # Test warning is raised for future version @deprecate_kwarg("deprecated_name", new_name="new_name", version=INFINITE_VERSION) def dummy_function(new_name=None, other_name=None): return new_name, other_name with self.assertWarns(FutureWarning): dummy_function(deprecated_name="old_value") # Test warning is not raised for past version, but arg is still renamed @deprecate_kwarg("deprecated_name", new_name="new_name", version="0.0.0") def dummy_function(new_name=None, other_name=None): return new_name, other_name with warnings.catch_warnings(record=True) as raised_warnings: warnings.simplefilter("always") value, other_value = dummy_function(deprecated_name="old_value") self.assertEqual(value, "old_value") self.assertIsNone(other_value) self.assertEqual(len(raised_warnings), 0, f"Warning raised: {[w.message for w in raised_warnings]}") # Test warning is raised for future version if warn_if_greater_or_equal_version is set @deprecate_kwarg("deprecated_name", version="0.0.0", warn_if_greater_or_equal_version=True) def dummy_function(deprecated_name=None): return deprecated_name with self.assertWarns(FutureWarning): value = dummy_function(deprecated_name="deprecated_value") self.assertEqual(value, "deprecated_value") # Test arg is not renamed if new_name is not specified, but warning is raised @deprecate_kwarg("deprecated_name", version=INFINITE_VERSION) def dummy_function(deprecated_name=None): return deprecated_name with self.assertWarns(FutureWarning): value = dummy_function(deprecated_name="deprecated_value") self.assertEqual(value, "deprecated_value") def test_raises(self): # Test if deprecated name and new name are both passed and raise_if_both_names is set -> raise error @deprecate_kwarg("deprecated_name", new_name="new_name", version=INFINITE_VERSION, raise_if_both_names=True) def dummy_function(new_name=None, other_name=None): return new_name, other_name with self.assertRaises(ValueError): dummy_function(deprecated_name="old_value", new_name="new_value") # Test for current version == deprecation version @deprecate_kwarg("deprecated_name", version=__version__, raise_if_greater_or_equal_version=True) def dummy_function(deprecated_name=None): return deprecated_name with self.assertRaises(ValueError): dummy_function(deprecated_name="old_value") # Test for current version > deprecation version @deprecate_kwarg("deprecated_name", version="0.0.0", raise_if_greater_or_equal_version=True) def dummy_function(deprecated_name=None): return deprecated_name with self.assertRaises(ValueError): dummy_function(deprecated_name="old_value") def test_additional_message(self): # Test additional message is added to the warning @deprecate_kwarg("deprecated_name", version=INFINITE_VERSION, additional_message="Additional message") def dummy_function(deprecated_name=None): return deprecated_name with warnings.catch_warnings(record=True) as raised_warnings: warnings.simplefilter("always") dummy_function(deprecated_name="old_value") self.assertTrue("Additional message" in str(raised_warnings[0].message)) @parameterized.expand(["0.0.0", __version__, INFINITE_VERSION]) def test_warning_for_both_names(self, version): # We should raise warning if both names are passed for any specified version @deprecate_kwarg("deprecated_name", new_name="new_name", version=version) def dummy_function(new_name=None, **kwargs): return new_name with self.assertWarns(FutureWarning): result = dummy_function(deprecated_name="old_value", new_name="new_value") self.assertEqual(result, "new_value")
transformers/tests/utils/test_deprecation.py/0
{ "file_path": "transformers/tests/utils/test_deprecation.py", "repo_id": "transformers", "token_count": 3046 }
424
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import inspect import json import os import random import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, Repository, delete_repo, snapshot_download from requests.exceptions import HTTPError from transformers import is_tf_available, is_torch_available from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import ( # noqa: F401 TOKEN, USER, CaptureLogger, _tf_gpu_memory_limit, is_pt_tf_cross_test, is_staging_test, require_safetensors, require_tf, require_torch, slow, ) from transformers.utils import ( SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging, ) logger = logging.get_logger(__name__) if is_tf_available(): import h5py import numpy as np import tensorflow as tf from transformers import ( BertConfig, PreTrainedModel, PushToHubCallback, RagRetriever, TFAutoModel, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertModel, TFPreTrainedModel, TFRagModel, ) from transformers.modeling_tf_utils import keras, tf_shard_checkpoint, unpack_inputs from transformers.tf_utils import stable_softmax tf.config.experimental.enable_tensor_float_32_execution(False) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) if is_torch_available(): from transformers import BertModel @require_tf class TFModelUtilsTest(unittest.TestCase): def test_cached_files_are_used_when_internet_is_down(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() # tests whether the unpack_inputs function behaves as expected def test_unpack_inputs(self): class DummyModel: def __init__(self): config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False} self.config = PretrainedConfig(**config_kwargs) self.main_input_name = "input_ids" @unpack_inputs def call( self, input_ids=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict @unpack_inputs def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None): return pixel_values, output_attentions, output_hidden_states, return_dict dummy_model = DummyModel() input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32) past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32) pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32) # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config. output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 2: Same as above, but with positional arguments. output = dummy_model.call(input_ids, past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 3: We can also pack everything in the first input. output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values}) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 4: Explicit boolean arguments should override the config. output = dummy_model.call( input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True ) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertTrue(output[4]) # test case 5: Unexpected arguments should raise an exception. with self.assertRaises(ValueError): output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar") # test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the # decorated function as its main input. output = dummy_model.foo(pixel_values=pixel_values) tf.debugging.assert_equal(output[0], pixel_values) self.assertFalse(output[1]) self.assertFalse(output[2]) self.assertFalse(output[3]) # Tests whether the stable softmax is stable on CPU, with and without XLA def test_xla_stable_softmax(self): large_penalty = -1e9 n_tokens = 10 batch_size = 8 def masked_softmax(x, boolean_mask): numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask return stable_softmax(masked_x) xla_masked_softmax = tf.function(masked_softmax, jit_compile=True) xla_stable_softmax = tf.function(stable_softmax, jit_compile=True) x = tf.random.normal((batch_size, n_tokens)) # Same outcome regardless of the boolean mask here masked_tokens = random.randint(0, n_tokens) boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32) # We can randomly mask a random numerical input OUTSIDE XLA numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask xla_out = xla_stable_softmax(masked_x) out = stable_softmax(masked_x) assert tf.experimental.numpy.allclose(xla_out, out) # The stable softmax has the same output as the original softmax unstable_out = tf.nn.softmax(masked_x) assert tf.experimental.numpy.allclose(unstable_out, out) # We can randomly mask a random numerical input INSIDE XLA xla_out = xla_masked_softmax(x, boolean_mask) out = masked_softmax(x, boolean_mask) assert tf.experimental.numpy.allclose(xla_out, out) def test_checkpoint_sharding_from_hub(self): model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") # the model above is the same as the model below, just a sharded version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_sharded_checkpoint_with_prefix(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b") sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b") for p1, p2 in zip(model.weights, sharded_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) self.assertTrue(p2.name.startswith("a/b/")) def test_sharded_checkpoint_transfer(self): # If this doesn't throw an error then the test passes TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded") @is_pt_tf_cross_test def test_checkpoint_sharding_local_from_pt(self): with tempfile.TemporaryDirectory() as tmp_dir: _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded") model = TFBertModel.from_pretrained(tmp_dir, from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) @is_pt_tf_cross_test def test_checkpoint_loading_with_prefix_from_pt(self): model = TFBertModel.from_pretrained( "hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b" ) ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) for p1, p2 in zip(model.weights, ref_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) @is_pt_tf_cross_test def test_checkpoint_sharding_hub_from_pt(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_shard_checkpoint(self): # This is the model we will use, total size 340,000 bytes. model = keras.Sequential( [ keras.layers.Dense(200, use_bias=False), # size 80,000 keras.layers.Dense(200, use_bias=False), # size 160,000 keras.layers.Dense(100, use_bias=False), # size 80,000 keras.layers.Dense(50, use_bias=False), # size 20,000 ] ) inputs = tf.zeros((1, 100), dtype=tf.float32) model(inputs) weights = model.weights weights_dict = {w.name: w for w in weights} with self.subTest("No shard when max size is bigger than model size"): shards, index = tf_shard_checkpoint(weights) self.assertIsNone(index) self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights}) with self.subTest("Test sharding, no weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB") # Split is first two layers then last two. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00002.h5", "dense_1/kernel:0": "tf_model-00001-of-00002.h5", "dense_2/kernel:0": "tf_model-00002-of-00002.h5", "dense_3/kernel:0": "tf_model-00002-of-00002.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]] shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2}) with self.subTest("Test sharding with weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB") # Split is first layer, second layer then last 2. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00003.h5", "dense_1/kernel:0": "tf_model-00002-of-00003.h5", "dense_2/kernel:0": "tf_model-00003-of-00003.h5", "dense_3/kernel:0": "tf_model-00003-of-00003.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"]] shard2 = [weights_dict["dense_1/kernel:0"]] shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual( shards, { "tf_model-00001-of-00003.h5": shard1, "tf_model-00002-of-00003.h5": shard2, "tf_model-00003-of-00003.h5": shard3, }, ) @slow def test_special_layer_name_sharding(self): retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever) with tempfile.TemporaryDirectory() as tmp_dir: for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever) for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) @require_safetensors def test_checkpoint_sharding_local(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".h5"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) # Check a file is bigger than max_size only when it has a single weight for shard_file, size in shard_to_size.items(): if max_size.endswith("kiB"): max_size_int = int(max_size[:-3]) * 2**10 else: max_size_int = int(max_size[:-2]) * 10**3 # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than # the size asked for (since we count parameters) if size >= max_size_int + 50000: with h5py.File(shard_file, "r") as state_file: self.assertEqual(len(state_file), 1) # Check the index and the shard files found match with open(index_file, "r", encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = TFBertModel.from_pretrained(tmp_dir) model.build_in_name_scope() new_model.build_in_name_scope() for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) def test_safetensors_checkpoint_sharding_local(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=True) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".h5"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) # Check the index and the shard files found match with open(index_file, "r", encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".safetensors")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = TFBertModel.from_pretrained(tmp_dir) model.build_in_name_scope() new_model.build_in_name_scope() for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test @require_safetensors def test_bfloat16_torch_loading(self): # Assert that neither of these raise an error - both repos contain bfloat16 tensors model1 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16-pt", from_pt=True) model2 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16") # PT-format safetensors # Check that PT and safetensors loading paths end up with the same values for weight1, weight2 in zip(model1.weights, model2.weights): self.assertTrue(tf.reduce_all(weight1 == weight2)) @slow def test_save_pretrained_signatures(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Short custom TF signature function. # `input_signature` is specific to BERT. @tf.function( input_signature=[ [ tf.TensorSpec([None, None], tf.int32, name="input_ids"), tf.TensorSpec([None, None], tf.int32, name="token_type_ids"), tf.TensorSpec([None, None], tf.int32, name="attention_mask"), ] ] ) def serving_fn(input): return model(input) # Using default signature (default behavior) overrides 'serving_default' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures=None) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("serving_default" in list(model_loaded.signatures.keys())) # Providing custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn}) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature" in list(model_loaded.signatures.keys())) # Providing multiple custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( tmp_dir, saved_model=True, signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn}, ) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys())) self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys())) @require_safetensors def test_safetensors_save_and_load(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) # No tf_model.h5 file, only a model.safetensors self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_sharded_save_and_load(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="150kB") # No tf weights or index file, only a safetensors index self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test def test_safetensors_save_and_load_pt_to_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir, safe_serialization=True) # Check we have a model.safetensors file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test def test_sharded_safetensors_save_and_load_pt_to_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="150kB") # Check we have a safetensors shard index file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub(self): tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Can load from the TF-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors @is_pt_tf_cross_test def test_safetensors_tf_from_torch(self): hub_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(hub_model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_local(self): with tempfile.TemporaryDirectory() as tmp_dir: path = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", cache_dir=tmp_dir) # This should not raise even if there are two types of sharded weights TFBertModel.from_pretrained(path) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_hub(self): # Confirm that we can correctly load