File size: 50,734 Bytes
f1fa80d 579f9c2 f1fa80d 656d049 f1fa80d 656d049 ec658ab 656d049 ec658ab 656d049 ec658ab 656d049 579f9c2 ec658ab 579f9c2 ec658ab 579f9c2 ec658ab 579f9c2 ec658ab 579f9c2 656d049 579f9c2 656d049 ec658ab 656d049 ec658ab 656d049 ec658ab 656d049 ec658ab e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 579f9c2 656d049 f1fa80d 656d049 f1fa80d 656d049 e39a070 f1fa80d e39a070 f1fa80d e39a070 f1fa80d e39a070 f1fa80d ec658ab e39a070 f1fa80d e39a070 f1fa80d 9e7a946 e39a070 9e7a946 e39a070 9e7a946 e39a070 579f9c2 e39a070 579f9c2 e39a070 579f9c2 e39a070 656d049 9e7a946 656d049 e39a070 656d049 e39a070 656d049 e39a070 656d049 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 656d049 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 656d049 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 656d049 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 579f9c2 f1fa80d 579f9c2 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 3959705 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 3959705 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 3959705 f1fa80d 3959705 579f9c2 f1fa80d 3959705 9e7a946 656d049 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 656d049 f1fa80d 656d049 579f9c2 656d049 f1fa80d ec7b924 656d049 ec7b924 656d049 f1fa80d 3959705 f1fa80d 3959705 f1fa80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:36
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-m-v1.5
widget:
- source_sentence: How can I connect a GCP Image Builder to resources using ZenML?
sentences:
- "_run.steps[step_name]\n whylogs_step.visualize()if __name__ == \"__main__\"\
:\n visualize_statistics(\"data_loader\")\n visualize_statistics(\"train_data_profiler\"\
, \"test_data_profiler\")\n\nPreviousEvidentlyNextDevelop a custom data validator\n\
\nLast updated 1 month ago"
- 'Implement a custom integration
Creating an external integration and contributing to ZenML
PreviousContribute to ZenMLNextOverview
Last updated 4 months ago'
- "--connector <CONNECTOR_ID>\n\nExample Command Output$ zenml image-builder connect\
\ gcp-image-builder --connector gcp-generic\nSuccessfully connected image builder\
\ `gcp-image-builder` to the following resources:\n┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓\n\
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE\
\ TYPE │ RESOURCE NAMES ┃\n┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────┼────────────────┨\n\
┃ bfdb657d-d808-47e7-9974-9ba6e4919d83 │ gcp-generic │ \U0001F535 gcp \
\ │ \U0001F535 gcp-generic │ zenml-core ┃\n┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛\n\
\nAs a final step, you can use the GCP Image Builder in a ZenML Stack:\n\n# Register\
\ and set a stack with the new image builder\nzenml stack register <STACK_NAME>\
\ -i <IMAGE_BUILDER_NAME> ... --set\n\nWhen you register the GCP Image Builder,\
\ you can generate a GCP Service Account Key, save it to a local file and then\
\ reference it in the Image Builder configuration.\n\nThis method has the advantage\
\ that you don't need to install and configure the GCP CLI on your host, but it's\
\ still not as secure as using a GCP Service Connector and the stack component\
\ configuration is not portable to other hosts.\n\nFor this method, you need to\
\ create a user-managed GCP service account, and grant it privileges to access\
\ the Cloud Build API and to run Cloud Builder jobs (e.g. the Cloud Build Editor\
\ IAM role.\n\nWith the service account key downloaded to a local file, you can\
\ register the GCP Image Builder as follows:\n\nzenml image-builder register <IMAGE_BUILDER_NAME>\
\ \\\n --flavor=gcp \\\n --project=<GCP_PROJECT_ID> \\\n --service_account_path=<PATH_TO_SERVICE_ACCOUNT_KEY>\
\ \\\n --cloud_builder_image=<BUILDER_IMAGE_NAME> \\\n --network=<DOCKER_NETWORK>\
\ \\\n --build_timeout=<BUILD_TIMEOUT_IN_SECONDS>"
- source_sentence: How do I register and activate a ZenML stack with a new GCP Image
Builder while ensuring proper authentication?
