|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: Is_there_relation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Is_there_relation |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8855 |
|
- Macro F1: 0.7979 |
|
- Precision: 0.8002 |
|
- Recall: 0.7995 |
|
- Kappa: 0.5894 |
|
- Accuracy: 0.7995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 25 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 218 | 0.5160 | 0.7251 | 0.7659 | 0.7398 | 0.4511 | 0.7398 | |
|
| No log | 2.0 | 437 | 0.4608 | 0.8014 | 0.8108 | 0.8049 | 0.5970 | 0.8049 | |
|
| 0.4812 | 3.0 | 655 | 0.5087 | 0.7864 | 0.7900 | 0.7886 | 0.5661 | 0.7886 | |
|
| 0.4812 | 4.0 | 874 | 0.5219 | 0.8107 | 0.8118 | 0.8103 | 0.6177 | 0.8103 | |
|
| 0.2407 | 5.0 | 1092 | 0.5657 | 0.8319 | 0.8416 | 0.8347 | 0.6588 | 0.8347 | |
|
| 0.2407 | 6.0 | 1311 | 0.6980 | 0.7988 | 0.8074 | 0.8022 | 0.5917 | 0.8022 | |
|
| 0.1383 | 7.0 | 1529 | 0.7769 | 0.7933 | 0.8017 | 0.7967 | 0.5805 | 0.7967 | |
|
| 0.1383 | 8.0 | 1748 | 0.7336 | 0.8059 | 0.8087 | 0.8076 | 0.6058 | 0.8076 | |
|
| 0.1383 | 9.0 | 1966 | 0.7426 | 0.7988 | 0.8074 | 0.8022 | 0.5917 | 0.8022 | |
|
| 0.0878 | 10.0 | 2185 | 0.8211 | 0.8017 | 0.8098 | 0.8049 | 0.5975 | 0.8049 | |
|
| 0.0878 | 11.0 | 2403 | 0.8737 | 0.7955 | 0.7969 | 0.7967 | 0.5846 | 0.7967 | |
|
| 0.0573 | 12.0 | 2622 | 0.9043 | 0.7900 | 0.7914 | 0.7913 | 0.5735 | 0.7913 | |
|
| 0.0573 | 13.0 | 2840 | 0.8937 | 0.7906 | 0.7909 | 0.7913 | 0.5751 | 0.7913 | |
|
| 0.0423 | 14.0 | 3059 | 0.9004 | 0.8013 | 0.8019 | 0.8022 | 0.5967 | 0.8022 | |
|
| 0.0423 | 14.97 | 3270 | 0.8855 | 0.7979 | 0.8002 | 0.7995 | 0.5894 | 0.7995 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Tokenizers 0.13.3 |
|
|