Is_there_relation / README.md
SADAF-IMAMU's picture
update model card README.md
81d10f0
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: Is_there_relation
    results: []

Is_there_relation

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8855
  • Macro F1: 0.7979
  • Precision: 0.8002
  • Recall: 0.7995
  • Kappa: 0.5894
  • Accuracy: 0.7995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
No log 1.0 218 0.5160 0.7251 0.7659 0.7398 0.4511 0.7398
No log 2.0 437 0.4608 0.8014 0.8108 0.8049 0.5970 0.8049
0.4812 3.0 655 0.5087 0.7864 0.7900 0.7886 0.5661 0.7886
0.4812 4.0 874 0.5219 0.8107 0.8118 0.8103 0.6177 0.8103
0.2407 5.0 1092 0.5657 0.8319 0.8416 0.8347 0.6588 0.8347
0.2407 6.0 1311 0.6980 0.7988 0.8074 0.8022 0.5917 0.8022
0.1383 7.0 1529 0.7769 0.7933 0.8017 0.7967 0.5805 0.7967
0.1383 8.0 1748 0.7336 0.8059 0.8087 0.8076 0.6058 0.8076
0.1383 9.0 1966 0.7426 0.7988 0.8074 0.8022 0.5917 0.8022
0.0878 10.0 2185 0.8211 0.8017 0.8098 0.8049 0.5975 0.8049
0.0878 11.0 2403 0.8737 0.7955 0.7969 0.7967 0.5846 0.7967
0.0573 12.0 2622 0.9043 0.7900 0.7914 0.7913 0.5735 0.7913
0.0573 13.0 2840 0.8937 0.7906 0.7909 0.7913 0.5751 0.7913
0.0423 14.0 3059 0.9004 0.8013 0.8019 0.8022 0.5967 0.8022
0.0423 14.97 3270 0.8855 0.7979 0.8002 0.7995 0.5894 0.7995

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3