the safetensors weights from a sharded hub repo even when TF weights present TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", use_safetensors=True) # Confirm that we can access the TF weights too TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", use_safetensors=False) @require_safetensors def test_safetensors_load_from_local(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-only", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-only", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-h5") # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_local_from_safetensors_pt(self): """ This test checks that we can load safetensors from a local checkpoint that only has those saved in the "pt" format. """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-h5", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) # Can load from the PyTorch-formatted checkpoint with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") @require_safetensors def test_safetensors_load_from_local_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) TFBertModel.from_pretrained(location) @require_tf @is_staging_test class TFModelPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @staticmethod def _try_delete_repo(repo_id, token): try: # Reset repo delete_repo(repo_id=repo_id, token=token) except: # noqa E722 pass def test_push_to_hub(self): with tempfile.TemporaryDirectory() as tmp_dir: try: tmp_repo = f"{USER}/test-model-tf-{Path(tmp_dir).name}" config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() logging.set_verbosity_info() logger = logging.get_logger("transformers.utils.hub") with CaptureLogger(logger) as cl: model.push_to_hub(tmp_repo, token=self._token) logging.set_verbosity_warning() # Check the model card was created and uploaded. self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out) new_model = TFBertModel.from_pretrained(tmp_repo) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) finally: # Always (try to) delete the repo. self._try_delete_repo(repo_id=tmp_repo, token=self._token) def test_push_to_hub_via_save_pretrained(self): with tempfile.TemporaryDirectory() as tmp_dir: try: tmp_repo = f"{USER}/test-model-tf-{Path(tmp_dir).name}" config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() # Push to hub via save_pretrained model.save_pretrained(tmp_dir, repo_id=tmp_repo, push_to_hub=True, token=self._token) new_model = TFBertModel.from_pretrained(tmp_repo) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) finally: # Always (try to) delete the repo. self._try_delete_repo(repo_id=tmp_repo, token=self._token) @is_pt_tf_cross_test def test_push_to_hub_callback(self): with tempfile.TemporaryDirectory() as tmp_dir: try: tmp_repo = f"{USER}/test-model-tf-callback-{Path(tmp_dir).name}" config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertForMaskedLM(config) model.compile() push_to_hub_callback = PushToHubCallback( output_dir=tmp_dir, hub_model_id=tmp_repo, hub_token=self._token, ) model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback]) new_model = TFBertForMaskedLM.from_pretrained(tmp_repo) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters) tf_push_to_hub_params.pop("base_model_card_args") pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters) pt_push_to_hub_params.pop("deprecated_kwargs") self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params) finally: # Always (try to) delete the repo. self._try_delete_repo(repo_id=tmp_repo, token=self._token) def test_push_to_hub_in_organization(self): with tempfile.TemporaryDirectory() as tmp_dir: try: tmp_repo = f"valid_org/test-model-tf-org-{Path(tmp_dir).name}" config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() model.push_to_hub(tmp_repo, token=self._token) new_model = TFBertModel.from_pretrained(tmp_repo) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) finally: # Always (try to) delete the repo. self._try_delete_repo(repo_id=tmp_repo, token=self._token) def test_push_to_hub_in_organization_via_save_pretrained(self): with tempfile.TemporaryDirectory() as tmp_dir: try: tmp_repo = f"valid_org/test-model-tf-org-{Path(tmp_dir).name}" config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() # Push to hub via save_pretrained model.save_pretrained(tmp_dir, push_to_hub=True, token=self._token, repo_id=tmp_repo) new_model = TFBertModel.from_pretrained(tmp_repo) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) finally: # Always (try to) delete the repo. self._try_delete_repo(repo_id=tmp_repo, token=self._token)
transformers/tests/utils/test_modeling_tf_utils.py/0
{ "file_path": "transformers/tests/utils/test_modeling_tf_utils.py", "repo_id": "transformers", "token_count": 18292 }
425
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks the custom inits of Transformers are well-defined: Transformers uses init files that delay the import of an object to when it's actually needed. This is to avoid the main init importing all models, which would make the line `import transformers` very slow when the user has all optional dependencies installed. The inits with delayed imports have two halves: one definining a dictionary `_import_structure` which maps modules to the name of the objects in each module, and one in `TYPE_CHECKING` which looks like a normal init for type-checkers. The goal of this script is to check the objects defined in both halves are the same. This also checks the main init properly references all submodules, even if it doesn't import anything from them: every submodule should be defined as a key of `_import_structure`, with an empty list as value potentially, or the submodule won't be importable. Use from the root of the repo with: ```bash python utils/check_inits.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`). There is no auto-fix possible here sadly :-( """ import collections import os import re from pathlib import Path from typing import Dict, List, Optional, Tuple # Path is set with the intent you should run this script from the root of the repo. PATH_TO_TRANSFORMERS = "src/transformers" # Matches is_xxx_available() _re_backend = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _re_one_line_import_struct = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _re_import_struct_key_value = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _re_test_backend = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _re_import_struct_add_one = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _re_import_struct_add_many = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _re_quote_object = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _re_between_brackets = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _re_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _re_try = re.compile(r"^\s*try:") # Catches a line with else: _re_else = re.compile(r"^\s*else:") def find_backend(line: str) -> Optional[str]: """ Find one (or multiple) backend in a code line of the init. Args: line (`str`): A code line of the main init. Returns: Optional[`str`]: If one (or several) backend is found, returns it. In the case of multiple backends (the line contains `if is_xxx_available() and `is_yyy_available()`) returns all backends joined on `_and_` (so `xxx_and_yyy` for instance). """ if _re_test_backend.search(line) is None: return None backends = [b[0] for b in _re_backend.findall(line)] backends.sort() return "_and_".join(backends) def parse_init(init_file) -> Optional[Tuple[Dict[str, List[str]], Dict[str, List[str]]]]: """ Read an init_file and parse (per backend) the `_import_structure` objects defined and the `TYPE_CHECKING` objects defined. Args: init_file (`str`): Path to the init file to inspect. Returns: `Optional[Tuple[Dict[str, List[str]], Dict[str, List[str]]]]`: A tuple of two dictionaries mapping backends to list of imported objects, one for the `_import_structure` part of the init and one for the `TYPE_CHECKING` part of the init. Returns `None` if the init is not a custom init. """ with open(init_file, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Get the to `_import_structure` definition. line_index = 0 while line_index < len(lines) and not lines[line_index].startswith("_import_structure = {"): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lines): return None # First grab the objects without a specific backend in _import_structure objects = [] while not lines[line_index].startswith("if TYPE_CHECKING") and find_backend(lines[line_index]) is None: line = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(line): content = _re_one_line_import_struct.search(line).groups()[0] imports = re.findall(r"\[([^\]]+)\]", content) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", ")]) line_index += 1 continue single_line_import_search = _re_import_struct_key_value.search(line) if single_line_import_search is not None: imports = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", ") if len(obj) > 0] objects.extend(imports) elif line.startswith(" " * 8 + '"'): objects.append(line[9:-3]) line_index += 1 # Those are stored with the key "none". import_dict_objects = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING"): # If the line is an if not is_backend_available, we grab all objects associated. backend = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: backend = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 objects = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 4): line = lines[line_index] if _re_import_struct_add_one.search(line) is not None: objects.append(_re_import_struct_add_one.search(line).groups()[0]) elif _re_import_struct_add_many.search(line) is not None: imports = _re_import_struct_add_many.search(line).groups()[0].split(", ") imports = [obj[1:-1] for obj in imports if len(obj) > 0] objects.extend(imports) elif _re_between_brackets.search(line) is not None: imports = _re_between_brackets.search(line).groups()[0].split(", ") imports = [obj[1:-1] for obj in imports if len(obj) > 0] objects.extend(imports) elif _re_quote_object.search(line) is not None: objects.append(_re_quote_object.search(line).groups()[0]) elif line.startswith(" " * 8 + '"'): objects.append(line[9:-3]) elif line.startswith(" " * 12 + '"'): objects.append(line[13:-3]) line_index += 1 import_dict_objects[backend] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend objects = [] while ( line_index < len(lines) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("else") ): line = lines[line_index] single_line_import_search = _re_import.search(line) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 8): objects.append(line[8:-2]) line_index += 1 type_hint_objects = {"none": objects} # Let's continue with backend-specific objects while line_index < len(lines): # If the line is an if is_backend_available, we grab all objects associated. backend = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: backend = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 objects = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8): line = lines[line_index] single_line_import_search = _re_import.search(line) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 12): objects.append(line[12:-2]) line_index += 1 type_hint_objects[backend] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def analyze_results(import_dict_objects: Dict[str, List[str]], type_hint_objects: Dict[str, List[str]]) -> List[str]: """ Analyze the differences between _import_structure objects and TYPE_CHECKING objects found in an init. Args: import_dict_objects (`Dict[str, List[str]]`): A dictionary mapping backend names (`"none"` for the objects independent of any specific backend) to list of imported objects. type_hint_objects (`Dict[str, List[str]]`): A dictionary mapping backend names (`"none"` for the objects independent of any specific backend) to list of imported objects. Returns: `List[str]`: The list of errors corresponding to mismatches. """ def find_duplicates(seq): return [k for k, v in collections.Counter(seq).items() if v > 1] # If one backend is missing from the other part of the init, error early. if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] errors = [] # Find all errors. for key in import_dict_objects.keys(): # Duplicate imports in any half. duplicate_imports = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}") duplicate_type_hints = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}") # Missing imports in either part of the init. if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): name = "base imports" if key == "none" else f"{key} backend" errors.append(f"Differences for {name}:") for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure.") for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT.") return errors def check_all_inits(): """ Check all inits in the transformers repo and raise an error if at least one does not define the same objects in both halves. """ failures = [] for root, _, files in os.walk(PATH_TO_TRANSFORMERS): if "__init__.py" in files: fname = os.path.join(root, "__init__.py") objects = parse_init(fname) if objects is not None: errors = analyze_results(*objects) if len(errors) > 0: errors[0] = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(errors)) if len(failures) > 0: raise ValueError("\n\n".join(failures)) def get_transformers_submodules() -> List[str]: """ Returns the list of Transformers submodules. """ submodules = [] for path, directories, files in os.walk(PATH_TO_TRANSFORMERS): for folder in directories: # Ignore private modules if folder.startswith("_"): directories.remove(folder) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(path) / folder).glob("*.py"))) == 0: continue short_path = str((Path(path) / folder).relative_to(PATH_TO_TRANSFORMERS)) submodule = short_path.replace(os.path.sep, ".") submodules.append(submodule) for fname in files: if fname == "__init__.py": continue short_path = str((Path(path) / fname).relative_to(PATH_TO_TRANSFORMERS)) submodule = short_path.replace(".py", "").replace(os.path.sep, ".") if len(submodule.split(".")) == 1: submodules.append(submodule) return submodules IGNORE_SUBMODULES = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", "modeling_attn_mask_utils", "safetensors_conversion", "modeling_gguf_pytorch_utils", ] def check_submodules(): """ Check all submodules of Transformers are properly registered in the main init. Error otherwise. """ # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) import_structure_keys = set(transformers._import_structure.keys()) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r") as f: init_content = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]", init_content))) module_not_registered = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(module_not_registered) > 0: list_of_modules = "\n".join(f"- {module}" for module in module_not_registered) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
transformers/utils/check_inits.py/0
{ "file_path": "transformers/utils/check_inits.py", "repo_id": "transformers", "token_count": 6563 }
426
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def get_daily_ci_runs(token, num_runs=7): """Get the workflow runs of the scheduled (daily) CI. This only selects the runs triggered by the `schedule` event on the `main` branch. """ headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} # The id of a workflow (not of a workflow run). # From a given workflow run (where we have workflow run id), we can get the workflow id by going to # https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id} # and check the `workflow_id` key. workflow_id = "90575235" url = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" result = requests.get(url, headers=headers).json() return result["workflow_runs"] def get_last_daily_ci_runs(token): """Get the last completed workflow run id of the scheduled (daily) CI.""" workflow_runs = get_daily_ci_runs(token) workflow_run_id = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": workflow_run_id = workflow_run["id"] break return workflow_run_id def get_last_daily_ci_artifacts(artifact_names, output_dir, token): """Get the artifacts of last completed workflow run id of the scheduled (daily) CI.""" workflow_run_id = get_last_daily_ci_runs(token) if workflow_run_id is not None: artifacts_links = get_artifacts_links(worflow_run_id=workflow_run_id, token=token) for artifact_name in artifact_names: if artifact_name in artifacts_links: artifact_url = artifacts_links[artifact_name] download_artifact( artifact_name=artifact_name, artifact_url=artifact_url, output_dir=output_dir, token=token ) def get_last_daily_ci_reports(artifact_names, output_dir, token): """Get the artifacts' content of the last completed workflow run id of the scheduled (daily) CI.""" get_last_daily_ci_artifacts(artifact_names, output_dir, token) results = {} for artifact_name in artifact_names: artifact_zip_path = os.path.join(output_dir, f"{artifact_name}.zip") if os.path.isfile(artifact_zip_path): results[artifact_name] = {} with zipfile.ZipFile(artifact_zip_path) as z: for filename in z.namelist(): if not os.path.isdir(filename): # read the file with z.open(filename) as f: results[artifact_name][filename] = f.read().decode("UTF-8") return results
