|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert0410_lrate7.5b4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert0410_lrate7.5b4 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4079 |
|
- Precisions: 0.7671 |
|
- Recall: 0.7305 |
|
- F-measure: 0.7455 |
|
- Accuracy: 0.8904 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.7027 | 1.0 | 942 | 0.4843 | 0.8628 | 0.6861 | 0.6969 | 0.8785 | |
|
| 0.3645 | 2.0 | 1884 | 0.4079 | 0.7671 | 0.7305 | 0.7455 | 0.8904 | |
|
| 0.238 | 3.0 | 2826 | 0.5338 | 0.7981 | 0.7422 | 0.7486 | 0.8957 | |
|
| 0.1894 | 4.0 | 3768 | 0.6026 | 0.8327 | 0.7495 | 0.7668 | 0.9049 | |
|
| 0.0825 | 5.0 | 4710 | 0.5781 | 0.7825 | 0.7859 | 0.7833 | 0.9055 | |
|
| 0.0523 | 6.0 | 5652 | 0.6107 | 0.8084 | 0.7591 | 0.7712 | 0.9124 | |
|
| 0.0388 | 7.0 | 6594 | 0.6455 | 0.8090 | 0.7802 | 0.7894 | 0.9107 | |
|
| 0.0253 | 8.0 | 7536 | 0.6711 | 0.8168 | 0.7825 | 0.7937 | 0.9135 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|