sentences:
- "oad the returned whylogs profile to WhyLabs, e.g.:import pandas as pd\nfrom whylogs.core\
\ import DatasetProfileView\nimport whylogs as why\nfrom zenml import step\nfrom\
\ zenml.integrations.whylogs.flavors.whylogs_data_validator_flavor import (\n\
\ WhylogsDataValidatorSettings,\n)\n\nwhylogs_settings = WhylogsDataValidatorSettings(\n\
\ enable_whylabs=True, dataset_id=\"<WHYLABS_DATASET_ID>\"\n)\n\n@step(\n \
\ settings={\n \"data_validator\": whylogs_settings\n }\n)\ndef data_profiler(\n\
\ dataset: pd.DataFrame,\n) -> DatasetProfileView:\n \"\"\"Custom data\
\ profiler step with whylogs\n\nArgs:\n dataset: a Pandas DataFrame\n\n\
Returns:\n Whylogs Profile generated for the dataset\n \"\"\"\n\n# validation\
\ pre-processing (e.g. dataset preparation) can take place here\n\nresults = why.log(dataset)\n\
\ profile = results.profile()\n\n# validation post-processing (e.g. interpret\
\ results, take actions) can happen here\n\nreturn profile.view()\n\nVisualizing\
\ whylogs Profiles\n\nYou can view visualizations of the whylogs profiles generated\
\ by your pipeline steps directly in the ZenML dashboard by clicking on the respective\
\ artifact in the pipeline run DAG.\n\nAlternatively, if you are running inside\
\ a Jupyter notebook, you can load and render the whylogs profiles using the artifact.visualize()\
\ method, e.g.:\n\nfrom zenml.client import Client\n\ndef visualize_statistics(\n\
\ step_name: str, reference_step_name: Optional[str] = None\n) -> None:\n \
\ \"\"\"Helper function to visualize whylogs statistics from step artifacts.\n\
\nArgs:\n step_name: step that generated and returned a whylogs profile\n\
\ reference_step_name: an optional second step that generated a whylogs\n\
\ profile to use for data drift visualization where two whylogs\n \
\ profiles are required.\n \"\"\"\n pipe = Client().get_pipeline(pipeline=\"\
data_profiling_pipeline\")\n whylogs_step = pipe.last_run.steps[step_name]\n\
\ whylogs_step.visualize()"
- "ogsDataValidatorSettings,\n)\nfrom zenml import step@step(\n settings={\n\
\ \"data_validator\": WhylogsDataValidatorSettings(\n enable_whylabs=True,\
\ dataset_id=\"model-1\"\n )\n }\n)\ndef data_loader() -> Tuple[\n \
\ Annotated[pd.DataFrame, \"data\"],\n Annotated[DatasetProfileView, \"profile\"\
]\n]:\n \"\"\"Load the diabetes dataset.\"\"\"\n X, y = datasets.load_diabetes(return_X_y=True,\
\ as_frame=True)\n\n# merge X and y together\n df = pd.merge(X, y, left_index=True,\
\ right_index=True)\n\nprofile = why.log(pandas=df).profile().view()\n return\
\ df, profile\n\nHow do you use it?\n\nWhylogs's profiling functions take in a\
\ pandas.DataFrame dataset generate a DatasetProfileView object containing all\
\ the relevant information extracted from the dataset.\n\nThere are three ways\
\ you can use whylogs in your ZenML pipelines that allow different levels of flexibility:\n\
\ninstantiate, configure and insert the standard WhylogsProfilerStep shipped with\
\ ZenML into your pipelines. This is the easiest way and the recommended approach,\
\ but can only be customized through the supported step configuration parameters.\n\
\ncall the data validation methods provided by the whylogs Data Validator in your\
\ custom step implementation. This method allows for more flexibility concerning\
\ what can happen in the pipeline step, but you are still limited to the functionality\
\ implemented in the Data Validator.\n\nuse the whylogs library directly in your\
\ custom step implementation. This gives you complete freedom in how you are using\
\ whylogs's features.\n\nYou can visualize whylogs profiles in Jupyter notebooks\
\ or view them directly in the ZenML dashboard.\n\nThe whylogs standard step"
- " build to finish. More information: Build Timeout.We can register the image builder\
\ and use it in our active stack:\n\nzenml image-builder register <IMAGE_BUILDER_NAME>\
\ \\\n --flavor=gcp \\\n --cloud_builder_image=<BUILDER_IMAGE_NAME> \\\n\
\ --network=<DOCKER_NETWORK> \\\n --build_timeout=<BUILD_TIMEOUT_IN_SECONDS>\n\
\n# Register and activate a stack with the new image builder\nzenml stack register\
\ <STACK_NAME> -i <IMAGE_BUILDER_NAME> ... --set\n\nYou also need to set up authentication\
\ required to access the Cloud Build GCP services.\n\nAuthentication Methods\n\
\nIntegrating and using a GCP Image Builder in your pipelines is not possible\
\ without employing some form of authentication. If you're looking for a quick\
\ way to get started locally, you can use the Local Authentication method. However,\
\ the recommended way to authenticate to the GCP cloud platform is through a GCP\
