File size: 2,247 Bytes
c66243d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0410_lrate7.5b4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate7.5b4
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4079
- Precisions: 0.7671
- Recall: 0.7305
- F-measure: 0.7455
- Accuracy: 0.8904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.7027 | 1.0 | 942 | 0.4843 | 0.8628 | 0.6861 | 0.6969 | 0.8785 |
| 0.3645 | 2.0 | 1884 | 0.4079 | 0.7671 | 0.7305 | 0.7455 | 0.8904 |
| 0.238 | 3.0 | 2826 | 0.5338 | 0.7981 | 0.7422 | 0.7486 | 0.8957 |
| 0.1894 | 4.0 | 3768 | 0.6026 | 0.8327 | 0.7495 | 0.7668 | 0.9049 |
| 0.0825 | 5.0 | 4710 | 0.5781 | 0.7825 | 0.7859 | 0.7833 | 0.9055 |
| 0.0523 | 6.0 | 5652 | 0.6107 | 0.8084 | 0.7591 | 0.7712 | 0.9124 |
| 0.0388 | 7.0 | 6594 | 0.6455 | 0.8090 | 0.7802 | 0.7894 | 0.9107 |
| 0.0253 | 8.0 | 7536 | 0.6711 | 0.8168 | 0.7825 | 0.7937 | 0.9135 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|