transformers/utils/get_previous_daily_ci.py/0
{ "file_path": "transformers/utils/get_previous_daily_ci.py", "repo_id": "transformers", "token_count": 1188 }
427
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to get the files against which we will run doc testing. This uses `tests_fetcher.get_all_doctest_files` then groups the test files by their directory paths. The files in `docs/source/en/model_doc` or `docs/source/en/tasks` are **NOT** grouped together with other files in the same directory: the objective is to run doctest against them in independent GitHub Actions jobs. Assume we are under `transformers` root directory: To get a map (dictionary) between directory (or file) paths and the corresponding files ```bash python utils/split_doctest_jobs.py ``` or to get a list of lists of directory (or file) paths ```bash python utils/split_doctest_jobs.py --only_return_keys --num_splits 4 ``` (this is used to allow GitHub Actions to generate more than 256 jobs using matrix) """ import argparse from collections import defaultdict from pathlib import Path from tests_fetcher import get_all_doctest_files if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--only_return_keys", action="store_true", help="if to only return the keys (which is a list of list of files' directory or file paths).", ) parser.add_argument( "--num_splits", type=int, default=1, help="the number of splits into which the (flat) list of direcotry/file paths will be split. This has effect only if `only_return_keys` is `True`.", ) args = parser.parse_args() all_doctest_files = get_all_doctest_files() raw_test_collection_map = defaultdict(list) for file in all_doctest_files: file_dir = "/".join(Path(file).parents[0].parts) raw_test_collection_map[file_dir].append(file) refined_test_collection_map = {} for file_dir in raw_test_collection_map.keys(): if file_dir in ["docs/source/en/model_doc", "docs/source/en/tasks"]: for file in raw_test_collection_map[file_dir]: refined_test_collection_map[file] = file else: refined_test_collection_map[file_dir] = " ".join(sorted(raw_test_collection_map[file_dir])) sorted_file_dirs = sorted(refined_test_collection_map.keys()) test_collection_map = {} for file_dir in sorted_file_dirs: test_collection_map[file_dir] = refined_test_collection_map[file_dir] num_jobs = len(test_collection_map) num_jobs_per_splits = num_jobs // args.num_splits file_directory_splits = [] end = 0 for idx in range(args.num_splits): start = end end = start + num_jobs_per_splits + (1 if idx < num_jobs % args.num_splits else 0) file_directory_splits.append(sorted_file_dirs[start:end]) if args.only_return_keys: print(file_directory_splits) else: print(dict(test_collection_map))
transformers/utils/split_doctest_jobs.py/0
{ "file_path": "transformers/utils/split_doctest_jobs.py", "repo_id": "transformers", "token_count": 1208 }
428
import argparse import math import os import shlex import subprocess import uuid from distutils.util import strtobool import requests def parse_args(): # fmt: off parser = argparse.ArgumentParser() parser.add_argument("--command", type=str, default="", help="the command to run") parser.add_argument("--num-seeds", type=int, default=3, help="the number of random seeds") parser.add_argument("--start-seed", type=int, default=1, help="the number of the starting seed") parser.add_argument("--workers", type=int, default=0, help="the number of workers to run benchmark experimenets") parser.add_argument("--auto-tag", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, the runs will be tagged with git tags, commit, and pull request number if possible") parser.add_argument("--slurm-template-path", type=str, default=None, help="the path to the slurm template file (see docs for more details)") parser.add_argument("--slurm-gpus-per-task", type=int, default=1, help="the number of gpus per task to use for slurm jobs") parser.add_argument("--slurm-total-cpus", type=int, default=50, help="the number of gpus per task to use for slurm jobs") parser.add_argument("--slurm-ntasks", type=int, default=1, help="the number of tasks to use for slurm jobs") parser.add_argument("--slurm-nodes", type=int, default=None, help="the number of nodes to use for slurm jobs") args = parser.parse_args() # fmt: on return args def run_experiment(command: str): command_list = shlex.split(command) print(f"running {command}") # Use subprocess.PIPE to capture the output fd = subprocess.Popen(command_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, errors = fd.communicate() return_code = fd.returncode assert return_code == 0, f"Command failed with error: {errors.decode('utf-8')}" # Convert bytes to string and strip leading/trailing whitespaces return output.decode("utf-8").strip() def autotag() -> str: wandb_tag = "" print("autotag feature is enabled") git_tag = "" try: git_tag = subprocess.check_output(["git", "describe", "--tags"]).decode("ascii").strip() print(f"identified git tag: {git_tag}") except subprocess.CalledProcessError as e: print(e) if len(git_tag) == 0: try: count = int(subprocess.check_output(["git", "rev-list", "--count", "HEAD"]).decode("ascii").strip()) hash = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode("ascii").strip() git_tag = f"no-tag-{count}-g{hash}" print(f"identified git tag: {git_tag}") except subprocess.CalledProcessError as e: print(e) wandb_tag = f"{git_tag}" git_commit = subprocess.check_output(["git", "rev-parse", "--verify", "HEAD"]).decode("ascii").strip() try: # try finding the pull request number on github prs = requests.get(f"https://api.github.com/search/issues?q=repo:huggingface/trl+is:pr+{git_commit}") if prs.status_code == 200: prs = prs.json() if len(prs["items"]) > 0: pr = prs["items"][0] pr_number = pr["number"] wandb_tag += f",pr-{pr_number}" print(f"identified github pull request: {pr_number}") except Exception as e: print(e) return wandb_tag if __name__ == "__main__": args = parse_args() if args.auto_tag: existing_wandb_tag = os.environ.get("WANDB_TAGS", "") wandb_tag = autotag() if len(wandb_tag) > 0: if len(existing_wandb_tag) > 0: os.environ["WANDB_TAGS"] = ",".join([existing_wandb_tag, wandb_tag]) else: os.environ["WANDB_TAGS"] = wandb_tag print("WANDB_TAGS: ", os.environ.get("WANDB_TAGS", "")) commands = [] for seed in range(0, args.num_seeds): commands += [" ".join([args.command, "--seed", str(args.start_seed + seed)])] print("======= commands to run:") for command in commands: print(command) if args.workers > 0 and args.slurm_template_path is None: from concurrent.futures import ThreadPoolExecutor executor = ThreadPoolExecutor(max_workers=args.workers, thread_name_prefix="cleanrl-benchmark-worker-") for command in commands: executor.submit(run_experiment, command) executor.shutdown(wait=True) else: print("not running the experiments because --workers is set to 0; just printing the commands to run") # SLURM logic if args.slurm_template_path is not None: if not os.path.exists("slurm"): os.makedirs("slurm") if not os.path.exists("slurm/logs"): os.makedirs("slurm/logs") print("======= slurm commands to run:") with open(args.slurm_template_path) as f: slurm_template = f.read() slurm_template = slurm_template.replace("{{array}}", f"0-{len(commands) - 1}%{args.workers}") slurm_template = slurm_template.replace( "{{seeds}}", f"({' '.join([str(args.start_seed + int(seed)) for seed in range(args.num_seeds)])})" ) slurm_template = slurm_template.replace("{{len_seeds}}", f"{args.num_seeds}") slurm_template = slurm_template.replace("{{command}}", args.command) slurm_template = slurm_template.replace("{{gpus_per_task}}", f"{args.slurm_gpus_per_task}") total_gpus = args.slurm_gpus_per_task * args.slurm_ntasks slurm_cpus_per_gpu = math.ceil(args.slurm_total_cpus / total_gpus) slurm_template = slurm_template.replace("{{cpus_per_gpu}}", f"{slurm_cpus_per_gpu}") slurm_template = slurm_template.replace("{{ntasks}}", f"{args.slurm_ntasks}") if args.slurm_nodes is not None: slurm_template = slurm_template.replace("{{nodes}}", f"#SBATCH --nodes={args.slurm_nodes}") else: slurm_template = slurm_template.replace("{{nodes}}", "") filename = str(uuid.uuid4()) open(os.path.join("slurm", f"{filename}.slurm"), "w").write(slurm_template) slurm_path = os.path.join("slurm", f"{filename}.slurm") print(f"saving command in {slurm_path}") if args.workers > 0: job_id = run_experiment(f"sbatch --parsable {slurm_path}") print(f"Job ID: {job_id}")
trl/benchmark/benchmark.py/0
{ "file_path": "trl/benchmark/benchmark.py", "repo_id": "trl", "token_count": 2824 }
429
# Iterative Trainer Iterative fine-tuning is a training method that enables to perform custom actions (generation and filtering for example) between optimization steps. In TRL we provide an easy-to-use API to fine-tune your models in an iterative way in just a few lines of code. ## Usage To get started quickly, instantiate an instance a model, and a tokenizer. ```python model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token trainer = IterativeSFTTrainer( model, tokenizer ) ``` You have the choice to either provide a list of strings or a list of tensors to the step function. #### Using a list of tensors as input: ```python inputs = { "input_ids": input_ids, "attention_mask": attention_mask } trainer.step(**inputs) ``` #### Using a list of strings as input: ```python inputs = { "texts": texts } trainer.step(**inputs) ``` For causal language models, labels will automatically be created from input_ids or from texts. When using sequence to sequence models you will have to provide your own labels or text_labels. ## IterativeTrainer [[autodoc]] IterativeSFTTrainer
trl/docs/source/iterative_sft_trainer.mdx/0
{ "file_path": "trl/docs/source/iterative_sft_trainer.mdx", "repo_id": "trl", "token_count": 389 }
430
# Supervised Fine-tuning Trainer Supervised fine-tuning (or SFT for short) is a crucial step in RLHF. In TRL we provide an easy-to-use API to create your SFT models and train them with few lines of code on your dataset. Check out a complete flexible example at [`examples/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft.py). Experimental support for Vision Language Models is also included in the example [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/vsft_llava.py). ## Quickstart If you have a dataset hosted on the 🤗 Hub, you can easily fine-tune your SFT model using [`SFTTrainer`] from TRL. Let us assume your dataset is `imdb`, the text you want to predict is inside the `text` field of the dataset, and you want to fine-tune the `facebook/opt-350m` model. The following code-snippet takes care of all the data pre-processing and training for you: ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer dataset = load_dataset("imdb", split="train") sft_config = SFTConfig( dataset_text_field="text", max_seq_length=512, output_dir="/tmp", ) trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, args=sft_config, ) trainer.train() ``` Make sure to pass the correct value for `max_seq_length` as the default value will be set to `min(tokenizer.model_max_length, 1024)`. You can also construct a model outside of the trainer and pass it as follows: ```python from transformers import AutoModelForCausalLM from datasets import load_dataset from trl import SFTConfig, SFTTrainer dataset = load_dataset("imdb", split="train") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") sft_config = SFTConfig(output_dir="/tmp") trainer = SFTTrainer( model, train_dataset=dataset, args=sft_config, ) trainer.train() ``` The above snippets will use the default training arguments from the [`SFTConfig`] class. If you want to modify the defaults pass in your modification to the `SFTConfig` constructor and pass them to the trainer via the `args` argument. ## Advanced usage ### Train on completions only You can use the `DataCollatorForCompletionOnlyLM` to train your model on the generated prompts only. Note that this works only in the case when `packing=False`. To instantiate that collator for instruction data, pass a response template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on completions only on the CodeAlpaca dataset: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from datasets import load_dataset from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM dataset = load_dataset("lucasmccabe-lmi/CodeAlpaca-20k", split="train") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") def formatting_prompts_func(example): output_texts = [] for i in range(len(example['instruction'])): text = f"### Question: {example['instruction'][i]}\n ### Answer: {example['output'][i]}" output_texts.append(text) return output_texts response_template = " ### Answer:" collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer) trainer = SFTTrainer( model, train_dataset=dataset, args=SFTConfig(output_dir="/tmp"), formatting_func=formatting_prompts_func, data_collator=collator, ) trainer.train() ``` To instantiate that collator for assistant style conversation data, pass a response template, an instruction template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on assistant completions only on the Open Assistant Guanaco dataset: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from datasets import load_dataset from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM dataset = load_dataset("timdettmers/openassistant-guanaco", split="train") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") instruction_template = "### Human:" response_template = "### Assistant:" collator = DataCollatorForCompletionOnlyLM(instruction_template=instruction_template, response_template=response_template, tokenizer=tokenizer, mlm=False) trainer = SFTTrainer( model, args=SFTConfig( output_dir="/tmp", dataset_text_field = "text", ), train_dataset=dataset, data_collator=collator, ) trainer.train() ``` Make sure to have a `pad_token_id` which is different from `eos_token_id` which can result in the model not properly predicting EOS (End of Sentence) tokens during generation. #### Using token_ids directly for `response_template` Some tokenizers like Llama 2 (`meta-llama/Llama-2-XXb-hf`) tokenize sequences differently depending on whether they have context or not. For example: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") def print_tokens_with_ids(txt): tokens = tokenizer.tokenize(txt, add_special_tokens=False) token_ids = tokenizer.encode(txt, add_special_tokens=False) print(list(zip(tokens, token_ids))) prompt = """### User: Hello\n\n### Assistant: Hi, how can I help you?""" print_tokens_with_ids(prompt) # [..., ('▁Hello', 15043), ('<0x0A>', 13), ('<0x0A>', 13), ('##', 2277), ('#', 29937), ('▁Ass', 4007), ('istant', 22137), (':', 29901), ...] response_template = "### Assistant:" print_tokens_with_ids(response_template) # [('▁###', 835), ('▁Ass', 4007), ('istant', 22137), (':', 29901)] ``` In this case, and due to lack of context in `response_template`, the same string ("### Assistant:") is tokenized differently: - Text (with context): `[2277, 29937, 4007, 22137, 29901]` - `response_template` (without context): `[835, 4007, 22137, 29901]` This will lead to an error when the `DataCollatorForCompletionOnlyLM` does not find the `response_template` in the dataset example text: ``` RuntimeError: Could not find response key [835, 4007, 22137, 29901] in token IDs tensor([ 1, 835, ...]) ``` To solve this, you can tokenize the `response_template` with