\ Service Connector. This is particularly useful if you are configuring ZenML\
\ stacks that combine the GCP Image Builder with other remote stack components\
\ also running in GCP.\n\nThis method uses the implicit GCP authentication available\
\ in the environment where the ZenML code is running. On your local machine, this\
\ is the quickest way to configure a GCP Image Builder. You don't need to supply\
\ credentials explicitly when you register the GCP Image Builder, as it leverages\
\ the local credentials and configuration that the Google Cloud CLI stores on\
\ your local machine. However, you will need to install and set up the Google\
\ Cloud CLI on your machine as a prerequisite, as covered in the Google Cloud\
\ documentation , before you register the GCP Image Builder.\n\nStacks using the\
\ GCP Image Builder set up with local authentication are not portable across environments.\
\ To make ZenML pipelines fully portable, it is recommended to use a GCP Service\
\ Connector to authenticate your GCP Image Builder to the GCP cloud platform."
- source_sentence: How can I register and set a stack with a new image builder using
ZenML?
sentences:
- 'ZenML - Bridging the gap between ML & Ops
Legacy Docs
Bleeding EdgeLegacy Docs0.67.0
🧙♂️Find older version our docs
Powered by GitBook'
- "> \\\n --build_timeout=<BUILD_TIMEOUT_IN_SECONDS># Register and set a stack\
\ with the new image builder\nzenml stack register <STACK_NAME> -i <IMAGE_BUILDER_NAME>\
\ ... --set\n\nCaveats\n\nAs described in this Google Cloud Build documentation\
\ page, Google Cloud Build uses containers to execute the build steps which are\
\ automatically attached to a network called cloudbuild that provides some Application\
\ Default Credentials (ADC), that allow the container to be authenticated and\
\ therefore use other GCP services.\n\nBy default, the GCP Image Builder is executing\
\ the build command of the ZenML Pipeline Docker image with the option --network=cloudbuild,\
\ so the ADC provided by the cloudbuild network can also be used in the build.\
\ This is useful if you want to install a private dependency from a GCP Artifact\
\ Registry, but you will also need to use a custom base parent image with the\
\ keyrings.google-artifactregistry-auth installed, so pip can connect and authenticate\
\ in the private artifact registry to download the dependency.\n\nFROM zenmldocker/zenml:latest\n\
\nRUN pip install keyrings.google-artifactregistry-auth\n\nThe above Dockerfile\
\ uses zenmldocker/zenml:latest as a base image, but is recommended to change\
\ the tag to specify the ZenML version and Python version like 0.33.0-py3.10.\n\
\nPreviousKaniko Image BuilderNextDevelop a Custom Image Builder\n\nLast updated\
\ 21 days ago"
- "res Spark to handle the resource configuration.\"\"\"def _backend_configuration(\n\
\ self,\n spark_config: SparkConf,\n step_config:\
\ \"StepConfiguration\",\n ) -> None:\n \"\"\"Configures Spark to handle\
\ backends like YARN, Mesos or Kubernetes.\"\"\"\n\ndef _io_configuration(\n \
\ self,\n spark_config: SparkConf\n ) -> None:\n \
\ \"\"\"Configures Spark to handle different input/output sources.\"\"\"\n\n\
def _additional_configuration(\n self,\n spark_config: SparkConf\n\
\ ) -> None:\n \"\"\"Appends the user-defined configuration parameters.\"\
\"\"\n\ndef _launch_spark_job(\n self,\n spark_config: SparkConf,\n\
\ entrypoint_command: List[str]\n ) -> None:\n \"\"\"Generates\
\ and executes a spark-submit command.\"\"\"\n\ndef launch(\n self,\n\
\ info: \"StepRunInfo\",\n entrypoint_command: List[str],\n\
\ ) -> None:\n \"\"\"Launches the step on Spark.\"\"\"\n\nUnder the\
\ base configuration, you will see the main configuration parameters:\n\nmaster\
\ is the master URL for the cluster where Spark will run. You might see different\
\ schemes for this URL with varying cluster managers such as Mesos, YARN, or Kubernetes.\n\
\ndeploy_mode can either be 'cluster' (default) or 'client' and it decides where\
\ the driver node of the application will run.\n\nsubmit_args is the JSON string\
\ of a dictionary, which will be used to define additional parameters if required\
\ ( Spark has a wide variety of parameters, thus including them all in a single\
\ class was deemed unnecessary.).\n\nIn addition to this configuration, the launch\
\ method of the step operator gets additional configuration parameters from the\
\ DockerSettings and ResourceSettings. As a result, the overall configuration\
\ happens in 4 base methods:\n\n_resource_configuration translates the ZenML ResourceSettings\
\ object to Spark's own resource configuration.\n\n_backend_configuration is responsible\
\ for cluster-manager-specific configuration."
