cportoca's picture
End of training
7127b0b verified
metadata
library_name: transformers
language:
  - qve
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
datasets:
  - cportoca/Quechua_dataset
metrics:
  - wer
model-index:
  - name: Whisper Large Ja-Qve - cportoca
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Quechua_dataset
          type: cportoca/Quechua_dataset
          args: 'config: Qve, split: train/test'
        metrics:
          - name: Wer
            type: wer
            value: 17.79102604330091

Whisper Large Ja-Qve - cportoca

This model is a fine-tuned version of openai/whisper-large on the Quechua_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2409
  • Wer: 17.7910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2791 1.3550 1000 0.3439 32.1619
0.137 2.7100 2000 0.2366 26.9532
0.0305 4.0650 3000 0.2266 21.3367
0.0142 5.4201 4000 0.2322 18.5441
0.0048 6.7751 5000 0.2285 18.4500
0.0014 8.1301 6000 0.2378 18.1362
0.0007 9.4851 7000 0.2394 17.6969
0.0004 10.8401 8000 0.2409 17.7910

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3