File size: 2,348 Bytes
7127b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
language:
- qve
license: apache-2.0
base_model: openai/whisper-large
tags:
- generated_from_trainer
datasets:
- cportoca/Quechua_dataset
metrics:
- wer
model-index:
- name: Whisper Large Ja-Qve - cportoca
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Quechua_dataset
type: cportoca/Quechua_dataset
args: 'config: Qve, split: train/test'
metrics:
- name: Wer
type: wer
value: 17.79102604330091
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Ja-Qve - cportoca
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Quechua_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2409
- Wer: 17.7910
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.2791 | 1.3550 | 1000 | 0.3439 | 32.1619 |
| 0.137 | 2.7100 | 2000 | 0.2366 | 26.9532 |
| 0.0305 | 4.0650 | 3000 | 0.2266 | 21.3367 |
| 0.0142 | 5.4201 | 4000 | 0.2322 | 18.5441 |
| 0.0048 | 6.7751 | 5000 | 0.2285 | 18.4500 |
| 0.0014 | 8.1301 | 6000 | 0.2378 | 18.1362 |
| 0.0007 | 9.4851 | 7000 | 0.2394 | 17.6969 |
| 0.0004 | 10.8401 | 8000 | 0.2409 | 17.7910 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|