- source_sentence: How can I install ZenML with support for a local dashboard, and
what precautions should I take when installing on a Mac with Apple Silicon?
sentences:
- ' visit our PyPi package page.
Running with Dockerzenml is also available as a Docker image hosted publicly on
DockerHub. Use the following command to get started in a bash environment with
zenml available:
docker run -it zenmldocker/zenml /bin/bash
If you would like to run the ZenML server with Docker:
docker run -it -d -p 8080:8080 zenmldocker/zenml-server
Deploying the server
Though ZenML can run entirely as a pip package on a local system, complete with
the dashboard. You can do this easily:
pip install "zenml[server]"
zenml up # opens the dashboard locally
However, advanced ZenML features are dependent on a centrally-deployed ZenML server
accessible to other MLOps stack components. You can read more about it here.
For the deployment of ZenML, you have the option to either self-host it or register
for a free ZenML Pro account.
PreviousIntroductionNextCore concepts
Last updated 20 days ago'
- 'Evaluation and metrics
Track how your RAG pipeline improves using evaluation and metrics.
PreviousBasic RAG inference pipelineNextEvaluation in 65 lines of code
Last updated 4 months ago'
- '🧙Installation
Installing ZenML and getting started.
ZenML is a Python package that can be installed directly via pip:
pip install zenml
Note that ZenML currently supports Python 3.8, 3.9, 3.10, and 3.11. Please make
sure that you are using a supported Python version.
Install with the dashboard
ZenML comes bundled with a web dashboard that lives inside a sister repository.
In order to get access to the dashboard locally, you need to launch the ZenML
Server and Dashboard locally. For this, you need to install the optional dependencies
for the ZenML Server:
pip install "zenml[server]"
We highly encourage you to install ZenML in a virtual environment. At ZenML, We
like to use virtualenvwrapper or pyenv-virtualenv to manage our Python virtual
environments.
Installing onto MacOS with Apple Silicon (M1, M2)
A change in how forking works on Macs running on Apple Silicon means that you
should set the following environment variable which will ensure that your connections
to the server remain unbroken:
export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES
You can read more about this here. This environment variable is needed if you
are working with a local server on your Mac, but if you''re just using ZenML as
a client / CLI and connecting to a deployed server then you don''t need to set
it.
Nightly builds
ZenML also publishes nightly builds under the zenml-nightly package name. These
are built from the latest develop branch (to which work ready for release is published)
and are not guaranteed to be stable. To install the nightly build, run:
pip install zenml-nightly
Verifying installations
Once the installation is completed, you can check whether the installation was
successful either through Bash:
zenml version
or through Python:
import zenml
print(zenml.__version__)
If you would like to learn more about the current release, please visit our PyPi
package page.
Running with Docker'
- source_sentence: How does the KubernetesSparkStepOperator utilize the PipelineDockerImageBuilder
class to manage Docker images for Spark jobs on Kubernetes?
sentences:
- 'ZenML - Bridging the gap between ML & Ops
Legacy Docs
Bleeding EdgeLegacy Docs0.67.0
🧙♂️Find older version our docs
Powered by GitBook'
- "nsible for cluster-manager-specific configuration._io_configuration is a critical\
\ method. Even though we have materializers, Spark might require additional packages\
\ and configuration to work with a specific filesystem. This method is used as\
\ an interface to provide this configuration.\n\n_additional_configuration takes\
\ the submit_args, converts, and appends them to the overall configuration.\n\n\
Once the configuration is completed, _launch_spark_job comes into play. This takes\
\ the completed configuration and runs a Spark job on the given master URL with\
\ the specified deploy_mode. By default, this is achieved by creating and executing\
\ a spark-submit command.\n\nWarning\n\nIn its first iteration, the pre-configuration\
\ with _io_configuration method is only effective when it is paired with an S3ArtifactStore\
\ (which has an authentication secret). When used with other artifact store flavors,\
\ you might be required to provide additional configuration through the submit_args.\n\
\nStack Component: KubernetesSparkStepOperator\n\nThe KubernetesSparkStepOperator\
\ is implemented by subclassing the base SparkStepOperator and uses the PipelineDockerImageBuilder\
\ class to build and push the required Docker images.\n\nfrom typing import Optional\n\
\nfrom zenml.integrations.spark.step_operators.spark_step_operator import (\n\
\ SparkStepOperatorConfig\n)\n\nclass KubernetesSparkStepOperatorConfig(SparkStepOperatorConfig):\n\
\ \"\"\"Config for the Kubernetes Spark step operator.\"\"\"\n\nnamespace:\
\ Optional[str] = None\n service_account: Optional[str] = None\n\nfrom pyspark.conf\
\ import SparkConf\n\nfrom zenml.utils.pipeline_docker_image_builder import PipelineDockerImageBuilder\n\
from zenml.integrations.spark.step_operators.spark_step_operator import (\n \
\ SparkStepOperator\n)\n\nclass KubernetesSparkStepOperator(SparkStepOperator):\n\
\ \"\"\"Step operator which runs Steps with Spark on Kubernetes.\"\"\""
- "ngs/python/Dockerfile -u 0 build\n\nConfiguring RBACAdditionally, you may need\
\ to create the several resources in Kubernetes in order to give Spark access\
\ to edit/manage your driver executor pods.\n\nTo do so, create a file called\
\ rbac.yaml with the following content:\n\napiVersion: v1\nkind: Namespace\nmetadata:\n\
\ name: spark-namespace\n---\napiVersion: v1\nkind: ServiceAccount\nmetadata:\n\
\ name: spark-service-account\n namespace: spark-namespace\n---\napiVersion:\
\ rbac.authorization.k8s.io/v1\nkind: ClusterRoleBinding\nmetadata:\n name: spark-role\n\
\ namespace: spark-namespace\nsubjects:\n - kind: ServiceAccount\n name:\
\ spark-service-account\n namespace: spark-namespace\nroleRef:\n kind: ClusterRole\n\
\ name: edit\n apiGroup: rbac.authorization.k8s.io\n---\n\nAnd then execute\
\ the following command to create the resources:\n\naws eks --region=$REGION update-kubeconfig\
\ --name=$EKS_CLUSTER_NAME\n\nkubectl create -f rbac.yaml\n\nLastly, note down\
\ the namespace and the name of the service account since you will need them when\
\ registering the stack component in the next step.\n\nHow to use it\n\nTo use\
\ the KubernetesSparkStepOperator, you need:\n\nthe ZenML spark integration. If\
\ you haven't installed it already, run\n\nzenml integration install spark\n\n\
Docker installed and running.\n\nA remote artifact store as part of your stack.\n\
\nA remote container registry as part of your stack.\n\nA Kubernetes cluster deployed.\n\
\nWe can then register the step operator and use it in our active stack:\n\nzenml\
\ step-operator register spark_step_operator \\\n\t--flavor=spark-kubernetes \\\
\n\t--master=k8s://$EKS_API_SERVER_ENDPOINT \\\n\t--namespace=<SPARK_KUBERNETES_NAMESPACE>\
\ \\\n\t--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>\n\n# Register the\
\ stack\nzenml stack register spark_stack \\\n -o default \\\n -s spark_step_operator\
\ \\\n -a spark_artifact_store \\\n -c spark_container_registry \\\n \
\ -i local_builder \\\n --set"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.875
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8333333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8333333333333334
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.75
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.75
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8576691395183482
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8125
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8125
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.75
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.75
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8576691395183482
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8125
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8125
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.875
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8333333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8333333333333334
name: Cosine Map@100
---
# zenml/finetuned-snowflake-arctic-embed-m-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) <!-- at revision 4d7418a980f09b897b7e08dcd981603eefde0e3f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m-v1.5")
# Run inference
sentences = [
'How does the KubernetesSparkStepOperator utilize the PipelineDockerImageBuilder class to manage Docker images for Spark jobs on Kubernetes?',
'nsible for cluster-manager-specific configuration._io_configuration is a critical method. Even though we have materializers, Spark might require additional packages and configuration to work with a specific filesystem. This method is used as an interface to provide this configuration.\n\n_additional_configuration takes the submit_args, converts, and appends them to the overall configuration.\n\nOnce the configuration is completed, _launch_spark_job comes into play. This takes the completed configuration and runs a Spark job on the given master URL with the specified deploy_mode. By default, this is achieved by creating and executing a spark-submit command.\n\nWarning\n\nIn its first iteration, the pre-configuration with _io_configuration method is only effective when it is paired with an S3ArtifactStore (which has an authentication secret). When used with other artifact store flavors, you might be required to provide additional configuration through the submit_args.\n\nStack Component: KubernetesSparkStepOperator\n\nThe KubernetesSparkStepOperator is implemented by subclassing the base SparkStepOperator and uses the PipelineDockerImageBuilder class to build and push the required Docker images.\n\nfrom typing import Optional\n\nfrom zenml.integrations.spark.step_operators.spark_step_operator import (\n SparkStepOperatorConfig\n)\n\nclass KubernetesSparkStepOperatorConfig(SparkStepOperatorConfig):\n """Config for the Kubernetes Spark step operator."""\n\nnamespace: Optional[str] = None\n service_account: Optional[str] = None\n\nfrom pyspark.conf import SparkConf\n\nfrom zenml.utils.pipeline_docker_image_builder import PipelineDockerImageBuilder\nfrom zenml.integrations.spark.step_operators.spark_step_operator import (\n SparkStepOperator\n)\n\nclass KubernetesSparkStepOperator(SparkStepOperator):\n """Step operator which runs Steps with Spark on Kubernetes."""',
"ngs/python/Dockerfile -u 0 build\n\nConfiguring RBACAdditionally, you may need to create the several resources in Kubernetes in order to give Spark access to edit/manage your driver executor pods.\n\nTo do so, create a file called rbac.yaml with the following content:\n\napiVersion: v1\nkind: Namespace\nmetadata:\n name: spark-namespace\n---\napiVersion: v1\nkind: ServiceAccount\nmetadata:\n name: spark-service-account\n namespace: spark-namespace\n---\napiVersion: rbac.authorization.k8s.io/v1\nkind: ClusterRoleBinding\nmetadata:\n name: spark-role\n namespace: spark-namespace\nsubjects:\n - kind: ServiceAccount\n name: spark-service-account\n namespace: spark-namespace\nroleRef:\n kind: ClusterRole\n name: edit\n apiGroup: rbac.authorization.k8s.io\n---\n\nAnd then execute the following command to create the resources:\n\naws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME\n\nkubectl create -f rbac.yaml\n\nLastly, note down the namespace and the name of the service account since you will need them when registering the stack component in the next step.\n\nHow to use it\n\nTo use the KubernetesSparkStepOperator, you need:\n\nthe ZenML spark integration. If you haven't installed it already, run\n\nzenml integration install spark\n\nDocker installed and running.\n\nA remote artifact store as part of your stack.\n\nA remote container registry as part of your stack.\n\nA Kubernetes cluster deployed.\n\nWe can then register the step operator and use it in our active stack:\n\nzenml step-operator register spark_step_operator \\\n\t--flavor=spark-kubernetes \\\n\t--master=k8s://$EKS_API_SERVER_ENDPOINT \\\n\t--namespace=<SPARK_KUBERNETES_NAMESPACE> \\\n\t--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>\n\n# Register the stack\nzenml stack register spark_stack \\\n -o default \\\n -s spark_step_operator \\\n -a spark_artifact_store \\\n -c spark_container_registry \\\n -i local_builder \\\n --set",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_384`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_384 | dim_256 | dim_128 | dim_64 |
|:--------------------|:----------|:-----------|:-----------|:----------|
| cosine_accuracy@1 | 0.75 | 0.75 | 0.75 | 0.75 |
| cosine_accuracy@3 | 1.0 | 0.75 | 0.75 | 1.0 |
| cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 |
| cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 |
| cosine_precision@1 | 0.75 | 0.75 | 0.75 | 0.75 |
| cosine_precision@3 | 0.3333 | 0.25 | 0.25 | 0.3333 |
| cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 |
| cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 |
| cosine_recall@1 | 0.75 | 0.75 | 0.75 | 0.75 |
| cosine_recall@3 | 1.0 | 0.75 | 0.75 | 1.0 |
| cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 |
| cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 |
| **cosine_ndcg@10** | **0.875** | **0.8577** | **0.8577** | **0.875** |
| cosine_mrr@10 | 0.8333 | 0.8125 | 0.8125 | 0.8333 |
| cosine_map@100 | 0.8333 | 0.8125 | 0.8125 | 0.8333 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 36 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 36 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 tokens</li><li>mean: 23.11 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 299.64 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How does the ZenML BaseService registry manage serialization and re-creation of configurations for BaseService instances as part of the remote model server setup?</code> | <code>e details of the deployment process from the user.It needs to act as a ZenML BaseService registry, where every BaseService instance is used as an internal representation of a remote model server (see the find_model_server abstract method). To achieve this, it must be able to re-create the configuration of a BaseService from information that is persisted externally, alongside, or even as part of the remote model server configuration itself. For example, for model servers that are implemented as Kubernetes resources, the BaseService instances can be serialized and saved as Kubernetes resource annotations. This allows the model deployer to keep track of all externally running model servers and to re-create their corresponding BaseService instance representations at any given time. The model deployer also defines methods that implement basic life-cycle management on remote model servers outside the coverage of a pipeline (see stop_model_server , start_model_server and delete_model_server)....</code> |
| <code>How do you ensure the MyExperimentTrackerFlavor is properly registered and available in ZenML?</code> | <code>gister flavors.my_flavor.MyExperimentTrackerFlavorZenML resolves the flavor class by taking the path where you initialized zenml (via zenml init) as the starting point of resolution. Therefore, please ensure you follow the best practice of initializing zenml at the root of your repository.<br><br>If ZenML does not find an initialized ZenML repository in any parent directory, it will default to the current working directory, but usually, it's better to not have to rely on this mechanism and initialize zenml at the root.<br><br>Afterward, you should see the new flavor in the list of available flavors:<br><br>zenml experiment-tracker flavor list<br><br>It is important to draw attention to when and how these base abstractions are coming into play in a ZenML workflow.<br><br>The CustomExperimentTrackerFlavor class is imported and utilized upon the creation of the custom flavor through the CLI.<br><br>The CustomExperimentTrackerConfig class is imported when someone tries to register/update a stack component with this custom fl...</code> |
| <code>How do you load and profile a dataset using the Whylogs data validator in ZenML?</code> | <code>ogsDataValidatorSettings,<br>)<br>from zenml import step@step(<br> settings={<br> "data_validator": WhylogsDataValidatorSettings(<br> enable_whylabs=True, dataset_id="model-1"<br> )<br> }<br>)<br>def data_loader() -> Tuple[<br> Annotated[pd.DataFrame, "data"],<br> Annotated[DatasetProfileView, "profile"]<br>]:<br> """Load the diabetes dataset."""<br> X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)<br><br># merge X and y together<br> df = pd.merge(X, y, left_index=True, right_index=True)<br><br>profile = why.log(pandas=df).profile().view()<br> return df, profile<br><br>How do you use it?<br><br>Whylogs's profiling functions take in a pandas.DataFrame dataset generate a DatasetProfileView object containing all the relevant information extracted from the dataset.<br><br>There are three ways you can use whylogs in your ZenML pipelines that allow different levels of flexibility:<br><br>instantiate, configure and insert the standard WhylogsProfilerStep shipped with ZenML into your pipelines. This is the easiest ...</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| **1.0** | **1** | **0.875** | **0.875** | **0.8577** | **0.875** |
| 2.0 | 3 | 0.875 | 0.8577 | 0.8577 | 0.875 |
| 3.0 | 4 | 0.875 | 0.8577 | 0.8577 | 0.875 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.43.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |