|
--- |
|
license: apache-2.0 |
|
base_model: agemagician/mlong-t5-tglobal-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mlong-t5-tglobal-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mlong-t5-tglobal-large |
|
|
|
This model is a fine-tuned version of [agemagician/mlong-t5-tglobal-large](https://huggingface.co/agemagician/mlong-t5-tglobal-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8858 |
|
- Rouge1: 32.6402 |
|
- Rouge2: 14.4404 |
|
- Rougel: 24.6794 |
|
- Rougelsum: 26.5654 |
|
- Gen Len: 65.807 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | RougeL | RougeLSum | |
|
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.5919 | 1.0 | 1050 | 61.5895 | 1.9940 | 30.603 | 12.7279 | 22.8958 | 24.5756 | |
|
| 2.3025 | 2.0 | 2100 | 96.4781 | 1.9429 | 30.2088 | 12.8612 | 22.4477 | 24.6023 | |
|
| 2.1456 | 3.0 | 3150 | 80.6381 | 1.8979 | 31.4743 | 13.8002 | 23.6389 | 25.7835 | |
|
| 1.9977 | 4.0 | 4200 | 72.9752 | 1.8858 | 32.3099 | 14.3439 | 24.3416 | 26.2897 | |
|
| 1.9059 | 5.0 | 5250 | 68.4971 | 1.8878 | 32.2531 | 14.0683 | 24.3766 | 26.1912 | |
|
| 1.8521 | 6.0 | 6300 | 68.9524 | 1.8892 | 32.3429 | 14.0016 | 24.2874 | 26.3216 | |
|
| 1.7472 | 7.0 | 7000 | 60.46 | 1.8865 | 32.8966 | 14.8847 | 25.1771 | 26.9613 | |
|
| 1.7018 | 8.0 | 8000 | 65.807 | 1.8858 | 32.6402 | 14.4404 | 24.6794 | 26.5654 | |
|
| 1.6337 | 9.0 | 9000 | 79.875 | 1.9019 | 32.2069 | 13.8683 | 24.0734 | 26.353 | |
|
| 1.5773 | 10.0 | 10000 | 65.88 | 1.9043 | 32.8499 | 14.5395 | 24.8736 | 26.9515 | |
|
| 1.5238 | 11.0 | 11000 | 63.208 | 1.9148 | 32.8182 | 14.322 | 24.7011 | 26.5718 | |
|
| 1.4779 | 12.0 | 12000 | 63.937 | 1.9297 | 33.2751 | 14.7214 | 25.0329 | 26.9804 | |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |