Add new SentenceTransformer model
Browse files- README.md +100 -99
- config.json +1 -1
- config_sentence_transformers.json +3 -3
README.md
CHANGED
@@ -452,7 +452,6 @@ widget:
|
|
452 |
If you already have one or more GCP Service Connectors configured in your ZenML
|
453 |
deployment, you can check which of them can be used to access generic GCP resources
|
454 |
like the GCP Image Builder required for your GCP Image Builder by running e.g.:'
|
455 |
-
datasets: []
|
456 |
pipeline_tag: sentence-similarity
|
457 |
library_name: sentence-transformers
|
458 |
metrics:
|
@@ -482,10 +481,10 @@ model-index:
|
|
482 |
type: dim_384
|
483 |
metrics:
|
484 |
- type: cosine_accuracy@1
|
485 |
-
value: 0.
|
486 |
name: Cosine Accuracy@1
|
487 |
- type: cosine_accuracy@3
|
488 |
-
value: 0
|
489 |
name: Cosine Accuracy@3
|
490 |
- type: cosine_accuracy@5
|
491 |
value: 1.0
|
@@ -494,10 +493,10 @@ model-index:
|
|
494 |
value: 1.0
|
495 |
name: Cosine Accuracy@10
|
496 |
- type: cosine_precision@1
|
497 |
-
value: 0.
|
498 |
name: Cosine Precision@1
|
499 |
- type: cosine_precision@3
|
500 |
-
value: 0.
|
501 |
name: Cosine Precision@3
|
502 |
- type: cosine_precision@5
|
503 |
value: 0.2
|
@@ -506,10 +505,10 @@ model-index:
|
|
506 |
value: 0.1
|
507 |
name: Cosine Precision@10
|
508 |
- type: cosine_recall@1
|
509 |
-
value: 0.
|
510 |
name: Cosine Recall@1
|
511 |
- type: cosine_recall@3
|
512 |
-
value: 0
|
513 |
name: Cosine Recall@3
|
514 |
- type: cosine_recall@5
|
515 |
value: 1.0
|
@@ -518,13 +517,13 @@ model-index:
|
|
518 |
value: 1.0
|
519 |
name: Cosine Recall@10
|
520 |
- type: cosine_ndcg@10
|
521 |
-
value: 0.
|
522 |
name: Cosine Ndcg@10
|
523 |
- type: cosine_mrr@10
|
524 |
-
value: 0.
|
525 |
name: Cosine Mrr@10
|
526 |
- type: cosine_map@100
|
527 |
-
value: 0.
|
528 |
name: Cosine Map@100
|
529 |
- task:
|
530 |
type: information-retrieval
|
@@ -534,10 +533,10 @@ model-index:
|
|
534 |
type: dim_256
|
535 |
metrics:
|
536 |
- type: cosine_accuracy@1
|
537 |
-
value: 0.
|
538 |
name: Cosine Accuracy@1
|
539 |
- type: cosine_accuracy@3
|
540 |
-
value: 0
|
541 |
name: Cosine Accuracy@3
|
542 |
- type: cosine_accuracy@5
|
543 |
value: 1.0
|
@@ -546,10 +545,10 @@ model-index:
|
|
546 |
value: 1.0
|
547 |
name: Cosine Accuracy@10
|
548 |
- type: cosine_precision@1
|
549 |
-
value: 0.
|
550 |
name: Cosine Precision@1
|
551 |
- type: cosine_precision@3
|
552 |
-
value: 0.
|
553 |
name: Cosine Precision@3
|
554 |
- type: cosine_precision@5
|
555 |
value: 0.2
|
@@ -558,10 +557,10 @@ model-index:
|
|
558 |
value: 0.1
|
559 |
name: Cosine Precision@10
|
560 |
- type: cosine_recall@1
|
561 |
-
value: 0.
|
562 |
name: Cosine Recall@1
|
563 |
- type: cosine_recall@3
|
564 |
-
value: 0
|
565 |
name: Cosine Recall@3
|
566 |
- type: cosine_recall@5
|
567 |
value: 1.0
|
@@ -570,13 +569,13 @@ model-index:
|
|
570 |
value: 1.0
|
571 |
name: Cosine Recall@10
|
572 |
- type: cosine_ndcg@10
|
573 |
-
value: 0.
|
574 |
name: Cosine Ndcg@10
|
575 |
- type: cosine_mrr@10
|
576 |
-
value: 0.
|
577 |
name: Cosine Mrr@10
|
578 |
- type: cosine_map@100
|
579 |
-
value: 0.
|
580 |
name: Cosine Map@100
|
581 |
- task:
|
582 |
type: information-retrieval
|
@@ -586,10 +585,10 @@ model-index:
|
|
586 |
type: dim_128
|
587 |
metrics:
|
588 |
- type: cosine_accuracy@1
|
589 |
-
value: 0.
|
590 |
name: Cosine Accuracy@1
|
591 |
- type: cosine_accuracy@3
|
592 |
-
value: 0.
|
593 |
name: Cosine Accuracy@3
|
594 |
- type: cosine_accuracy@5
|
595 |
value: 1.0
|
@@ -598,10 +597,10 @@ model-index:
|
|
598 |
value: 1.0
|
599 |
name: Cosine Accuracy@10
|
600 |
- type: cosine_precision@1
|
601 |
-
value: 0.
|
602 |
name: Cosine Precision@1
|
603 |
- type: cosine_precision@3
|
604 |
-
value: 0.
|
605 |
name: Cosine Precision@3
|
606 |
- type: cosine_precision@5
|
607 |
value: 0.2
|
@@ -610,10 +609,10 @@ model-index:
|
|
610 |
value: 0.1
|
611 |
name: Cosine Precision@10
|
612 |
- type: cosine_recall@1
|
613 |
-
value: 0.
|
614 |
name: Cosine Recall@1
|
615 |
- type: cosine_recall@3
|
616 |
-
value: 0.
|
617 |
name: Cosine Recall@3
|
618 |
- type: cosine_recall@5
|
619 |
value: 1.0
|
@@ -622,13 +621,13 @@ model-index:
|
|
622 |
value: 1.0
|
623 |
name: Cosine Recall@10
|
624 |
- type: cosine_ndcg@10
|
625 |
-
value: 0.
|
626 |
name: Cosine Ndcg@10
|
627 |
- type: cosine_mrr@10
|
628 |
-
value: 0.
|
629 |
name: Cosine Mrr@10
|
630 |
- type: cosine_map@100
|
631 |
-
value: 0.
|
632 |
name: Cosine Map@100
|
633 |
- task:
|
634 |
type: information-retrieval
|
@@ -638,10 +637,10 @@ model-index:
|
|
638 |
type: dim_64
|
639 |
metrics:
|
640 |
- type: cosine_accuracy@1
|
641 |
-
value: 0.
|
642 |
name: Cosine Accuracy@1
|
643 |
- type: cosine_accuracy@3
|
644 |
-
value: 0
|
645 |
name: Cosine Accuracy@3
|
646 |
- type: cosine_accuracy@5
|
647 |
value: 1.0
|
@@ -650,10 +649,10 @@ model-index:
|
|
650 |
value: 1.0
|
651 |
name: Cosine Accuracy@10
|
652 |
- type: cosine_precision@1
|
653 |
-
value: 0.
|
654 |
name: Cosine Precision@1
|
655 |
- type: cosine_precision@3
|
656 |
-
value: 0.
|
657 |
name: Cosine Precision@3
|
658 |
- type: cosine_precision@5
|
659 |
value: 0.2
|
@@ -662,10 +661,10 @@ model-index:
|
|
662 |
value: 0.1
|
663 |
name: Cosine Precision@10
|
664 |
- type: cosine_recall@1
|
665 |
-
value: 0.
|
666 |
name: Cosine Recall@1
|
667 |
- type: cosine_recall@3
|
668 |
-
value: 0
|
669 |
name: Cosine Recall@3
|
670 |
- type: cosine_recall@5
|
671 |
value: 1.0
|
@@ -674,19 +673,19 @@ model-index:
|
|
674 |
value: 1.0
|
675 |
name: Cosine Recall@10
|
676 |
- type: cosine_ndcg@10
|
677 |
-
value: 0.
|
678 |
name: Cosine Ndcg@10
|
679 |
- type: cosine_mrr@10
|
680 |
-
value: 0.
|
681 |
name: Cosine Mrr@10
|
682 |
- type: cosine_map@100
|
683 |
-
value: 0.
|
684 |
name: Cosine Map@100
|
685 |
---
|
686 |
|
687 |
# zenml/finetuned-snowflake-arctic-embed-m-v1.5
|
688 |
|
689 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
690 |
|
691 |
## Model Details
|
692 |
|
@@ -696,7 +695,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [S
|
|
696 |
- **Maximum Sequence Length:** 512 tokens
|
697 |
- **Output Dimensionality:** 768 tokens
|
698 |
- **Similarity Function:** Cosine Similarity
|
699 |
-
|
|
|
700 |
- **Language:** en
|
701 |
- **License:** apache-2.0
|
702 |
|
@@ -782,21 +782,21 @@ You can finetune this model on your own dataset.
|
|
782 |
|
783 |
| Metric | Value |
|
784 |
|:--------------------|:-----------|
|
785 |
-
| cosine_accuracy@1 | 0.
|
786 |
-
| cosine_accuracy@3 | 0
|
787 |
| cosine_accuracy@5 | 1.0 |
|
788 |
| cosine_accuracy@10 | 1.0 |
|
789 |
-
| cosine_precision@1 | 0.
|
790 |
-
| cosine_precision@3 | 0.
|
791 |
| cosine_precision@5 | 0.2 |
|
792 |
| cosine_precision@10 | 0.1 |
|
793 |
-
| cosine_recall@1 | 0.
|
794 |
-
| cosine_recall@3 | 0
|
795 |
| cosine_recall@5 | 1.0 |
|
796 |
| cosine_recall@10 | 1.0 |
|
797 |
-
| cosine_ndcg@10 | 0.
|
798 |
-
| cosine_mrr@10 | 0.
|
799 |
-
| **cosine_map@100** | **0.
|
800 |
|
801 |
#### Information Retrieval
|
802 |
* Dataset: `dim_256`
|
@@ -804,43 +804,43 @@ You can finetune this model on your own dataset.
|
|
804 |
|
805 |
| Metric | Value |
|
806 |
|:--------------------|:-----------|
|
807 |
-
| cosine_accuracy@1 | 0.
|
808 |
-
| cosine_accuracy@3 | 0
|
809 |
| cosine_accuracy@5 | 1.0 |
|
810 |
| cosine_accuracy@10 | 1.0 |
|
811 |
-
| cosine_precision@1 | 0.
|
812 |
-
| cosine_precision@3 | 0.
|
813 |
| cosine_precision@5 | 0.2 |
|
814 |
| cosine_precision@10 | 0.1 |
|
815 |
-
| cosine_recall@1 | 0.
|
816 |
-
| cosine_recall@3 | 0
|
817 |
| cosine_recall@5 | 1.0 |
|
818 |
| cosine_recall@10 | 1.0 |
|
819 |
-
| cosine_ndcg@10 | 0.
|
820 |
-
| cosine_mrr@10 | 0.
|
821 |
-
| **cosine_map@100** | **0.
|
822 |
|
823 |
#### Information Retrieval
|
824 |
* Dataset: `dim_128`
|
825 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
826 |
|
827 |
-
| Metric | Value
|
828 |
-
|
829 |
-
| cosine_accuracy@1 | 0.
|
830 |
-
| cosine_accuracy@3 | 0.
|
831 |
-
| cosine_accuracy@5 | 1.0
|
832 |
-
| cosine_accuracy@10 | 1.0
|
833 |
-
| cosine_precision@1 | 0.
|
834 |
-
| cosine_precision@3 | 0.
|
835 |
-
| cosine_precision@5 | 0.2
|
836 |
-
| cosine_precision@10 | 0.1
|
837 |
-
| cosine_recall@1 | 0.
|
838 |
-
| cosine_recall@3 | 0.
|
839 |
-
| cosine_recall@5 | 1.0
|
840 |
-
| cosine_recall@10 | 1.0
|
841 |
-
| cosine_ndcg@10 | 0.
|
842 |
-
| cosine_mrr@10 | 0.
|
843 |
-
| **cosine_map@100** | **0.
|
844 |
|
845 |
#### Information Retrieval
|
846 |
* Dataset: `dim_64`
|
@@ -848,21 +848,21 @@ You can finetune this model on your own dataset.
|
|
848 |
|
849 |
| Metric | Value |
|
850 |
|:--------------------|:-----------|
|
851 |
-
| cosine_accuracy@1 | 0.
|
852 |
-
| cosine_accuracy@3 | 0
|
853 |
| cosine_accuracy@5 | 1.0 |
|
854 |
| cosine_accuracy@10 | 1.0 |
|
855 |
-
| cosine_precision@1 | 0.
|
856 |
-
| cosine_precision@3 | 0.
|
857 |
| cosine_precision@5 | 0.2 |
|
858 |
| cosine_precision@10 | 0.1 |
|
859 |
-
| cosine_recall@1 | 0.
|
860 |
-
| cosine_recall@3 | 0
|
861 |
| cosine_recall@5 | 1.0 |
|
862 |
| cosine_recall@10 | 1.0 |
|
863 |
-
| cosine_ndcg@10 | 0.
|
864 |
-
| cosine_mrr@10 | 0.
|
865 |
-
| **cosine_map@100** | **0.
|
866 |
|
867 |
<!--
|
868 |
## Bias, Risks and Limitations
|
@@ -880,12 +880,12 @@ You can finetune this model on your own dataset.
|
|
880 |
|
881 |
### Training Dataset
|
882 |
|
883 |
-
####
|
884 |
-
|
885 |
|
|
|
886 |
* Size: 36 training samples
|
887 |
* Columns: <code>positive</code> and <code>anchor</code>
|
888 |
-
* Approximate statistics based on the first
|
889 |
| | positive | anchor |
|
890 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
891 |
| type | string | string |
|
@@ -1043,6 +1043,7 @@ You can finetune this model on your own dataset.
|
|
1043 |
- `optim_target_modules`: None
|
1044 |
- `batch_eval_metrics`: False
|
1045 |
- `eval_on_start`: False
|
|
|
1046 |
- `eval_use_gather_object`: False
|
1047 |
- `batch_sampler`: no_duplicates
|
1048 |
- `multi_dataset_batch_sampler`: proportional
|
@@ -1050,22 +1051,22 @@ You can finetune this model on your own dataset.
|
|
1050 |
</details>
|
1051 |
|
1052 |
### Training Logs
|
1053 |
-
| Epoch | Step |
|
1054 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
1055 |
-
| **1.0** | **1** | **0.
|
1056 |
-
| 2.0 | 3 | 0.
|
1057 |
-
| 3.0 | 4 | 0.
|
1058 |
|
1059 |
* The bold row denotes the saved checkpoint.
|
1060 |
|
1061 |
### Framework Versions
|
1062 |
-
- Python: 3.9
|
1063 |
-
- Sentence Transformers: 3.0
|
1064 |
-
- Transformers: 4.
|
1065 |
-
- PyTorch: 2.5.
|
1066 |
-
- Accelerate: 0.
|
1067 |
-
- Datasets:
|
1068 |
-
- Tokenizers: 0.
|
1069 |
|
1070 |
## Citation
|
1071 |
|
@@ -1087,7 +1088,7 @@ You can finetune this model on your own dataset.
|
|
1087 |
#### MatryoshkaLoss
|
1088 |
```bibtex
|
1089 |
@misc{kusupati2024matryoshka,
|
1090 |
-
title={Matryoshka Representation Learning},
|
1091 |
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1092 |
year={2024},
|
1093 |
eprint={2205.13147},
|
@@ -1099,7 +1100,7 @@ You can finetune this model on your own dataset.
|
|
1099 |
#### MultipleNegativesRankingLoss
|
1100 |
```bibtex
|
1101 |
@misc{henderson2017efficient,
|
1102 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1103 |
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1104 |
year={2017},
|
1105 |
eprint={1705.00652},
|
|
|
452 |
If you already have one or more GCP Service Connectors configured in your ZenML
|
453 |
deployment, you can check which of them can be used to access generic GCP resources
|
454 |
like the GCP Image Builder required for your GCP Image Builder by running e.g.:'
|
|
|
455 |
pipeline_tag: sentence-similarity
|
456 |
library_name: sentence-transformers
|
457 |
metrics:
|
|
|
481 |
type: dim_384
|
482 |
metrics:
|
483 |
- type: cosine_accuracy@1
|
484 |
+
value: 0.75
|
485 |
name: Cosine Accuracy@1
|
486 |
- type: cosine_accuracy@3
|
487 |
+
value: 1.0
|
488 |
name: Cosine Accuracy@3
|
489 |
- type: cosine_accuracy@5
|
490 |
value: 1.0
|
|
|
493 |
value: 1.0
|
494 |
name: Cosine Accuracy@10
|
495 |
- type: cosine_precision@1
|
496 |
+
value: 0.75
|
497 |
name: Cosine Precision@1
|
498 |
- type: cosine_precision@3
|
499 |
+
value: 0.3333333333333333
|
500 |
name: Cosine Precision@3
|
501 |
- type: cosine_precision@5
|
502 |
value: 0.2
|
|
|
505 |
value: 0.1
|
506 |
name: Cosine Precision@10
|
507 |
- type: cosine_recall@1
|
508 |
+
value: 0.75
|
509 |
name: Cosine Recall@1
|
510 |
- type: cosine_recall@3
|
511 |
+
value: 1.0
|
512 |
name: Cosine Recall@3
|
513 |
- type: cosine_recall@5
|
514 |
value: 1.0
|
|
|
517 |
value: 1.0
|
518 |
name: Cosine Recall@10
|
519 |
- type: cosine_ndcg@10
|
520 |
+
value: 0.875
|
521 |
name: Cosine Ndcg@10
|
522 |
- type: cosine_mrr@10
|
523 |
+
value: 0.8333333333333334
|
524 |
name: Cosine Mrr@10
|
525 |
- type: cosine_map@100
|
526 |
+
value: 0.8333333333333334
|
527 |
name: Cosine Map@100
|
528 |
- task:
|
529 |
type: information-retrieval
|
|
|
533 |
type: dim_256
|
534 |
metrics:
|
535 |
- type: cosine_accuracy@1
|
536 |
+
value: 0.75
|
537 |
name: Cosine Accuracy@1
|
538 |
- type: cosine_accuracy@3
|
539 |
+
value: 1.0
|
540 |
name: Cosine Accuracy@3
|
541 |
- type: cosine_accuracy@5
|
542 |
value: 1.0
|
|
|
545 |
value: 1.0
|
546 |
name: Cosine Accuracy@10
|
547 |
- type: cosine_precision@1
|
548 |
+
value: 0.75
|
549 |
name: Cosine Precision@1
|
550 |
- type: cosine_precision@3
|
551 |
+
value: 0.3333333333333333
|
552 |
name: Cosine Precision@3
|
553 |
- type: cosine_precision@5
|
554 |
value: 0.2
|
|
|
557 |
value: 0.1
|
558 |
name: Cosine Precision@10
|
559 |
- type: cosine_recall@1
|
560 |
+
value: 0.75
|
561 |
name: Cosine Recall@1
|
562 |
- type: cosine_recall@3
|
563 |
+
value: 1.0
|
564 |
name: Cosine Recall@3
|
565 |
- type: cosine_recall@5
|
566 |
value: 1.0
|
|
|
569 |
value: 1.0
|
570 |
name: Cosine Recall@10
|
571 |
- type: cosine_ndcg@10
|
572 |
+
value: 0.875
|
573 |
name: Cosine Ndcg@10
|
574 |
- type: cosine_mrr@10
|
575 |
+
value: 0.8333333333333334
|
576 |
name: Cosine Mrr@10
|
577 |
- type: cosine_map@100
|
578 |
+
value: 0.8333333333333334
|
579 |
name: Cosine Map@100
|
580 |
- task:
|
581 |
type: information-retrieval
|
|
|
585 |
type: dim_128
|
586 |
metrics:
|
587 |
- type: cosine_accuracy@1
|
588 |
+
value: 0.75
|
589 |
name: Cosine Accuracy@1
|
590 |
- type: cosine_accuracy@3
|
591 |
+
value: 0.75
|
592 |
name: Cosine Accuracy@3
|
593 |
- type: cosine_accuracy@5
|
594 |
value: 1.0
|
|
|
597 |
value: 1.0
|
598 |
name: Cosine Accuracy@10
|
599 |
- type: cosine_precision@1
|
600 |
+
value: 0.75
|
601 |
name: Cosine Precision@1
|
602 |
- type: cosine_precision@3
|
603 |
+
value: 0.25
|
604 |
name: Cosine Precision@3
|
605 |
- type: cosine_precision@5
|
606 |
value: 0.2
|
|
|
609 |
value: 0.1
|
610 |
name: Cosine Precision@10
|
611 |
- type: cosine_recall@1
|
612 |
+
value: 0.75
|
613 |
name: Cosine Recall@1
|
614 |
- type: cosine_recall@3
|
615 |
+
value: 0.75
|
616 |
name: Cosine Recall@3
|
617 |
- type: cosine_recall@5
|
618 |
value: 1.0
|
|
|
621 |
value: 1.0
|
622 |
name: Cosine Recall@10
|
623 |
- type: cosine_ndcg@10
|
624 |
+
value: 0.8576691395183482
|
625 |
name: Cosine Ndcg@10
|
626 |
- type: cosine_mrr@10
|
627 |
+
value: 0.8125
|
628 |
name: Cosine Mrr@10
|
629 |
- type: cosine_map@100
|
630 |
+
value: 0.8125
|
631 |
name: Cosine Map@100
|
632 |
- task:
|
633 |
type: information-retrieval
|
|
|
637 |
type: dim_64
|
638 |
metrics:
|
639 |
- type: cosine_accuracy@1
|
640 |
+
value: 0.75
|
641 |
name: Cosine Accuracy@1
|
642 |
- type: cosine_accuracy@3
|
643 |
+
value: 1.0
|
644 |
name: Cosine Accuracy@3
|
645 |
- type: cosine_accuracy@5
|
646 |
value: 1.0
|
|
|
649 |
value: 1.0
|
650 |
name: Cosine Accuracy@10
|
651 |
- type: cosine_precision@1
|
652 |
+
value: 0.75
|
653 |
name: Cosine Precision@1
|
654 |
- type: cosine_precision@3
|
655 |
+
value: 0.3333333333333333
|
656 |
name: Cosine Precision@3
|
657 |
- type: cosine_precision@5
|
658 |
value: 0.2
|
|
|
661 |
value: 0.1
|
662 |
name: Cosine Precision@10
|
663 |
- type: cosine_recall@1
|
664 |
+
value: 0.75
|
665 |
name: Cosine Recall@1
|
666 |
- type: cosine_recall@3
|
667 |
+
value: 1.0
|
668 |
name: Cosine Recall@3
|
669 |
- type: cosine_recall@5
|
670 |
value: 1.0
|
|
|
673 |
value: 1.0
|
674 |
name: Cosine Recall@10
|
675 |
- type: cosine_ndcg@10
|
676 |
+
value: 0.875
|
677 |
name: Cosine Ndcg@10
|
678 |
- type: cosine_mrr@10
|
679 |
+
value: 0.8333333333333334
|
680 |
name: Cosine Mrr@10
|
681 |
- type: cosine_map@100
|
682 |
+
value: 0.8333333333333334
|
683 |
name: Cosine Map@100
|
684 |
---
|
685 |
|
686 |
# zenml/finetuned-snowflake-arctic-embed-m-v1.5
|
687 |
|
688 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
689 |
|
690 |
## Model Details
|
691 |
|
|
|
695 |
- **Maximum Sequence Length:** 512 tokens
|
696 |
- **Output Dimensionality:** 768 tokens
|
697 |
- **Similarity Function:** Cosine Similarity
|
698 |
+
- **Training Dataset:**
|
699 |
+
- json
|
700 |
- **Language:** en
|
701 |
- **License:** apache-2.0
|
702 |
|
|
|
782 |
|
783 |
| Metric | Value |
|
784 |
|:--------------------|:-----------|
|
785 |
+
| cosine_accuracy@1 | 0.75 |
|
786 |
+
| cosine_accuracy@3 | 1.0 |
|
787 |
| cosine_accuracy@5 | 1.0 |
|
788 |
| cosine_accuracy@10 | 1.0 |
|
789 |
+
| cosine_precision@1 | 0.75 |
|
790 |
+
| cosine_precision@3 | 0.3333 |
|
791 |
| cosine_precision@5 | 0.2 |
|
792 |
| cosine_precision@10 | 0.1 |
|
793 |
+
| cosine_recall@1 | 0.75 |
|
794 |
+
| cosine_recall@3 | 1.0 |
|
795 |
| cosine_recall@5 | 1.0 |
|
796 |
| cosine_recall@10 | 1.0 |
|
797 |
+
| cosine_ndcg@10 | 0.875 |
|
798 |
+
| cosine_mrr@10 | 0.8333 |
|
799 |
+
| **cosine_map@100** | **0.8333** |
|
800 |
|
801 |
#### Information Retrieval
|
802 |
* Dataset: `dim_256`
|
|
|
804 |
|
805 |
| Metric | Value |
|
806 |
|:--------------------|:-----------|
|
807 |
+
| cosine_accuracy@1 | 0.75 |
|
808 |
+
| cosine_accuracy@3 | 1.0 |
|
809 |
| cosine_accuracy@5 | 1.0 |
|
810 |
| cosine_accuracy@10 | 1.0 |
|
811 |
+
| cosine_precision@1 | 0.75 |
|
812 |
+
| cosine_precision@3 | 0.3333 |
|
813 |
| cosine_precision@5 | 0.2 |
|
814 |
| cosine_precision@10 | 0.1 |
|
815 |
+
| cosine_recall@1 | 0.75 |
|
816 |
+
| cosine_recall@3 | 1.0 |
|
817 |
| cosine_recall@5 | 1.0 |
|
818 |
| cosine_recall@10 | 1.0 |
|
819 |
+
| cosine_ndcg@10 | 0.875 |
|
820 |
+
| cosine_mrr@10 | 0.8333 |
|
821 |
+
| **cosine_map@100** | **0.8333** |
|
822 |
|
823 |
#### Information Retrieval
|
824 |
* Dataset: `dim_128`
|
825 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
826 |
|
827 |
+
| Metric | Value |
|
828 |
+
|:--------------------|:-----------|
|
829 |
+
| cosine_accuracy@1 | 0.75 |
|
830 |
+
| cosine_accuracy@3 | 0.75 |
|
831 |
+
| cosine_accuracy@5 | 1.0 |
|
832 |
+
| cosine_accuracy@10 | 1.0 |
|
833 |
+
| cosine_precision@1 | 0.75 |
|
834 |
+
| cosine_precision@3 | 0.25 |
|
835 |
+
| cosine_precision@5 | 0.2 |
|
836 |
+
| cosine_precision@10 | 0.1 |
|
837 |
+
| cosine_recall@1 | 0.75 |
|
838 |
+
| cosine_recall@3 | 0.75 |
|
839 |
+
| cosine_recall@5 | 1.0 |
|
840 |
+
| cosine_recall@10 | 1.0 |
|
841 |
+
| cosine_ndcg@10 | 0.8577 |
|
842 |
+
| cosine_mrr@10 | 0.8125 |
|
843 |
+
| **cosine_map@100** | **0.8125** |
|
844 |
|
845 |
#### Information Retrieval
|
846 |
* Dataset: `dim_64`
|
|
|
848 |
|
849 |
| Metric | Value |
|
850 |
|:--------------------|:-----------|
|
851 |
+
| cosine_accuracy@1 | 0.75 |
|
852 |
+
| cosine_accuracy@3 | 1.0 |
|
853 |
| cosine_accuracy@5 | 1.0 |
|
854 |
| cosine_accuracy@10 | 1.0 |
|
855 |
+
| cosine_precision@1 | 0.75 |
|
856 |
+
| cosine_precision@3 | 0.3333 |
|
857 |
| cosine_precision@5 | 0.2 |
|
858 |
| cosine_precision@10 | 0.1 |
|
859 |
+
| cosine_recall@1 | 0.75 |
|
860 |
+
| cosine_recall@3 | 1.0 |
|
861 |
| cosine_recall@5 | 1.0 |
|
862 |
| cosine_recall@10 | 1.0 |
|
863 |
+
| cosine_ndcg@10 | 0.875 |
|
864 |
+
| cosine_mrr@10 | 0.8333 |
|
865 |
+
| **cosine_map@100** | **0.8333** |
|
866 |
|
867 |
<!--
|
868 |
## Bias, Risks and Limitations
|
|
|
880 |
|
881 |
### Training Dataset
|
882 |
|
883 |
+
#### json
|
|
|
884 |
|
885 |
+
* Dataset: json
|
886 |
* Size: 36 training samples
|
887 |
* Columns: <code>positive</code> and <code>anchor</code>
|
888 |
+
* Approximate statistics based on the first 36 samples:
|
889 |
| | positive | anchor |
|
890 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
891 |
| type | string | string |
|
|
|
1043 |
- `optim_target_modules`: None
|
1044 |
- `batch_eval_metrics`: False
|
1045 |
- `eval_on_start`: False
|
1046 |
+
- `use_liger_kernel`: False
|
1047 |
- `eval_use_gather_object`: False
|
1048 |
- `batch_sampler`: no_duplicates
|
1049 |
- `multi_dataset_batch_sampler`: proportional
|
|
|
1051 |
</details>
|
1052 |
|
1053 |
### Training Logs
|
1054 |
+
| Epoch | Step | dim_384_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|
1055 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
1056 |
+
| **1.0** | **1** | **0.8333** | **0.8333** | **0.8125** | **0.8333** |
|
1057 |
+
| 2.0 | 3 | 0.8333 | 0.8333 | 0.8125 | 0.8333 |
|
1058 |
+
| 3.0 | 4 | 0.8333 | 0.8333 | 0.8125 | 0.8333 |
|
1059 |
|
1060 |
* The bold row denotes the saved checkpoint.
|
1061 |
|
1062 |
### Framework Versions
|
1063 |
+
- Python: 3.11.9
|
1064 |
+
- Sentence Transformers: 3.2.0
|
1065 |
+
- Transformers: 4.45.2
|
1066 |
+
- PyTorch: 2.5.0+cu124
|
1067 |
+
- Accelerate: 1.0.1
|
1068 |
+
- Datasets: 3.0.1
|
1069 |
+
- Tokenizers: 0.20.1
|
1070 |
|
1071 |
## Citation
|
1072 |
|
|
|
1088 |
#### MatryoshkaLoss
|
1089 |
```bibtex
|
1090 |
@misc{kusupati2024matryoshka,
|
1091 |
+
title={Matryoshka Representation Learning},
|
1092 |
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1093 |
year={2024},
|
1094 |
eprint={2205.13147},
|
|
|
1100 |
#### MultipleNegativesRankingLoss
|
1101 |
```bibtex
|
1102 |
@misc{henderson2017efficient,
|
1103 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1104 |
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1105 |
year={2017},
|
1106 |
eprint={1705.00652},
|
config.json
CHANGED
@@ -19,7 +19,7 @@
|
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
|
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.0
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.5.
|
6 |
},
|
7 |
"prompts": {
|
8 |
"query": "Represent this sentence for searching relevant passages: "
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.0",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.5.0+cu124"
|
6 |
},
|
7 |
"prompts": {
|
8 |
"query": "Represent this sentence for searching relevant passages: "
|