Type_of_relation / README.md
SADAF-IMAMU's picture
update model card README.md
9ff8f16
|
raw
history blame
3.04 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: Type_of_relation
    results: []

Type_of_relation

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0885
  • Macro F1: 0.7537
  • Precision: 0.7463
  • Recall: 0.7783
  • Kappa: 0.6636
  • Accuracy: 0.7783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
No log 1.0 101 1.2153 0.5786 0.5030 0.6835 0.4719 0.6835
No log 2.0 203 1.0583 0.6615 0.6707 0.7365 0.5699 0.7365
No log 3.0 304 0.9495 0.6925 0.6934 0.7525 0.6069 0.7525
No log 4.0 406 0.8934 0.7325 0.7283 0.7635 0.6400 0.7635
0.976 5.0 507 0.9247 0.7219 0.7166 0.7660 0.6352 0.7660
0.976 6.0 609 0.8751 0.7502 0.7422 0.7685 0.6594 0.7685
0.976 7.0 710 0.9145 0.7510 0.7395 0.7783 0.6640 0.7783
0.976 8.0 812 0.9934 0.7479 0.7423 0.7808 0.6609 0.7808
0.976 9.0 913 0.9641 0.7506 0.7425 0.7734 0.6594 0.7734
0.3286 10.0 1015 0.9702 0.7560 0.7587 0.7746 0.6641 0.7746
0.3286 11.0 1116 1.0610 0.7430 0.7370 0.7746 0.6530 0.7746
0.3286 12.0 1218 1.0251 0.7537 0.7442 0.7722 0.6611 0.7722
0.3286 13.0 1319 1.0703 0.7511 0.7433 0.7771 0.6615 0.7771
0.3286 14.0 1421 1.0767 0.7534 0.7451 0.7771 0.6631 0.7771
0.1456 14.93 1515 1.0885 0.7537 0.7463 0.7783 0.6636 0.7783

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3