File size: 2,758 Bytes
fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 fe3cdb6 2f2dd97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: agemagician/mlong-t5-tglobal-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mlong-t5-tglobal-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mlong-t5-tglobal-large
This model is a fine-tuned version of [agemagician/mlong-t5-tglobal-large](https://huggingface.co/agemagician/mlong-t5-tglobal-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8858
- Rouge1: 32.6402
- Rouge2: 14.4404
- Rougel: 24.6794
- Rougelsum: 26.5654
- Gen Len: 65.807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | RougeL | RougeLSum |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.5919 | 1.0 | 1050 | 61.5895 | 1.9940 | 30.603 | 12.7279 | 22.8958 | 24.5756 |
| 2.3025 | 2.0 | 2100 | 96.4781 | 1.9429 | 30.2088 | 12.8612 | 22.4477 | 24.6023 |
| 2.1456 | 3.0 | 3150 | 80.6381 | 1.8979 | 31.4743 | 13.8002 | 23.6389 | 25.7835 |
| 1.9977 | 4.0 | 4200 | 72.9752 | 1.8858 | 32.3099 | 14.3439 | 24.3416 | 26.2897 |
| 1.9059 | 5.0 | 5250 | 68.4971 | 1.8878 | 32.2531 | 14.0683 | 24.3766 | 26.1912 |
| 1.8521 | 6.0 | 6300 | 68.9524 | 1.8892 | 32.3429 | 14.0016 | 24.2874 | 26.3216 |
| 1.7472 | 7.0 | 7000 | 60.46 | 1.8865 | 32.8966 | 14.8847 | 25.1771 | 26.9613 |
| 1.7018 | 8.0 | 8000 | 65.807 | 1.8858 | 32.6402 | 14.4404 | 24.6794 | 26.5654 |
| 1.6337 | 9.0 | 9000 | 79.875 | 1.9019 | 32.2069 | 13.8683 | 24.0734 | 26.353 |
| 1.5773 | 10.0 | 10000 | 65.88 | 1.9043 | 32.8499 | 14.5395 | 24.8736 | 26.9515 |
| 1.5238 | 11.0 | 11000 | 63.208 | 1.9148 | 32.8182 | 14.322 | 24.7011 | 26.5718 |
| 1.4779 | 12.0 | 12000 | 63.937 | 1.9297 | 33.2751 | 14.7214 | 25.0329 | 26.9804 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |