cportoca commited on
Commit
d16547a
·
verified ·
1 Parent(s): c567dd6

End of training

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 92.72042673360528
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quechua_dataset dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 1.5509
37
- - Wer: 92.7204
38
 
39
  ## Model description
40
 
@@ -60,14 +60,17 @@ The following hyperparameters were used during training:
60
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_steps: 500
63
- - training_steps: 100
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
- | 1.7598 | 0.1355 | 100 | 1.5509 | 92.7204 |
 
 
 
71
 
72
 
73
  ### Framework versions
 
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 19.76780671477879
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quechua_dataset dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2232
37
+ - Wer: 19.7678
38
 
39
  ## Model description
40
 
 
60
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_steps: 500
63
+ - training_steps: 4000
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
+ | 0.2739 | 1.3550 | 1000 | 0.3388 | 31.3461 |
71
+ | 0.1322 | 2.7100 | 2000 | 0.2377 | 25.1961 |
72
+ | 0.0275 | 4.0650 | 3000 | 0.2216 | 20.6464 |
73
+ | 0.0127 | 5.4201 | 4000 | 0.2232 | 19.7678 |
74
 
75
 
76
  ### Framework versions