--- tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Type_of_relation results: [] --- # Type_of_relation This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0885 - Macro F1: 0.7537 - Precision: 0.7463 - Recall: 0.7783 - Kappa: 0.6636 - Accuracy: 0.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 101 | 1.2153 | 0.5786 | 0.5030 | 0.6835 | 0.4719 | 0.6835 | | No log | 2.0 | 203 | 1.0583 | 0.6615 | 0.6707 | 0.7365 | 0.5699 | 0.7365 | | No log | 3.0 | 304 | 0.9495 | 0.6925 | 0.6934 | 0.7525 | 0.6069 | 0.7525 | | No log | 4.0 | 406 | 0.8934 | 0.7325 | 0.7283 | 0.7635 | 0.6400 | 0.7635 | | 0.976 | 5.0 | 507 | 0.9247 | 0.7219 | 0.7166 | 0.7660 | 0.6352 | 0.7660 | | 0.976 | 6.0 | 609 | 0.8751 | 0.7502 | 0.7422 | 0.7685 | 0.6594 | 0.7685 | | 0.976 | 7.0 | 710 | 0.9145 | 0.7510 | 0.7395 | 0.7783 | 0.6640 | 0.7783 | | 0.976 | 8.0 | 812 | 0.9934 | 0.7479 | 0.7423 | 0.7808 | 0.6609 | 0.7808 | | 0.976 | 9.0 | 913 | 0.9641 | 0.7506 | 0.7425 | 0.7734 | 0.6594 | 0.7734 | | 0.3286 | 10.0 | 1015 | 0.9702 | 0.7560 | 0.7587 | 0.7746 | 0.6641 | 0.7746 | | 0.3286 | 11.0 | 1116 | 1.0610 | 0.7430 | 0.7370 | 0.7746 | 0.6530 | 0.7746 | | 0.3286 | 12.0 | 1218 | 1.0251 | 0.7537 | 0.7442 | 0.7722 | 0.6611 | 0.7722 | | 0.3286 | 13.0 | 1319 | 1.0703 | 0.7511 | 0.7433 | 0.7771 | 0.6615 | 0.7771 | | 0.3286 | 14.0 | 1421 | 1.0767 | 0.7534 | 0.7451 | 0.7771 | 0.6631 | 0.7771 | | 0.1456 | 14.93 | 1515 | 1.0885 | 0.7537 | 0.7463 | 0.7783 | 0.6636 | 0.7783 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3