|
--- |
|
library_name: transformers |
|
base_model: huawei-noah/TinyBERT_General_4L_312D |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: TinyBERT-finetuned-NER |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8465303458777463 |
|
- name: Recall |
|
type: recall |
|
value: 0.870679046873252 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8584348977003253 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9670516466233497 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TinyBERT-finetuned-NER |
|
|
|
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1232 |
|
- Precision: 0.8465 |
|
- Recall: 0.8707 |
|
- F1: 0.8584 |
|
- Accuracy: 0.9671 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5173 | 1.0 | 878 | 0.2116 | 0.7429 | 0.7756 | 0.7589 | 0.9493 | |
|
| 0.196 | 2.0 | 1756 | 0.1528 | 0.8262 | 0.8383 | 0.8323 | 0.9620 | |
|
| 0.1444 | 3.0 | 2634 | 0.1355 | 0.8447 | 0.8606 | 0.8526 | 0.9652 | |
|
| 0.116 | 4.0 | 3512 | 0.1255 | 0.8452 | 0.8660 | 0.8555 | 0.9663 | |
|
| 0.1116 | 5.0 | 4390 | 0.1232 | 0.8465 | 0.8707 | 0.8584 | 0.9671 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|