the same context as in the dataset, truncate it as needed and pass the `token_ids` directly to the `response_template` argument of the `DataCollatorForCompletionOnlyLM` class. For example: ```python response_template_with_context = "\n### Assistant:" # We added context here: "\n". This is enough for this tokenizer response_template_ids = tokenizer.encode(response_template_with_context, add_special_tokens=False)[2:] # Now we have it like in the dataset texts: `[2277, 29937, 4007, 22137, 29901]` data_collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer) ``` ### Add Special Tokens for Chat Format Adding special tokens to a language model is crucial for training chat models. These tokens are added between the different roles in a conversation, such as the user, assistant, and system and help the model recognize the structure and flow of a conversation. This setup is essential for enabling the model to generate coherent and contextually appropriate responses in a chat environment. The [`setup_chat_format`] function in `trl` easily sets up a model and tokenizer for conversational AI tasks. This function: - Adds special tokens to the tokenizer, e.g. `<|im_start|>` and `<|im_end|>`, to indicate the start and end of a conversation. - Resizes the model’s embedding layer to accommodate the new tokens. - Sets the `chat_template` of the tokenizer, which is used to format the input data into a chat-like format. The default is `chatml` from OpenAI. - _optionally_ you can pass `resize_to_multiple_of` to resize the embedding layer to a multiple of the `resize_to_multiple_of` argument, e.g. 64. If you want to see more formats being supported in the future, please open a GitHub issue on [trl](https://github.com/huggingface/trl) ```python from transformers import AutoModelForCausalLM, AutoTokenizer from trl import setup_chat_format # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") # Set up the chat format with default 'chatml' format model, tokenizer = setup_chat_format(model, tokenizer) ``` With our model and tokenizer set up, we can now fine-tune our model on a conversational dataset. Below is an example of how a dataset can be formatted for fine-tuning. ### Dataset format support The [`SFTTrainer`] supports popular dataset formats. This allows you to pass the dataset to the trainer without any pre-processing directly. The following formats are supported: * conversational format ```json {"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "..."}]} {"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "..."}]} {"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "..."}]} ``` * instruction format ```json {"prompt": "<prompt text>", "completion": "<ideal generated text>"} {"prompt": "<prompt text>", "completion": "<ideal generated text>"} {"prompt": "<prompt text>", "completion": "<ideal generated text>"} ``` If your dataset uses one of the above formats, you can directly pass it to the trainer without pre-processing. The [`SFTTrainer`] will then format the dataset for you using the defined format from the model's tokenizer with the [apply_chat_template](https://huggingface.co/docs/transformers/main/en/chat_templating#templates-for-chat-models) method. ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer ... # load jsonl dataset dataset = load_dataset("json", data_files="path/to/dataset.jsonl", split="train") # load dataset from the HuggingFace Hub dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train") ... sft_config = SFTConfig(packing=True) trainer = SFTTrainer( "facebook/opt-350m", args=sft_config, train_dataset=dataset, ) ``` If the dataset is not in one of those format you can either preprocess the dataset to match the formatting or pass a formatting function to the SFTTrainer to do it for you. Let's have a look. ### Format your input prompts For instruction fine-tuning, it is quite common to have two columns inside the dataset: one for the prompt & the other for the response. This allows people to format examples like [Stanford-Alpaca](https://github.com/tatsu-lab/stanford_alpaca) did as follows: ```bash Below is an instruction ... ### Instruction {prompt} ### Response: {completion} ``` Let us assume your dataset has two fields, `question` and `answer`. Therefore you can just run: ```python ... def formatting_prompts_func(example): output_texts = [] for i in range(len(example['question'])): text = f"### Question: {example['question'][i]}\n ### Answer: {example['answer'][i]}" output_texts.append(text) return output_texts trainer = SFTTrainer( model, args=sft_config, train_dataset=dataset, formatting_func=formatting_prompts_func, ) trainer.train() ``` To properly format your input make sure to process all the examples by looping over them and returning a list of processed text. Check out a full example of how to use SFTTrainer on alpaca dataset [here](https://github.com/huggingface/trl/pull/444#issue-1760952763) ### Packing dataset ([`ConstantLengthDataset`]) [`SFTTrainer`] supports _example packing_, where multiple short examples are packed in the same input sequence to increase training efficiency. This is done with the [`ConstantLengthDataset`] utility class that returns constant length chunks of tokens from a stream of examples. To enable the usage of this dataset class, simply pass `packing=True` to the [`SFTConfig`] constructor. ```python ... sft_config = SFTConfig(packing=True, dataset_text_field="text",) trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, args=sft_config ) trainer.train() ``` Note that if you use a packed dataset and if you pass `max_steps` in the training arguments you will probably train your models for more than few epochs, depending on the way you have configured the packed dataset and the training protocol. Double check that you know and understand what you are doing. If you don't want to pack your `eval_dataset`, you can pass `eval_packing=False` to the `SFTConfig` init method. #### Customize your prompts using packed dataset If your dataset has several fields that you want to combine, for example if the dataset has `question` and `answer` fields and you want to combine them, you can pass a formatting function to the trainer that will take care of that. For example: ```python def formatting_func(example): text = f"### Question: {example['question']}\n ### Answer: {example['answer']}" return text sft_config = SFTConfig(packing=True) trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, args=sft_config, formatting_func=formatting_func ) trainer.train() ``` You can also customize the [`ConstantLengthDataset`] much more by directly passing the arguments to the [`SFTConfig`] constructor. Please refer to that class' signature for more information. ### Control over the pretrained model You can directly pass the kwargs of the `from_pretrained()` method to the [`SFTConfig`]. For example, if you want to load a model in a different precision, analogous to ```python model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.bfloat16) ... sft_config = SFTConfig( model_init_kwargs={ "torch_dtype": "bfloat16", }, output_dir="/tmp", ) trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, args=sft_config, ) trainer.train() ``` Note that all keyword arguments of `from_pretrained()` are supported. ### Training adapters We also support tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer from peft import LoraConfig dataset = load_dataset("imdb", split="train") peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) trainer = SFTTrainer( "EleutherAI/gpt-neo-125m", train_dataset=dataset, args=SFTConfig(output_dir="/tmp"), peft_config=peft_config ) trainer.train() ``` You can also continue training your `PeftModel`. For that, first load a `PeftModel` outside `SFTTrainer` and pass it directly to the trainer without the `peft_config` argument being passed. ### Training adapters with base 8 bit models For that, you need to first load your 8 bit model outside the Trainer and pass a `PeftConfig` to the trainer. For example: ```python ... peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map="auto", ) trainer = SFTTrainer( model, train_dataset=dataset, args=SFTConfig(), peft_config=peft_config, ) trainer.train() ``` ## Using Flash Attention and Flash Attention 2 You can benefit from Flash Attention 1 & 2 using SFTTrainer out of the box with minimal changes of code. First, to make sure you have all the latest features from transformers, install transformers from source ```bash pip install -U git+https://github.com/huggingface/transformers.git ``` Note that Flash Attention only works on GPU now and under half-precision regime (when using adapters, base model loaded in half-precision) Note also both features are perfectly compatible with other tools such as quantization. ### Using Flash-Attention 1 For Flash Attention 1 you can use the `BetterTransformer` API and force-dispatch the API to use Flash Attention kernel. First, install the latest optimum package: ```bash pip install -U optimum ``` Once you have loaded your model, wrap the `trainer.train()` call under the `with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):` context manager: ```diff ... + with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): trainer.train() ``` Note that you cannot train your model using Flash Attention 1 on an arbitrary dataset as `torch.scaled_dot_product_attention` does not support training with padding tokens if you use Flash Attention kernels. Therefore you can only use that feature with `packing=True`. If your dataset contains padding tokens, consider switching to Flash Attention 2 integration. Below are some numbers you can get in terms of speedup and memory efficiency, using Flash Attention 1, on a single NVIDIA-T4 16GB. | use_flash_attn_1 | model_name | max_seq_len | batch_size | time per training step | | ---------------- | ----------------- | ----------- | ---------- | ---------------------- | | x | facebook/opt-350m | 2048 | 8 | ~59.1s | | | facebook/opt-350m | 2048 | 8 | **OOM** | | x | facebook/opt-350m | 2048 | 4 | ~30.3s | | | facebook/opt-350m | 2048 | 4 | ~148.9s | ### Using Flash Attention-2 To use Flash Attention 2, first install the latest `flash-attn` package: ```bash pip install -U flash-attn ``` And add `attn_implementation="flash_attention_2"` when calling `from_pretrained`: ```python model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True, attn_implementation="flash_attention_2" ) ``` If you don't use quantization, make sure your model is loaded in half-precision and dispatch your model on a supported GPU device. After loading your model, you can either train it as it is, or attach adapters and train adapters on it in case your model is quantized. In contrast to Flash Attention 1, the integration makes it possible to train your model on an arbitrary dataset that also includes padding tokens. ### Using model creation utility We included a utility function to create your model. [[autodoc]] ModelConfig ```python from trl import ModelConfig, SFTTrainer, get_kbit_device_map, get_peft_config, get_quantization_config model_config = ModelConfig( model_name_or_path="facebook/opt-350m" attn_implementation=None, # or "flash_attention_2" ) torch_dtype = ( model_config.torch_dtype if model_config.torch_dtype in ["auto", None] else getattr(torch, model_config.torch_dtype) ) quantization_config = get_quantization_config(model_config) model_kwargs = dict( revision=model_config.model_revision, trust_remote_code=model_config.trust_remote_code, attn_implementation=model_config.attn_implementation, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs) trainer = SFTTrainer( ..., model=model_config.model_name_or_path, peft_config=get_peft_config(model_config), ) ``` ### Enhance the model's performances using NEFTune NEFTune is a technique to boost the performance of chat models and was introduced by the paper ["NEFTune: Noisy Embeddings Improve Instruction Finetuning"](https://huggingface.co/papers/2310.05914) from Jain et al. it consists of adding noise to the embedding vectors during training. According to the abstract of the paper: > Standard finetuning of LLaMA-2-7B using Alpaca achieves 29.79% on AlpacaEval, which rises to 64.69% using noisy embeddings. NEFTune also improves over strong baselines on modern instruction datasets. Models trained with Evol-Instruct see a 10% improvement, with ShareGPT an 8% improvement, and with OpenPlatypus an 8% improvement. Even powerful models further refined with RLHF such as LLaMA-2-Chat benefit from additional training with NEFTune. <div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/neft-screenshot.png"> </div> To use it in `SFTTrainer` simply pass `neftune_noise_alpha` when creating your `SFTConfig` instance. Note that to avoid any surprising behaviour, NEFTune is disabled after training to retrieve back the original behaviour of the embedding layer. ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer dataset = load_dataset("imdb", split="train") sft_config = SFTConfig( neftune_noise_alpha=5, ) trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, args=sft_config, ) trainer.train() ``` We have tested NEFTune by training `mistralai/Mistral-7B-v0.1` on the [OpenAssistant dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and validated that using NEFTune led to a performance boost of ~25% on MT Bench. <div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-neftune-mistral-7b.png"> </div> Note however, that the amount of performance gain is _dataset dependent_ and in particular, applying NEFTune on synthetic datasets like [UltraChat](https://huggingface.co/datasets/stingning/ultrachat) typically produces smaller gains. ### Accelerate fine-tuning 2x using `unsloth` You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek etc) and Mistral architectures. Some benchmarks on 1x A100 listed below: | 1 A100 40GB | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved | | --------------- | --------- | --- | --------------------- | --------- | ------------ | | Code Llama 34b | Slim Orca | 1x | 1.01x | **1.94x** | -22.7% | | Llama-2 7b | Slim Orca | 1x | 0.96x | **1.87x** | -39.3% | | Mistral 7b | Slim Orca | 1x | 1.17x | **1.88x** | -65.9% | | Tiny Llama 1.1b | Alpaca | 1x | 1.55x | **2.74x** | -57.8% | First install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows: ```python import torch from trl import SFTConfig, SFTTrainer from unsloth import FastLanguageModel max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number # Load model model, tokenizer = FastLanguageModel.from_pretrained( model_name="unsloth/mistral-7b", max_seq_length=max_seq_length, dtype=None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit=True, # Use 4bit quantization to reduce memory usage. Can be False # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) # Do model patching and add fast LoRA weights model = FastLanguageModel.get_peft_model( model, r=16, target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", ], lora_alpha=16, lora_dropout=0, # Dropout = 0 is currently optimized bias="none", # Bias = "none" is currently optimized use_gradient_checkpointing=True, random_state=3407, ) args = SFTConfig( output_dir="./output", max_seq_length=max_seq_length, dataset_text_field="text", ) trainer = SFTTrainer( model=model, args=args, train_dataset=dataset, ) trainer.train() ``` The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth). ## Best practices Pay attention to the following best practices when training a model with that trainer: - [`SFTTrainer`] always pads by default the sequences to the `max_seq_length` argument of the [`SFTTrainer`]. If none is passed, the trainer will retrieve that value from the tokenizer. Some tokenizers do not provide a default value, so there is a check to retrieve the minimum between 2048 and that value. Make sure to check it before training. - For training adapters in 8bit, you might need to tweak the arguments of the `prepare_model_for_kbit_training` method from PEFT, hence we advise users to use `prepare_in_int8_kwargs` field, or create the `PeftModel` outside the [`SFTTrainer`] and pass it. - For a more memory-efficient training using adapters, you can load the base model in 8bit, for that simply add `load_in_8bit` argument when creating the [`SFTTrainer`], or create a base model in 8bit outside the trainer and pass it. - If you create a model outside the trainer, make sure to not pass to the trainer any additional keyword arguments that are relative to `from_pretrained()` method. ## Multi-GPU Training Trainer (and thus SFTTrainer) supports multi-GPU training. If you run your script with `python script.py` it will default to using DP as the strategy, which may be [slower than expected](https://github.com/huggingface/trl/issues/1303). To use DDP (which is generally recommended, see [here](https://huggingface.co/docs/transformers/en/perf_train_gpu_many?select-gpu=Accelerate#data-parallelism) for more info) you must launch the script with `python -m torch.distributed.launch script.py` or `accelerate launch script.py`. For DDP to work you must also check the following: - If you're using gradient_checkpointing, add the following to the TrainingArguments: `gradient_checkpointing_kwargs={'use_reentrant':False}` (more info [here](https://github.com/huggingface/transformers/issues/26969) - Ensure that the model is placed on the correct device: ```python from accelerate import PartialState device_string = PartialState().process_index model = AutoModelForCausalLM.from_pretrained( ... device_map={'':device_string} ) ``` ## GPTQ Conversion You may experience some issues with GPTQ Quantization after completing training. Lowering `gradient_accumulation_steps` to `4` will resolve most issues during the quantization process to GPTQ format. ## Extending `SFTTrainer` for Vision Language Models `SFTTrainer` does not inherently support vision-language data. However, we provide a guide on how to tweak the trainer to support vision-language data. Specifically, you need to use a custom data collator that is compatible with vision-language data. This guide outlines the steps to make these adjustments. For a concrete example, refer to the script [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py) which demonstrates how to fine-tune the LLaVA 1.5 model on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset. ### Preparing the Data The data format is flexible, provided it is compatible with the custom collator that we will define later. A common approach is to use conversational data. Given that the data includes both text and images, the format needs to be adjusted accordingly. Below is an example of a conversational data format involving both text and images: ```python images = ["obama.png"] messages = [ { "role": "user", "content": [ {"type": "text", "text": "Who is this?"}, {"type": "image"} ] }, { "role": "assistant", "content": [ {"type": "text", "text": "Barack Obama"} ] }, { "role": "user", "content": [ {"type": "text", "text": "What is he famous for?"} ] }, { "role": "assistant", "content": [ {"type": "text", "text": "He is the 44th President of the United States."} ] } ] ``` To illustrate how this data format will be processed using the LLaVA model, you can use the following code: ```python from transformers import AutoProcessor processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") print(processor.apply_chat_template(messages, tokenize=False)) ``` The output will be formatted as follows: ```txt Who is this? ASSISTANT: Barack Obama USER: What is he famous for? ASSISTANT: He is the 44th President of the United States. ``` <iframe src="https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft/embed/viewer/default/train" frameborder="0" width="100%" height="560px"></iframe> ### A custom collator for processing multi-modal data Unlike the default behavior of `SFTTrainer`, processing multi-modal data is done on the fly during the data collation process. To do this, you need to define a custom collator that processes both the text and images. This collator must take a list of examples as input (see the previous section for an example of the data format) and return a batch of processed data. Below is an example of such a collator: ```python def collate_fn(examples): # Get the texts and images, and apply the chat template texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] images = [example["images"][0] for example in examples] # Tokenize the texts and process the images batch = processor(texts, images, return_tensors="pt", padding=True) # The labels are the input_ids, and we mask the padding tokens in the loss computation labels = batch["input_ids"].clone() labels[labels == processor.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch ``` We can verify that the collator works as expected by running the following code: ```python from datasets import load_dataset dataset = load_dataset("HuggingFaceH4/llava-instruct-mix-vsft", split="train") examples = [dataset[0], dataset[1]] # Just two examples for the sake of the example collated_data = collate_fn(examples) print(collated_data.keys()) # dict_keys(['input_ids', 'attention_mask', 'pixel_values', 'labels']) ``` ### Training the vision-language model Now that we have prepared the data and defined the collator, we can proceed with training the model. To ensure that the data is not processed as text-only, we need to set a couple of arguments in the `SFTConfig`, specifically `dataset_text_field` and `remove_unused_columns`. We also need to set `skip_prepare_dataset` to `True` to avoid the default processing of the dataset. Below is an example of how to set up the `SFTTrainer`. ```python args.dataset_text_field = "" # needs a dummy field args.remove_unused_columns = False args.dataset_kwargs = {"skip_prepare_dataset": True} trainer = SFTTrainer( model=model, args=args, data_collator=collate_fn, train_dataset=train_dataset, tokenizer=processor.tokenizer, ) ``` A full example of training LLaVa 1.5 on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset can be found in the script [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py). - [Experiment tracking](https://wandb.ai/huggingface/trl/runs/2b2c5l7s) - [Trained model](https://huggingface.co/HuggingFaceH4/sft-llava-1.5-7b-hf) ## SFTTrainer [[autodoc]] SFTTrainer ## SFTConfig [[autodoc]] SFTConfig ## Datasets In the SFTTrainer we smartly support `datasets.IterableDataset` in addition to other style datasets. This is useful if you are using large corpora that you do not want to save all to disk. The data will be tokenized and processed on the fly, even when packing is enabled. Additionally, in the SFTTrainer, we support pre-tokenized datasets if they are `datasets.Dataset` or `datasets.IterableDataset`. In other words, if such a dataset has a column of `input_ids`, no further processing (tokenization or packing) will be done, and the dataset will be used as-is. This can be useful if you have pretokenized your dataset outside of this script and want to re-use it directly. ### ConstantLengthDataset [[autodoc]] trainer.ConstantLengthDataset
trl/docs/source/sft_trainer.mdx/0
{ "file_path": "trl/docs/source/sft_trainer.mdx", "repo_id": "trl", "token_count": 10776 }
431
from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser """ python -i examples/datasets/tokenize_ds.py --debug --model HuggingFaceH4/zephyr-7b-beta python -i examples/datasets/tokenize_ds.py --debug --model gpt2 """ @dataclass class ScriptArguments: debug: Optional[bool] = field(default=False, metadata={"help": "Enable debug mode"}) dataset: str = field( default="trl-internal-testing/hh-rlhf-helpful-base-trl-style", metadata={"help": "The dataset to load"} ) model: str = field(default="gpt2", metadata={"help": "The model to use for tokenization"}) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "The number of workers to use to tokenize the data"} ) if __name__ == "__main__": args = HfArgumentParser(ScriptArguments).parse_args_into_dataclasses()[0] ds = load_dataset(args.dataset) if args.debug: for key in ds: ds[key] = ds[key].select(range(50)) tokenizer = AutoTokenizer.from_pretrained(args.model) if tokenizer.chat_template is None: tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n\n'}}{% endfor %}{{ eos_token }}" def process(row): row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False) row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False) return row ds = ds.map(process, num_proc=args.dataset_num_proc) print(ds["train"][0]["chosen"])
trl/examples/datasets/tokenize_ds.py/0
{ "file_path": "trl/examples/datasets/tokenize_ds.py", "repo_id": "trl", "token_count": 617 }
432
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import numpy as np import torch from transformers import AutoTokenizer, load_tool from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, TextEnvironment def generate_data(n): """Generate random arithmetic tasks and answers.""" tasks, answers = [], [] for _ in range(n): a = np.random.randint(0, 50) b = np.random.randint(0, 50) op = np.random.choice(["-", "+", "*"]) tasks.append(f"\n\nWhat is {a} {op} {b}?") if op == "-": answers.append(a - b) elif op == "+": answers.append(a + b) else: answers.append(a * b) return tasks, answers def exact_match_reward(responses, answers=None): """Reward if generated response contains correct answer.""" rewards = [] pattern = r"Result\s*=\s*(-?\d+(?:\.\d+)?)\s*<submit>" # generated by chatGPT for response, answer in zip(responses, answers): reward = 0.0 predicted_number = None match_pattern = re.findall(pattern, response) if match_pattern: predicted_number = float(match_pattern[0]) if predicted_number is not None: if np.abs(predicted_number - answer) < 0.01: reward += 1.0 rewards.append(torch.tensor(reward)) return rewards # set up models model_id = "gpt2" model = AutoModelForCausalLMWithValueHead.from_pretrained(model_id) ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token # system prompt prompt = """\ What is 13-3? <request><SimpleCalculatorTool>13-3<call>10.0<response> Result=10<submit> What is 4*3? <request><SimpleCalculatorTool>4*3<call>12.0<response> Result=12<submit>""" generation_kwargs = { "min_length": -1, "top_k": 0.0, "top_p": 1.0, "do_sample": True, "pad_token_id": tokenizer.eos_token_id, "eos_token_id": -1, "max_new_tokens": 32, } # trainer ppo_config = PPOConfig( batch_size=256, learning_rate=1.41e-5, mini_batch_size=64, log_with="wandb", ) ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer) # text env text_env = TextEnvironment( model, tokenizer, {"SimpleCalculatorTool": load_tool("ybelkada/simple-calculator")}, exact_match_reward, prompt, generation_kwargs=generation_kwargs, ) # main training loop for _step in range(100): tasks, answers = generate_data(ppo_config.batch_size) queries, responses, masks, rewards, histories = text_env.run(tasks, answers=answers) train_stats = ppo_trainer.step(queries, responses, rewards, masks) response_texts = [tokenizer.decode(response) for response in responses] query_texts = [tokenizer.decode(query) for query in queries] texts = {"query": [qt.split("<submit>")[-1].strip() for qt in query_texts], "response": response_texts} ppo_trainer.log_stats(train_stats, texts, rewards, columns_to_log=["query", "response", "answer"]) ppo_trainer.save_pretrained(model_id + "-calculator")
trl/examples/research_projects/tools/calculator.py/0
{ "file_path": "trl/examples/research_projects/tools/calculator.py", "repo_id": "trl", "token_count": 1433 }
433
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO. # Full training: python examples/scripts/kto.py \ --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ --per_device_train_batch_size 16 \ --num_train_epochs 1 \ --learning_rate 1e-5 \ --lr_scheduler_type=cosine \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir=kto-aligned-model \ --warmup_ratio 0.1 \ --report_to wandb \ --bf16 \ --logging_first_step # QLoRA: python examples/scripts/kto.py \ --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ --per_device_train_batch_size 8 \ --num_train_epochs 1 \ --learning_rate 1e-4 \ --lr_scheduler_type=cosine \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir=kto-aligned-model-lora \ --warmup_ratio 0.1 \ --report_to wandb \ --bf16 \ --logging_first_step \ --use_peft \ --load_in_4bit \ --lora_target_modules=all-linear \ --lora_r=16 \ --lora_alpha=16 """ from dataclasses import dataclass from accelerate import PartialState from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, setup_chat_format # Define and parse arguments. @dataclass class ScriptArguments: """ The arguments for the KTO training script. """ dataset_name: str = "trl-lib/kto-mix-14k" if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig)) script_args, kto_args, model_args = parser.parse_args_into_dataclasses() # Load a pretrained model model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) ref_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # If we are aligning a base model, we use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) # Load the dataset dataset = load_dataset(script_args.dataset_name) # Apply chat template def format_dataset(example): example["prompt"] = tokenizer.apply_chat_template(example["prompt"], tokenize=False) example["completion"] = tokenizer.apply_chat_template(example["completion"], tokenize=False) return example # Compute that only on the main process for faster data processing. # see: https://github.com/huggingface/trl/pull/1255 with PartialState().local_main_process_first(): formatted_dataset = dataset.map(format_dataset, num_proc=kto_args.dataset_num_proc) # Initialize the KTO trainer kto_trainer = KTOTrainer( model, ref_model, args=kto_args, train_dataset=formatted_dataset["train"], eval_dataset=formatted_dataset["test"], tokenizer=tokenizer, peft_config=get_peft_config(model_args), ) # Train and push the model to the Hub kto_trainer.train() kto_trainer.save_model(kto_args.output_dir) kto_trainer.push_to_hub()
trl/examples/scripts/kto.py/0
{ "file_path": "trl/examples/scripts/kto.py", "repo_id": "trl", "token_count": 1592 }
434
[metadata] license_file = LICENSE
trl/setup.cfg/0
{ "file_path": "trl/setup.cfg", "repo_id": "trl", "token_count": 10 }
435
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import pytest import torch from datasets import Dataset, features from parameterized import parameterized from PIL import Image from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, ) from trl import DPOConfig, DPOTrainer, FDivergenceType from trl.trainer.dpo_trainer import _build_tokenized_answer, _truncate_tokens from .testing_utils import require_bitsandbytes, require_no_wandb, require_peft class TestBuildTokenizedAnswer(unittest.TestCase): def setUp(self): self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.tokenizer.pad_token = self.tokenizer.eos_token def test_basic_functionality(self): prompt = "Hello, how are you?" answer = "I'm doing well, thank you!" result = _build_tokenized_answer(prompt, answer, tokenizer=self.tokenizer) self.assertIn("prompt_input_ids", result) self.assertIn("prompt_attention_mask", result) self.assertIn("input_ids", result) self.assertIn("attention_mask", result) self.assertEqual(len(result["prompt_input_ids"]), len(result["prompt_attention_mask"])) self.assertEqual(len(result["input_ids"]), len(result["attention_mask"])) decoded_prompt = self.tokenizer.decode(result["prompt_input_ids"]) self.assertTrue(prompt in decoded_prompt) decoded_answer = self.tokenizer.decode(result["input_ids"]) self.assertTrue(answer in decoded_answer) def test_with_processor(self): def mock_processor(text, images=None, add_special_tokens=True): return {"input_ids": torch.tensor([[1, 2, 3]]), "attention_mask": torch.tensor([[1, 1, 1]])} prompt = "Describe this image:" answer = "A beautiful sunset over the ocean." result = _build_tokenized_answer(prompt, answer, processor=mock_processor) self.assertIn("prompt_input_ids", result) self.assertIn("prompt_attention_mask", result) self.assertIn("input_ids", result) self.assertIn("attention_mask", result) self.assertEqual(result["prompt_input_ids"], [1, 2, 3]) self.assertEqual(result["prompt_attention_mask"], [1, 1, 1]) def test_token_merging(self): prompt = "The quick brown" answer = " fox jumps over the lazy dog." result = _build_tokenized_answer(prompt, answer, tokenizer=self.tokenizer) full_text = prompt + answer full_tokenized = self.tokenizer(full_text, add_special_tokens=False) self.assertEqual(result["prompt_input_ids"] + result["input_ids"], full_tokenized["input_ids"]) def test_vision_model(self): def mock_vision_processor(text, images=None, add_special_tokens=True): return { "input_ids": torch.tensor([[1, 2, 3]]), "attention_mask": torch.tensor([[1, 1, 1]]), "pixel_values": torch.rand(1, 3, 224, 224), "pixel_attention_mask": torch.ones(1, 224, 224), } prompt = "Describe this image:" answer = "A cat sitting on a windowsill." result = _build_tokenized_answer(prompt, answer, processor=mock_vision_processor) self.assertIn("prompt_pixel_values", result) self.assertIn("prompt_pixel_attention_mask", result) self.assertTrue(torch.is_tensor(result["prompt_pixel_values"])) self.assertTrue(torch.is_tensor(result["prompt_pixel_attention_mask"])) class TestTruncateTokens(unittest.TestCase): def setUp(self): with tempfile.TemporaryDirectory() as tmp_dir: self.args = DPOConfig( max_length=20, max_prompt_length=10, truncation_mode="keep_start", output_dir=tmp_dir ) def test_truncate_tokens(self): chosen_tokens = [ { "prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15, "input_ids": list(range(10)), "attention_mask": [1] * 10, } ] rejected_tokens = [ { "prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15, "input_ids": list(range(12)), "attention_mask": [1] * 12, } ] prompt_tokens = [{"prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15}] _truncate_tokens(chosen_tokens, rejected_tokens, prompt_tokens, self.args) # Check if prompt is truncated correctly self.assertEqual(len(chosen_tokens[0]["prompt_input_ids"]), 10) self.assertEqual(len(chosen_tokens[0]["prompt_attention_mask"]), 10) self.assertEqual(len(rejected_tokens[0]["prompt_input_ids"]), 10) self.assertEqual(len(rejected_tokens[0]["prompt_attention_mask"]), 10) self.assertEqual(len(prompt_tokens[0]["prompt_input_ids"]), 10) self.assertEqual(len(prompt_tokens[0]["prompt_attention_mask"]), 10) # Check if responses are truncated correctly self.assertEqual(len(chosen_tokens[0]["input_ids"]), 10) self.assertEqual(len(chosen_tokens[0]["attention_mask"]), 10) self.assertEqual(len(rejected_tokens[0]["input_ids"]), 10) self.assertEqual(len(rejected_tokens[0]["attention_mask"]), 10) def test_truncation_mode_keep_end(self): self.args.truncation_mode = "keep_end" chosen_tokens = [ { "prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15, "input_ids": list(range(15, 25)), "attention_mask": [1] * 10, } ] rejected_tokens = [ { "prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15, "input_ids": list(range(15, 28)), "attention_mask": [1] * 13, } ] prompt_tokens = [{"prompt_input_ids": list(range(15)), "prompt_attention_mask": [1] * 15}] _truncate_tokens(chosen_tokens, rejected_tokens, prompt_tokens, self.args) # Check if prompt is truncated correctly from the end self.assertEqual(prompt_tokens[0]["prompt_input_ids"], list(range(5, 15))) self.assertEqual(prompt_tokens[0]["prompt_attention_mask"], [1] * 10) # Check if chosen tokens are truncated correctly self.assertEqual(chosen_tokens[0]["prompt_input_ids"], list(range(5, 15))) self.assertEqual(chosen_tokens[0]["prompt_attention_mask"], [1] * 10) self.assertEqual(chosen_tokens[0]["input_ids"], list(range(15, 25))) self.assertEqual(chosen_tokens[0]["attention_mask"], [1] * 10) # Check if rejected tokens are truncated correctly self.assertEqual(rejected_tokens[0]["prompt_input_ids"], list(range(5, 15))) self.assertEqual(rejected_tokens[0]["prompt_attention_mask"], [1] * 10) self.assertEqual(rejected_tokens[0]["input_ids"], list(range(15, 25))) self.assertEqual(rejected_tokens[0]["attention_mask"], [1] * 10) def test_invalid_truncation_mode(self): self.args.truncation_mode = "invalid_mode" with self.assertRaises(ValueError): _truncate_tokens([], [], [], self.args) class DPOTrainerTester(unittest.TestCase): def setUp(self): self.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" self.model = AutoModelForCausalLM.from_pretrained(self.model_id) self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.tokenizer.pad_token = self.tokenizer.eos_token # get t5 as seq2seq example: model_id = "trl-internal-testing/T5ForConditionalGeneration-correct-vocab-calibrated" self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) self.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) def _init_dummy_dataset(self): # fmt: off dummy_dataset_dict = { "prompt": [ "hello", "how are you", "What is your name?", "What is your name?", "Which is the best programming language?", "Which is the best programming language?", "Which is the best programming language?", "[INST] How is the stock price? [/INST]", "[INST] How is the stock price? [/INST] ", ], "chosen": [ "hi nice to meet you", "I am fine", "My name is Mary", "My name is Mary", "Python", "Python", "Python", "$46 as of 10am EST", "46 as of 10am EST", ], "rejected": [ "leave me alone", "I am not fine", "Whats it to you?", "I dont have a name", "Javascript", "C++", "Java", " $46 as of 10am EST", " 46 as of 10am EST", ], } # fmt: on return Dataset.from_dict(dummy_dataset_dict) @parameterized.expand( [ ["gpt2", "sigmoid", True], ["t5", "hinge", False], ["gpt2", "ipo", False], ["t5", "ipo", True], ["gpt2", "aot_pair", True], ["t5", "aot_pair", False], ["gpt2", "aot", True], ["t5", "aot", False], ["gpt2", "bco_pair", False], ["t5", "bco_pair", True], ["gpt2", "sppo_hard", False], ["t5", "sppo_hard", True], ["gpt2", "nca_pair", False], ["t5", "nca_pair", True], ["gpt2", "robust", True], ["gpt2", "exo_pair", False], ["t5", "exo_pair", True], ["gpt2", "apo_zero", True], ["t5", "apo_down", False], ] ) def test_dpo_trainer(self, name, loss_type, pre_compute): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, eval_strategy="steps", beta=0.1, loss_type=loss_type, precompute_ref_log_probs=pre_compute, report_to="none", ) dummy_dataset = self._init_dummy_dataset() if name == "gpt2": model = self.model ref_model = self.ref_model tokenizer = self.tokenizer elif name == "t5": model = self.t5_model ref_model = self.t5_ref_model tokenizer = self.t5_tokenizer trainer = DPOTrainer( model=model, ref_model=ref_model, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.allclose(param, new_param, rtol=1e-12, atol=1e-12) @parameterized.expand( [ [None, "Test when rpo_alpha is set to None"], [0.5, "Test when rpo_alpha is set to 0.5"], ] ) def test_dpo_trainer_without_providing_ref_model(self, rpo_alpha, _): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, precompute_ref_log_probs=True, rpo_alpha=rpo_alpha, report_to="none", ) dummy_dataset = self._init_dummy_dataset() trainer = DPOTrainer( model=self.model, ref_model=None, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) @require_peft def test_dpo_trainer_without_providing_ref_model_with_lora(self): from peft import LoraConfig lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, precompute_ref_log_probs=True, report_to="none", ) dummy_dataset = self._init_dummy_dataset() trainer = DPOTrainer( model=self.model, ref_model=None, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): if "lora" in n: new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) def test_dpo_trainer_padding_token_is_none(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, eval_strategy="steps", beta=0.1, report_to="none", ) dummy_dataset = self._init_dummy_dataset() tokenizer = AutoTokenizer.from_pretrained(self.model_id) tokenizer.pad_token = None with self.assertRaisesRegex( ValueError, expected_regex=r"Padding is enabled, but the tokenizer is not configured with a padding token." r" Explicitly set `tokenizer.pad_token` \(e.g. `tokenizer.pad_token = tokenizer.eos_token`\)" r" before calling the trainer.", ): trainer = DPOTrainer( model=self.model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) trainer.train() def test_dpo_trainer_w_dataset_num_proc(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, eval_strategy="steps", beta=0.1, dataset_num_proc=5, report_to="none", ) dummy_dataset = self._init_dummy_dataset() tokenizer = AutoTokenizer.from_pretrained(self.model_id) tokenizer.pad_token = None with self.assertRaisesRegex( ValueError, expected_regex=r"Padding is enabled, but the tokenizer is not configured with a padding token." r" Explicitly set `tokenizer.pad_token` \(e.g. `tokenizer.pad_token = tokenizer.eos_token`\)" r" before calling the trainer.", ): trainer = DPOTrainer( model=self.model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) trainer.train() def test_tr_dpo_trainer(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", precompute_ref_log_probs=False, sync_ref_model=True, ref_model_mixup_alpha=0.5, ref_model_sync_steps=1, report_to="none", ) dummy_dataset = self._init_dummy_dataset() trainer = DPOTrainer( model=self.model, ref_model=self.model, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) # params of the ref model as its the same as the model previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.ref_model.get_parameter(n) # check the ref model's params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) @require_no_wandb def test_dpo_trainer_generate_during_eval_no_wandb(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, eval_strategy="steps", beta=0.1, generate_during_eval=True, report_to="none", ) dummy_dataset = self._init_dummy_dataset() with self.assertRaisesRegex( ValueError, expected_regex="`generate_during_eval=True` requires Weights and Biases to be installed." " Please install `wandb` to resolve.", ): DPOTrainer( model=self.model, ref_model=None, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) @require_peft def test_dpo_lora_save(self): from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(self.model_id) model_peft = get_peft_model(model, lora_config) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, precompute_ref_log_probs=True, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model_peft, ref_model=None, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) # train the model trainer.train() # save peft adapter trainer.save_model() # assert that the model is loaded without giving OSError try: AutoModelForCausalLM.from_pretrained(tmp_dir) except OSError: self.fail("Loading the saved peft adapter failed") @require_peft @require_bitsandbytes def test_dpo_lora_bf16_autocast_llama(self): # Note this test only works on compute capability > 7 GPU devices from peft import LoraConfig model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", bf16=True, beta=0.1, generate_during_eval=True, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) # train the model trainer.train() # save peft adapter trainer.save_model() @parameterized.expand( [ ["gpt2", "sigmoid", False, False], ["gpt2", "sigmoid", False, True], ["gpt2", "sigmoid", True, False], ["gpt2", "sigmoid", True, True], ["gpt2", "ipo", False, False], ["gpt2", "ipo", False, True], ["gpt2", "ipo", True, False], ["gpt2", "ipo", True, True], ["gpt2", "aot_pair", False, False], ["gpt2", "aot_pair", False, True], ["gpt2", "aot_pair", True, False], ["gpt2", "aot_pair", True, True], ["gpt2", "aot", False, False], ["gpt2", "aot", False, True], ["gpt2", "aot", True, False], ["gpt2", "aot", True, True], ["gpt2", "bco_pair", False, False], ["gpt2", "bco_pair", False, True], ["gpt2", "bco_pair", True, False], ["gpt2", "bco_pair", True, True], ["gpt2", "robust", False, False], ["gpt2", "robust", False, True], ["gpt2", "robust", True, False], ["gpt2", "robust", True, True], ] ) @require_bitsandbytes @require_peft @unittest.skip("You need a GPU with bf16 support in order to run these tests") def test_dpo_lora_bf16_autocast(self, name, loss_type, pre_compute, gen_during_eval): # Note this test only works on compute capability > 7 GPU devices from peft import LoraConfig lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(self.model_id, load_in_4bit=True) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", bf16=True, beta=0.1, generate_during_eval=gen_during_eval, loss_type=loss_type, precompute_ref_log_probs=pre_compute, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) # train the model trainer.train() # save peft adapter trainer.save_model() @require_peft def test_dpo_lora_tags(self): from peft import LoraConfig model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(model_id) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) assert trainer.model.model_tags == trainer._tag_names @require_peft def test_dpo_tags(self): model_id = "HuggingFaceM4/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) # lora model model = AutoModelForCausalLM.from_pretrained(model_id) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) assert trainer.model.model_tags == trainer._tag_names @require_peft def test_dpo_lora_force_use_ref(self): from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(self.model_id) model_peft = get_peft_model(model, lora_config) ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, report_to="none", ) dummy_dataset = self._init_dummy_dataset() with self.assertRaises(ValueError): # passing a peft_model as model and ref_model should error out, # unless you pass `force_use_ref_model` trainer = DPOTrainer( model=model_peft, ref_model=ref_model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", beta=0.1, force_use_ref_model=True, report_to="none", ) trainer = DPOTrainer( model=model_peft, ref_model=ref_model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, ) # train the model trainer.train() def test_dpo_trainer_torch_dtype(self): # See https://github.com/huggingface/trl/issues/1751 dummy_dataset = self._init_dummy_dataset() with tempfile.TemporaryDirectory() as tmp_dir: dpo_config = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=1, model_init_kwargs={"torch_dtype": "float16"}, ref_model_init_kwargs={"torch_dtype": "float16"}, report_to="none", ) trainer = DPOTrainer( model=self.model_id, ref_model=self.model_id, tokenizer=self.tokenizer, args=dpo_config, train_dataset=dummy_dataset, ) assert trainer.model.config.torch_dtype == torch.float16 assert trainer.ref_model.config.torch_dtype == torch.float16 # Now test when `torch_dtype` is provided but is wrong to either the model or the ref_model with tempfile.TemporaryDirectory() as tmp_dir: dpo_config = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=1, model_init_kwargs={"torch_dtype": -1}, report_to="none", ) with pytest.raises( ValueError, match="Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got -1.", ): _ = DPOTrainer( model=self.model_id, tokenizer=self.tokenizer, args=dpo_config, train_dataset=dummy_dataset, ) with tempfile.TemporaryDirectory() as tmp_dir: dpo_config = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=1, ref_model_init_kwargs={"torch_dtype": -1}, report_to="none", ) with pytest.raises( ValueError, match="Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got -1.", ): _ = DPOTrainer( model=self.model_id, ref_model=self.model_id, tokenizer=self.tokenizer, args=dpo_config, train_dataset=dummy_dataset, ) def test_dpo_loss_alpha_div_f(self): model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) # lora model model = AutoModelForCausalLM.from_pretrained(model_id) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", f_divergence_type=FDivergenceType.ALPHA_DIVERGENCE.value, f_alpha_divergence_coef=0.5, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) # Fake chosen and rejected log probs policy_chosen_logps = torch.FloatTensor([410.0, 0.1]) policy_rejected_logps = torch.FloatTensor([810.5, 0.2]) reference_chosen_logps = torch.FloatTensor([-610.0, -0.1]) reference_rejected_logps = torch.FloatTensor([110.6, 0.5]) losses, _, _ = trainer.dpo_loss( policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps ) assert torch.isfinite(losses).cpu().numpy().all() def test_dpo_loss_js_div_f(self): model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) # lora model model = AutoModelForCausalLM.from_pretrained(model_id) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, eval_strategy="steps", f_divergence_type=FDivergenceType.JS_DIVERGENCE.value, f_alpha_divergence_coef=0.5, report_to="none", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) # Fake chosen and rejected log probs policy_chosen_logps = torch.FloatTensor([410.0, 0.1]) policy_rejected_logps = torch.FloatTensor([95.5, 0.2]) reference_chosen_logps = torch.FloatTensor([-610.0, -0.1]) reference_rejected_logps = torch.FloatTensor([5.5, 0.5]) losses, _, _ = trainer.dpo_loss( policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps ) assert torch.isfinite(losses).cpu().numpy().all() class DPOVisionTrainerTester(unittest.TestCase): @parameterized.expand( [ ["trl-internal-testing/tiny-random-idefics2"], ["trl-internal-testing/tiny-random-paligemma"], ["trl-internal-testing/tiny-random-llava-1.5"], ] ) def test_vdpo_trainer(self, model_id): # fmt: off dataset_dict = { "prompt": [ [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe the image in great detail."}]}], [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Is this bus in the USA?"}]}], [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Give a thorough description of the image."}]}], [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Who are the people in the image?"}]}], [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What ise written?"}]}], ], "chosen": [ [{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, multi-colored train."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "Yes, it can be assumed that this bus is in the USA."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "There are two individuals, possibly girls or women."}]}], [{"role": "assistant", "content": [{"type": "text", "text": '"ccpb".'}]}], ], "rejected": [ [{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, colorful train."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "No, it's not in the USA."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path surrounded by trees."}]}], [{"role": "assistant", "content": [{"type": "text", "text": "In the image, there are two individuals."}]}], [{"role": "assistant", "content": [{"text": '"ccpb".', "type": "text"}]}], ], "images": [ [Image.fromarray(np.random.randint(0, 255, (92, 33, 3), dtype=np.uint8))], [Image.fromarray(np.random.randint(0, 255, (64, 48, 3), dtype=np.uint8))], [Image.fromarray(np.random.randint(0, 255, (80, 152, 3), dtype=np.uint8))], [Image.fromarray(np.random.randint(0, 255, (57, 24, 3), dtype=np.uint8))], [Image.fromarray(np.random.randint(0, 255, (102, 48, 3), dtype=np.uint8))], ], } # fmt: on dataset = Dataset.from_dict(dataset_dict) dataset = dataset.cast_column("images", features.Sequence(features.Image())) # Instantiate the model and processor model = AutoModelForVision2Seq.from_pretrained(model_id) ref_model = AutoModelForVision2Seq.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) # Apply chat template to the dataset def apply_chat_template(example): example["prompt"] = processor.apply_chat_template(example["prompt"]) example["chosen"] = processor.apply_chat_template(example["chosen"]) example["rejected"] = processor.apply_chat_template(example["rejected"]) return example dataset = dataset.map(apply_chat_template) with tempfile.TemporaryDirectory() as tmp_dir: training_args = DPOConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_length=512, max_prompt_length=128, remove_unused_columns=False, report_to="none", ) trainer = DPOTrainer( model=model, ref_model=ref_model, args=training_args, tokenizer=processor, train_dataset=dataset, eval_dataset=dataset, ) # Save the initial weights, so we can check if they have changed after training previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # Check that the trainable params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) if param.sum() != 0: # ignore 0 biases if model_id == "trl-internal-testing/tiny-random-llava-1.5" and ( n.startswith("vision_tower.vision_model.encoder.layers.3") or n == "vision_tower.vision_model.post_layernorm.weight" ): # For some reason, these params are not updated. This is probably not related to TRL, but to # the model itself. We should investigate this further, but for now we just skip these params. continue assert not torch.allclose(param, new_param, rtol=1e-12, atol=1e-12) if __name__ == "__main__": unittest.main()
trl/tests/test_dpo_trainer.py/0
{ "file_path": "trl/tests/test_dpo_trainer.py", "repo_id": "trl", "token_count": 23552 }
436
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import tempfile import unittest import numpy as np import pytest import torch from datasets import Dataset, Image, Sequence from transformers import ( AutoModelForCausalLM, AutoProcessor, AutoTokenizer, LlavaForConditionalGeneration, TrainingArguments, ) from trl import SFTConfig, SFTTrainer from trl.import_utils import is_peft_available, is_pil_available from trl.trainer import ConstantLengthDataset, DataCollatorForCompletionOnlyLM from .testing_utils import require_peft, requires_pil def formatting_prompts_func(example): text = f"### Question: {example['question']}\n ### Answer: {example['answer']}" return text def formatting_prompts_func_batched(example): output_text = [] for i, question in enumerate(example["question"]): text = f"### Question: {question}\n ### Answer: {example['answer'][i]}" output_text.append(text) return output_text if is_peft_available(): from peft import LoraConfig, PeftModel if is_pil_available(): from PIL import Image as PILImage class SFTTrainerTester(unittest.TestCase): r""" """ def setUp(self): self.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" self.model = AutoModelForCausalLM.from_pretrained(self.model_id) self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.tokenizer.pad_token = self.tokenizer.eos_token self.dummy_dataset = Dataset.from_dict( { "question": [ "Does llamas know how to code?", "Does llamas know how to fly?", "Does llamas know how to talk?", "Does llamas know how to code?", "Does llamas know how to fly?", "Does llamas know how to talk?", "Does llamas know how to swim?", ], "answer": [ "Yes, llamas are very good at coding.", "No, llamas can't fly.", "Yes, llamas are very good at talking.", "Yes, llamas are very good at coding.", "No, llamas can't fly.", "Yes, llamas are very good at talking.", "No, llamas can't swim.", ], "text": [ "### Question: Does llamas know how to code?\n ### Answer: Yes, llamas are very good at coding.", "### Question: Does llamas know how to fly?\n ### Answer: No, llamas can't fly.", "### Question: Does llamas know how to talk?\n ### Answer: Yes, llamas are very good at talking.", "### Question: Does llamas know how to code?\n ### Answer: Yes, llamas are very good at coding.", "### Question: Does llamas know how to fly?\n ### Answer: No, llamas can't fly.", "### Question: Does llamas know how to talk?\n ### Answer: Yes, llamas are very good at talking.", "### Question: Does llamas know how to swim?\n ### Answer: No, llamas can't swim.", ], } ) self.dummy_chatml_dataset = Dataset.from_dict( { "messages": [ [ {"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi, how can I help you?"}, {"role": "user", "content": "What is 2+2?"}, {"role": "assistant", "content": "4"}, {"role": "user", "content": "What is 3+3?"}, {"role": "assistant", "content": "6"}, ], [ {"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi, how can I help you?"}, ], ] } ) self.dummy_instruction_dataset = Dataset.from_list( [ {"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}, {"prompt": "What is 4+4?", "completion": "8"}, {"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}, {"prompt": "What is 4+4?", "completion": "8"}, {"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}, {"prompt": "What is 4+4?", "completion": "8"}, {"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}, {"prompt": "What is 4+4?", "completion": "8"}, ] ) if is_pil_available(): self.dummy_vsft_instruction_dataset = Dataset.from_dict( { "messages": [ [ { "role": "user", "content": [{"type": "text", "text": "What is in this image?"}, {"type": "image"}], }, { "role": "assistant", "content": [{"type": "text", "text": "It is random noise."}], }, { "role": "user", "content": [{"type": "text", "text": "Oh ye, you are right, what is 1+1"}], }, { "role": "assistant", "content": [{"type": "text", "text": "2"}], }, ], [ { "role": "user", "content": [{"type": "text", "text": "What is in this image?"}, {"type": "image"}], }, { "role": "assistant", "content": [{"type": "text", "text": "It is random noise."}], }, ], ], "images": [ [PILImage.fromarray((np.random.rand(40, 50, 3) * 255).astype("uint8")).convert("RGBA")], [PILImage.fromarray((np.random.rand(50, 60, 3) * 255).astype("uint8")).convert("RGBA")], ], } ) self.dummy_vsft_instruction_dataset.cast_column("images", Sequence(Image())) self.dummy_vsft_instruction_dataset = self.dummy_vsft_instruction_dataset.cast_column( "images", Sequence(Image()) ) self.train_dataset = ConstantLengthDataset( self.tokenizer, self.dummy_dataset, dataset_text_field=None, formatting_func=formatting_prompts_func, seq_length=16, num_of_sequences=16, ) self.eval_dataset = ConstantLengthDataset( self.tokenizer, self.dummy_dataset, dataset_text_field=None, formatting_func=formatting_prompts_func, seq_length=16, num_of_sequences=16, ) def test_constant_length_dataset(self): formatted_dataset = ConstantLengthDataset( self.tokenizer, self.dummy_dataset, dataset_text_field=None, formatting_func=formatting_prompts_func, ) assert len(formatted_dataset) == len(self.dummy_dataset) assert len(formatted_dataset) > 0 for example in formatted_dataset: assert "input_ids" in example assert "labels" in example assert len(example["input_ids"]) == formatted_dataset.seq_length assert len(example["labels"]) == formatted_dataset.seq_length decoded_text = self.tokenizer.decode(example["input_ids"]) assert ("Question" in decoded_text) and ("Answer" in decoded_text) def test_sft_trainer_backward_compatibility(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, hub_token="not_a_real_token", report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, formatting_func=formatting_prompts_func, ) assert trainer.args.hub_token == training_args.hub_token trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") def test_sft_trainer(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") def test_sft_trainer_uncorrect_data(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=True, report_to="none", ) with pytest.raises(ValueError): _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, ) # this should work since the dummy chatml include the correct format training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, max_seq_length=32, # make sure there is at least 1 packed sequence num_of_sequences=32, packing=True, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_chatml_dataset, ) training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=False, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_chatml_dataset, ) # this should work since the dummy instruction dataset is the correct format training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, max_seq_length=16, # make sure there is at least 1 packed sequence packing=True, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_instruction_dataset, ) training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=False, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_instruction_dataset, ) training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, max_seq_length=32, # make sure there is at least 1 packed sequence packing=True, report_to="none", ) # This should work _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func, ) with pytest.raises(ValueError): # This should not work because not enough data for one sample training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, max_seq_length=1024, # make sure there is NOT at least 1 packed sequence packing=True, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func, ) # This should not work as well with pytest.raises(ValueError): training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=False, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func, ) # but this should work training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=False, report_to="none", ) _ = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func_batched, ) def test_sft_trainer_with_model_num_train_epochs(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, num_train_epochs=2, per_device_train_batch_size=2, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, num_train_epochs=2, per_device_train_batch_size=2, dataset_text_field="text", max_seq_length=16, num_of_sequences=16, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, num_train_epochs=2, per_device_train_batch_size=2, dataset_text_field="text", max_seq_length=16, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-1") def test_sft_trainer_with_model(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, per_device_train_batch_size=2, dataset_text_field="text", max_seq_length=16, num_of_sequences=16, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") # with formatting_func + packed with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, per_device_train_batch_size=2, max_seq_length=16, num_of_sequences=16, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") # with formatting_func + packed with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, per_device_train_batch_size=2, max_seq_length=16, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, formatting_func=formatting_prompts_func_batched, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, save_steps=1, per_device_train_batch_size=2, dataset_text_field="text", max_seq_length=16, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.dummy_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-1") def test_sft_trainer_with_multiple_eval_datasets(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=1, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset={ "data1": self.eval_dataset, "data2": self.eval_dataset, }, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_data1_loss"] is not None assert trainer.state.log_history[1]["eval_data2_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-1") def test_data_collator_completion_lm(self): response_template = "### Response:\n" data_collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=self.tokenizer, mlm=False) text = """\n\n### Instructions:\nHello all this should be masked\n\n### Response:\nI have not been masked correctly.""" encoded_text = self.tokenizer(text) examples = [encoded_text] batch = data_collator(examples) labels = batch["labels"] last_pad_idx = np.where(labels == -100)[1][-1] result_text = self.tokenizer.decode(batch["input_ids"][0, last_pad_idx + 1 :]) assert result_text == "I have not been masked correctly." def test_data_collator_completion_lm_with_multiple_text(self): tokenizer = copy.deepcopy(self.tokenizer) tokenizer.padding_side = "left" response_template = "### Response:\n" data_collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer, mlm=False) text1 = """\n\n### Instructions:\nHello all this should be masked\n\n### Response:\nI have not been masked correctly.""" text2 = """\n\n### Instructions:\nThis is another longer text that should also be masked. This text is significantly longer than the previous one.\n\n### Response:\nI have not been masked correctly.""" encoded_text1 = tokenizer(text1) encoded_text2 = tokenizer(text2) examples = [encoded_text1, encoded_text2] batch = data_collator(examples) for i in range(2): labels = batch["labels"][i] last_pad_idx = np.where(labels == -100)[0][-1] result_text = tokenizer.decode(batch["input_ids"][i, last_pad_idx + 1 :]) assert result_text == "I have not been masked correctly." def test_data_collator_chat_completion_lm(self): instruction_template = "### Human:" assistant_template = "### Assistant:" data_collator = DataCollatorForCompletionOnlyLM( response_template=assistant_template, instruction_template=instruction_template, tokenizer=self.tokenizer, mlm=False, ) text = """### Human: Hello all this should be masked.### Assistant: I should not be masked.### Human: All this should be masked too.### Assistant: I should not be masked too.""" encoded_text = self.tokenizer(text) examples = [encoded_text] batch = data_collator(examples) labels = batch["labels"] non_masked_tokens = batch["input_ids"][labels != -100] result_text = self.tokenizer.decode(non_masked_tokens) assert result_text == " I should not be masked. I should not be masked too." def test_data_collator_chat_completion_lm_with_multiple_text(self): tokenizer = copy.deepcopy(self.tokenizer) tokenizer.padding_side = "left" instruction_template = "### Human:" assistant_template = "### Assistant:" data_collator = DataCollatorForCompletionOnlyLM( response_template=assistant_template, instruction_template=instruction_template, tokenizer=tokenizer, mlm=False, ) text1 = """### Human: Hello all this should be masked.### Assistant: I should not be masked.""" text2 = """### Human: Hello all this should be masked.### Assistant: I should not be masked.### Human: All this should be masked too.### Assistant: I should not be masked too.""" encoded_text1 = tokenizer(text1) encoded_text2 = tokenizer(text2) examples = [encoded_text1, encoded_text2] batch = data_collator(examples) labels = batch["labels"] input_ids = batch["input_ids"] non_masked_tokens1 = input_ids[0][labels[0] != -100] result_text1 = tokenizer.decode(non_masked_tokens1) assert result_text1 == " I should not be masked." non_masked_tokens2 = input_ids[1][labels[1] != -100] result_text2 = tokenizer.decode(non_masked_tokens2) assert result_text2 == " I should not be masked. I should not be masked too." def test_sft_trainer_infinite_with_model(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=5, eval_steps=1, save_steps=1, per_device_train_batch_size=2, packing=True, max_seq_length=500, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) assert trainer.train_dataset.infinite trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None # make sure the trainer did 5 steps assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-5") def test_sft_trainer_infinite_with_model_epochs(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, num_train_epochs=1, per_device_train_batch_size=2, save_strategy="epoch", packing=True, max_seq_length=500, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) assert not trainer.train_dataset.infinite trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None # make sure the trainer did 5 steps assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-4") def test_sft_trainer_with_model_neftune(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=2, eval_steps=1, save_steps=1, per_device_train_batch_size=2, neftune_noise_alpha=5, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) trainer.model = trainer._trl_activate_neftune(trainer.model) device = trainer.model.get_input_embeddings().weight.device trainer.model.train() torch.random.manual_seed(42) embeds_neftune = trainer.model.get_input_embeddings()(torch.LongTensor([[1, 0, 1]]).to(device)) torch.random.manual_seed(24) embeds_neftune_2 = trainer.model.get_input_embeddings()(torch.LongTensor([[1, 0, 1]]).to(device)) assert not torch.allclose(embeds_neftune, embeds_neftune_2) assert len(trainer.model.get_input_embeddings()._forward_hooks) > 0 trainer.neftune_hook_handle.remove() trainer.train() # Make sure forward pass works fine _ = trainer.model(torch.LongTensor([[1, 0, 1]]).to(device)) assert len(trainer.model.get_input_embeddings()._forward_hooks) == 0 @require_peft def test_peft_sft_trainer_str(self): with tempfile.TemporaryDirectory() as tmp_dir: peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) training_args = SFTConfig( packing=True, output_dir=tmp_dir, report_to="none", ) _ = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, peft_config=peft_config, ) @require_peft def test_peft_sft_trainer(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, packing=True, report_to="none", ) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, peft_config=peft_config, ) assert isinstance(trainer.model, PeftModel) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "adapter_model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") assert "adapter_config.json" in os.listdir(tmp_dir + "/checkpoint-2") assert "model.safetensors" not in os.listdir(tmp_dir + "/checkpoint-2") @require_peft def test_peft_sft_trainer_gc(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, packing=True, report_to="none", ) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, peft_config=peft_config, ) assert isinstance(trainer.model, PeftModel) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "adapter_model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") assert "adapter_config.json" in os.listdir(tmp_dir + "/checkpoint-2") assert "model.safetensors" not in os.listdir(tmp_dir + "/checkpoint-2") @require_peft def test_peft_sft_trainer_neftune(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, neftune_noise_alpha=5, packing=True, report_to="none", ) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, peft_config=peft_config, ) trainer.model = trainer._trl_activate_neftune(trainer.model) assert isinstance(trainer.model, PeftModel) device = trainer.model.get_input_embeddings().weight.device trainer.model.train() torch.random.manual_seed(42) embeds_neftune = trainer.model.get_input_embeddings()(torch.LongTensor([[1, 0, 1]]).to(device)) torch.random.manual_seed(24) embeds_neftune_2 = trainer.model.get_input_embeddings()(torch.LongTensor([[1, 0, 1]]).to(device)) assert not torch.allclose(embeds_neftune, embeds_neftune_2) assert len(trainer.model.get_input_embeddings()._forward_hooks) > 0 trainer.neftune_hook_handle.remove() trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "adapter_model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") assert "adapter_config.json" in os.listdir(tmp_dir + "/checkpoint-2") assert "model.safetensors" not in os.listdir(tmp_dir + "/checkpoint-2") # Make sure forward pass works fine to check if embeddings forward is not broken. _ = trainer.model(torch.LongTensor([[1, 0, 1]]).to(device)) assert len(trainer.model.get_input_embeddings()._forward_hooks) == 0 @require_peft def test_peft_sft_trainer_tag(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, packing=True, report_to="none", ) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, peft_config=peft_config, ) assert trainer.model.model_tags == trainer._tag_names @require_peft def test_sft_trainer_tag(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, ) assert trainer.model.model_tags == trainer._tag_names def test_sft_trainer_eval_packing(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, packing=True, max_seq_length=32, # make sure there is at least 1 packed sequence eval_packing=False, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.dummy_chatml_dataset, eval_dataset=self.dummy_chatml_dataset, ) assert len(trainer.train_dataset["input_ids"]) == 1 assert len(trainer.eval_dataset["input_ids"]) != 1 training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, max_seq_length=32, # make sure there is at least 1 packed sequence packing=True, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.dummy_chatml_dataset, eval_dataset=self.dummy_chatml_dataset, ) assert len(trainer.train_dataset["input_ids"]) == 1 assert len(trainer.eval_dataset["input_ids"]) == 1 training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, max_seq_length=32, # make sure there is at least 1 packed sequence packing=False, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.dummy_chatml_dataset, eval_dataset=self.dummy_chatml_dataset, ) assert len(trainer.train_dataset["input_ids"]) != 1 assert len(trainer.eval_dataset["input_ids"]) != 1 @requires_pil def test_sft_trainer_skip_prepare_dataset(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, remove_unused_columns=False, dataset_text_field="text", # need a dummy field dataset_kwargs={"skip_prepare_dataset": True}, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.dummy_vsft_instruction_dataset, eval_dataset=self.dummy_vsft_instruction_dataset, ) assert trainer.train_dataset.features == self.dummy_vsft_instruction_dataset.features assert trainer.eval_dataset.features == self.dummy_vsft_instruction_dataset.features def test_sft_trainer_skip_prepare_dataset_with_no_packing(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, gradient_checkpointing=True, remove_unused_columns=False, packing=False, dataset_kwargs={"skip_prepare_dataset": True}, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.dummy_dataset, ) assert trainer.train_dataset.features == self.dummy_dataset.features @requires_pil def test_sft_trainer_llava(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, dataloader_drop_last=True, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, per_device_eval_batch_size=2, remove_unused_columns=False, dataset_text_field="", # need a dummy field dataset_kwargs={"skip_prepare_dataset": True}, report_to="none", ) tiny_llava = LlavaForConditionalGeneration.from_pretrained( "trl-internal-testing/tiny-random-LlavaForConditionalGeneration" ) processor = AutoProcessor.from_pretrained("trl-internal-testing/tiny-random-LlavaForConditionalGeneration") processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" def collate_fn(examples): # Get the texts and images, and apply the chat template texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] images = [example["images"][0] for example in examples] # Tokenize the texts and process the images batch = processor(texts, images, return_tensors="pt", padding=True) # The labels are the input_ids, and we mask the padding tokens in the loss computation labels = batch["input_ids"].clone() labels[labels == processor.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch trainer = SFTTrainer( model=tiny_llava, args=training_args, data_collator=collate_fn, train_dataset=self.dummy_vsft_instruction_dataset, eval_dataset=self.dummy_vsft_instruction_dataset, ) trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None assert trainer.state.log_history[0]["eval_loss"] is not None assert "model.safetensors" in os.listdir(tmp_dir + "/checkpoint-2") def test_sft_trainer_torch_dtype(self): # See https://github.com/huggingface/trl/issues/1751 with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, model_init_kwargs={"torch_dtype": torch.float16}, report_to="none", ) trainer = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, formatting_func=formatting_prompts_func, ) assert trainer.model.config.torch_dtype == torch.float16 # Now test when `torch_dtype` is provided but is wrong with tempfile.TemporaryDirectory() as tmp_dir: training_args = SFTConfig( output_dir=tmp_dir, eval_strategy="steps", max_steps=4, eval_steps=2, save_steps=2, per_device_train_batch_size=2, model_init_kwargs={"torch_dtype": -1}, report_to="none", ) with pytest.raises( ValueError, match="Invalid `torch_dtype` passed to the SFTConfig. Expected a string with either `torch.dtype` or 'auto', but got -1.", ): _ = SFTTrainer( model=self.model_id, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, )
trl/tests/test_sft_trainer.py/0
{ "file_path": "trl/tests/test_sft_trainer.py", "repo_id": "trl", "token_count": 27810 }
437
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os import sys from importlib.util import find_spec from itertools import chain from types import ModuleType from typing import Any if sys.version_info < (3, 8): _is_python_greater_3_8 = False else: _is_python_greater_3_8 = True def is_peft_available() -> bool: return find_spec("peft") is not None def is_liger_available() -> bool: return find_spec("liger_kernel") is not None def is_unsloth_available() -> bool: return find_spec("unsloth") is not None def is_accelerate_greater_20_0() -> bool: if _is_python_greater_3_8: from importlib.metadata import version accelerate_version = version("accelerate") else: import pkg_resources accelerate_version = pkg_resources.get_distribution("accelerate").version return accelerate_version >= "0.20.0" def is_transformers_greater_than(current_version: str) -> bool: if _is_python_greater_3_8: from importlib.metadata import version _transformers_version = version("transformers") else: import pkg_resources _transformers_version = pkg_resources.get_distribution("transformers").version return _transformers_version > current_version def is_torch_greater_2_0() -> bool: if _is_python_greater_3_8: from importlib.metadata import version torch_version = version("torch") else: import pkg_resources torch_version = pkg_resources.get_distribution("torch").version return torch_version >= "2.0" def is_diffusers_available() -> bool: return find_spec("diffusers") is not None def is_pil_available() -> bool: return find_spec("PIL") is not None def is_bitsandbytes_available() -> bool: import torch # bnb can be imported without GPU but is not usable. return find_spec("bitsandbytes") is not None and torch.cuda.is_available() def is_torchvision_available() -> bool: return find_spec("torchvision") is not None def is_rich_available() -> bool: return find_spec("rich") is not None def is_wandb_available() -> bool: return find_spec("wandb") is not None def is_sklearn_available() -> bool: return find_spec("sklearn") is not None def is_llmblender_available() -> bool: return find_spec("llm_blender") is not None def is_openai_available() -> bool: return find_spec("openai") is not None def is_xpu_available() -> bool: if is_accelerate_greater_20_0(): import accelerate return accelerate.utils.is_xpu_available() else: if find_spec("intel_extension_for_pytorch") is None: return False try: import torch return hasattr(torch, "xpu") and torch.xpu.is_available() except RuntimeError: return False def is_npu_available() -> bool: """Checks if `torch_npu` is installed and potentially if a NPU is in the environment""" if find_spec("torch") is None or find_spec("torch_npu") is None: return False import torch import torch_npu # noqa: F401 return hasattr(torch, "npu") and torch.npu.is_available() class _LazyModule(ModuleType): """ Module class that surfaces all objects but only performs associated imports when the objects are requested. """ # Very heavily inspired by optuna.integration._IntegrationModule # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None): super().__init__(name) self._modules = set(import_structure.keys()) self._class_to_module = {} for key, values in import_structure.items(): for value in values: self._class_to_module[value] = key # Needed for autocompletion in an IDE self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values())) self.__file__ = module_file self.__spec__ = module_spec self.__path__ = [os.path.dirname(module_file)] self._objects = {} if extra_objects is None else extra_objects self._name = name self._import_structure = import_structure # Needed for autocompletion in an IDE def __dir__(self): result = super().__dir__() # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir. for attr in self.__all__: if attr not in result: result.append(attr) return result def __getattr__(self, name: str) -> Any: if name in self._objects: return self._objects[name] if name in self._modules: value = self._get_module(name) elif name in self._class_to_module.keys(): module = self._get_module(self._class_to_module[name]) value = getattr(module, name) else: raise AttributeError(f"module {self.__name__} has no attribute {name}") setattr(self, name, value) return value def _get_module(self, module_name: str): try: return importlib.import_module("." + module_name, self.__name__) except Exception as e: raise RuntimeError( f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its" f" traceback):\n{e}" ) from e def __reduce__(self): return (self.__class__, (self._name, self.__file__, self._import_structure)) class OptionalDependencyNotAvailable(BaseException): """Internally used error class for signalling an optional dependency was not found."""
trl/trl/import_utils.py/0
{ "file_path": "trl/trl/import_utils.py", "repo_id": "trl", "token_count": 2419 }
438
import os from dataclasses import dataclass from ..trainer.utils import OnPolicyConfig @dataclass class PPOv2Config(OnPolicyConfig): exp_name: str = os.path.basename(__file__)[: -len(".py")] """the name of this experiment""" reward_model_path: str = "EleutherAI/pythia-160m" """the path to the reward model""" # ppo config num_ppo_epochs: int = 4 """the number of epochs to train""" whiten_rewards: bool = False """whether to whiten the rewards""" kl_coef: float = 0.05 """the KL coefficient""" cliprange: float = 0.2 """the clip range""" vf_coef: float = 0.1 """the value function coefficient""" cliprange_value: float = 0.2 """the clip range for the value function""" gamma: float = 1 """the discount factor""" lam: float = 0.95 """the lambda value for GAE"""
trl/trl/trainer/ppov2_config.py/0
{ "file_path": "trl/trl/trainer/ppov2_config.py", "repo_id": "trl", "token_count": 317 }
439