whisper-small-hi / README.md
cportoca's picture
End of training
d16547a verified
metadata
library_name: transformers
language:
  - qve
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - cportoca/Quechua_dataset
metrics:
  - wer
model-index:
  - name: Whisper Small Ja-Qve - cportoca
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Quechua_dataset
          type: cportoca/Quechua_dataset
          args: 'config: Qve, split: train/test'
        metrics:
          - name: Wer
            type: wer
            value: 19.76780671477879

Whisper Small Ja-Qve - cportoca

This model is a fine-tuned version of openai/whisper-small on the Quechua_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2232
  • Wer: 19.7678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2739 1.3550 1000 0.3388 31.3461
0.1322 2.7100 2000 0.2377 25.1961
0.0275 4.0650 3000 0.2216 20.6464
0.0127 5.4201 4000 0.2232 19.7678

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3