TinyBERT-finetuned-NER
This model is a fine-tuned version of huawei-noah/TinyBERT_General_4L_312D on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1232
- Precision: 0.8465
- Recall: 0.8707
- F1: 0.8584
- Accuracy: 0.9671
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5173 | 1.0 | 878 | 0.2116 | 0.7429 | 0.7756 | 0.7589 | 0.9493 |
0.196 | 2.0 | 1756 | 0.1528 | 0.8262 | 0.8383 | 0.8323 | 0.9620 |
0.1444 | 3.0 | 2634 | 0.1355 | 0.8447 | 0.8606 | 0.8526 | 0.9652 |
0.116 | 4.0 | 3512 | 0.1255 | 0.8452 | 0.8660 | 0.8555 | 0.9663 |
0.1116 | 5.0 | 4390 | 0.1232 | 0.8465 | 0.8707 | 0.8584 | 0.9671 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 132
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adel-cybral/TinyBERT-finetuned-NER
Base model
huawei-noah/TinyBERT_General_4L_312DDataset used to train adel-cybral/TinyBERT-finetuned-NER
Evaluation results
- Precision on conll2003validation set self-reported0.847
- Recall on conll2003validation set self-reported0.871
- F1 on conll2003validation set self-reported0.858
- Accuracy on conll2003validation set self-reported0.967