ailexej commited on
Commit
3959705
·
verified ·
1 Parent(s): e39a070

Add new SentenceTransformer model

Browse files
Files changed (3) hide show
  1. README.md +100 -99
  2. config.json +1 -1
  3. config_sentence_transformers.json +3 -3
README.md CHANGED
@@ -452,7 +452,6 @@ widget:
452
  If you already have one or more GCP Service Connectors configured in your ZenML
453
  deployment, you can check which of them can be used to access generic GCP resources
454
  like the GCP Image Builder required for your GCP Image Builder by running e.g.:'
455
- datasets: []
456
  pipeline_tag: sentence-similarity
457
  library_name: sentence-transformers
458
  metrics:
@@ -482,10 +481,10 @@ model-index:
482
  type: dim_384
483
  metrics:
484
  - type: cosine_accuracy@1
485
- value: 0.5
486
  name: Cosine Accuracy@1
487
  - type: cosine_accuracy@3
488
- value: 0.75
489
  name: Cosine Accuracy@3
490
  - type: cosine_accuracy@5
491
  value: 1.0
@@ -494,10 +493,10 @@ model-index:
494
  value: 1.0
495
  name: Cosine Accuracy@10
496
  - type: cosine_precision@1
497
- value: 0.5
498
  name: Cosine Precision@1
499
  - type: cosine_precision@3
500
- value: 0.25
501
  name: Cosine Precision@3
502
  - type: cosine_precision@5
503
  value: 0.2
@@ -506,10 +505,10 @@ model-index:
506
  value: 0.1
507
  name: Cosine Precision@10
508
  - type: cosine_recall@1
509
- value: 0.5
510
  name: Cosine Recall@1
511
  - type: cosine_recall@3
512
- value: 0.75
513
  name: Cosine Recall@3
514
  - type: cosine_recall@5
515
  value: 1.0
@@ -518,13 +517,13 @@ model-index:
518
  value: 1.0
519
  name: Cosine Recall@10
520
  - type: cosine_ndcg@10
521
- value: 0.7326691395183482
522
  name: Cosine Ndcg@10
523
  - type: cosine_mrr@10
524
- value: 0.6458333333333333
525
  name: Cosine Mrr@10
526
  - type: cosine_map@100
527
- value: 0.6458333333333333
528
  name: Cosine Map@100
529
  - task:
530
  type: information-retrieval
@@ -534,10 +533,10 @@ model-index:
534
  type: dim_256
535
  metrics:
536
  - type: cosine_accuracy@1
537
- value: 0.5
538
  name: Cosine Accuracy@1
539
  - type: cosine_accuracy@3
540
- value: 0.75
541
  name: Cosine Accuracy@3
542
  - type: cosine_accuracy@5
543
  value: 1.0
@@ -546,10 +545,10 @@ model-index:
546
  value: 1.0
547
  name: Cosine Accuracy@10
548
  - type: cosine_precision@1
549
- value: 0.5
550
  name: Cosine Precision@1
551
  - type: cosine_precision@3
552
- value: 0.25
553
  name: Cosine Precision@3
554
  - type: cosine_precision@5
555
  value: 0.2
@@ -558,10 +557,10 @@ model-index:
558
  value: 0.1
559
  name: Cosine Precision@10
560
  - type: cosine_recall@1
561
- value: 0.5
562
  name: Cosine Recall@1
563
  - type: cosine_recall@3
564
- value: 0.75
565
  name: Cosine Recall@3
566
  - type: cosine_recall@5
567
  value: 1.0
@@ -570,13 +569,13 @@ model-index:
570
  value: 1.0
571
  name: Cosine Recall@10
572
  - type: cosine_ndcg@10
573
- value: 0.7326691395183482
574
  name: Cosine Ndcg@10
575
  - type: cosine_mrr@10
576
- value: 0.6458333333333333
577
  name: Cosine Mrr@10
578
  - type: cosine_map@100
579
- value: 0.6458333333333333
580
  name: Cosine Map@100
581
  - task:
582
  type: information-retrieval
@@ -586,10 +585,10 @@ model-index:
586
  type: dim_128
587
  metrics:
588
  - type: cosine_accuracy@1
589
- value: 0.5
590
  name: Cosine Accuracy@1
591
  - type: cosine_accuracy@3
592
- value: 0.5
593
  name: Cosine Accuracy@3
594
  - type: cosine_accuracy@5
595
  value: 1.0
@@ -598,10 +597,10 @@ model-index:
598
  value: 1.0
599
  name: Cosine Accuracy@10
600
  - type: cosine_precision@1
601
- value: 0.5
602
  name: Cosine Precision@1
603
  - type: cosine_precision@3
604
- value: 0.16666666666666666
605
  name: Cosine Precision@3
606
  - type: cosine_precision@5
607
  value: 0.2
@@ -610,10 +609,10 @@ model-index:
610
  value: 0.1
611
  name: Cosine Precision@10
612
  - type: cosine_recall@1
613
- value: 0.5
614
  name: Cosine Recall@1
615
  - type: cosine_recall@3
616
- value: 0.5
617
  name: Cosine Recall@3
618
  - type: cosine_recall@5
619
  value: 1.0
@@ -622,13 +621,13 @@ model-index:
622
  value: 1.0
623
  name: Cosine Recall@10
624
  - type: cosine_ndcg@10
625
- value: 0.7153382790366966
626
  name: Cosine Ndcg@10
627
  - type: cosine_mrr@10
628
- value: 0.625
629
  name: Cosine Mrr@10
630
  - type: cosine_map@100
631
- value: 0.625
632
  name: Cosine Map@100
633
  - task:
634
  type: information-retrieval
@@ -638,10 +637,10 @@ model-index:
638
  type: dim_64
639
  metrics:
640
  - type: cosine_accuracy@1
641
- value: 0.5
642
  name: Cosine Accuracy@1
643
  - type: cosine_accuracy@3
644
- value: 0.75
645
  name: Cosine Accuracy@3
646
  - type: cosine_accuracy@5
647
  value: 1.0
@@ -650,10 +649,10 @@ model-index:
650
  value: 1.0
651
  name: Cosine Accuracy@10
652
  - type: cosine_precision@1
653
- value: 0.5
654
  name: Cosine Precision@1
655
  - type: cosine_precision@3
656
- value: 0.25
657
  name: Cosine Precision@3
658
  - type: cosine_precision@5
659
  value: 0.2
@@ -662,10 +661,10 @@ model-index:
662
  value: 0.1
663
  name: Cosine Precision@10
664
  - type: cosine_recall@1
665
- value: 0.5
666
  name: Cosine Recall@1
667
  - type: cosine_recall@3
668
- value: 0.75
669
  name: Cosine Recall@3
670
  - type: cosine_recall@5
671
  value: 1.0
@@ -674,19 +673,19 @@ model-index:
674
  value: 1.0
675
  name: Cosine Recall@10
676
  - type: cosine_ndcg@10
677
- value: 0.7326691395183482
678
  name: Cosine Ndcg@10
679
  - type: cosine_mrr@10
680
- value: 0.6458333333333333
681
  name: Cosine Mrr@10
682
  - type: cosine_map@100
683
- value: 0.6458333333333333
684
  name: Cosine Map@100
685
  ---
686
 
687
  # zenml/finetuned-snowflake-arctic-embed-m-v1.5
688
 
689
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
690
 
691
  ## Model Details
692
 
@@ -696,7 +695,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [S
696
  - **Maximum Sequence Length:** 512 tokens
697
  - **Output Dimensionality:** 768 tokens
698
  - **Similarity Function:** Cosine Similarity
699
- <!-- - **Training Dataset:** Unknown -->
 
700
  - **Language:** en
701
  - **License:** apache-2.0
702
 
@@ -782,21 +782,21 @@ You can finetune this model on your own dataset.
782
 
783
  | Metric | Value |
784
  |:--------------------|:-----------|
785
- | cosine_accuracy@1 | 0.5 |
786
- | cosine_accuracy@3 | 0.75 |
787
  | cosine_accuracy@5 | 1.0 |
788
  | cosine_accuracy@10 | 1.0 |
789
- | cosine_precision@1 | 0.5 |
790
- | cosine_precision@3 | 0.25 |
791
  | cosine_precision@5 | 0.2 |
792
  | cosine_precision@10 | 0.1 |
793
- | cosine_recall@1 | 0.5 |
794
- | cosine_recall@3 | 0.75 |
795
  | cosine_recall@5 | 1.0 |
796
  | cosine_recall@10 | 1.0 |
797
- | cosine_ndcg@10 | 0.7327 |
798
- | cosine_mrr@10 | 0.6458 |
799
- | **cosine_map@100** | **0.6458** |
800
 
801
  #### Information Retrieval
802
  * Dataset: `dim_256`
@@ -804,43 +804,43 @@ You can finetune this model on your own dataset.
804
 
805
  | Metric | Value |
806
  |:--------------------|:-----------|
807
- | cosine_accuracy@1 | 0.5 |
808
- | cosine_accuracy@3 | 0.75 |
809
  | cosine_accuracy@5 | 1.0 |
810
  | cosine_accuracy@10 | 1.0 |
811
- | cosine_precision@1 | 0.5 |
812
- | cosine_precision@3 | 0.25 |
813
  | cosine_precision@5 | 0.2 |
814
  | cosine_precision@10 | 0.1 |
815
- | cosine_recall@1 | 0.5 |
816
- | cosine_recall@3 | 0.75 |
817
  | cosine_recall@5 | 1.0 |
818
  | cosine_recall@10 | 1.0 |
819
- | cosine_ndcg@10 | 0.7327 |
820
- | cosine_mrr@10 | 0.6458 |
821
- | **cosine_map@100** | **0.6458** |
822
 
823
  #### Information Retrieval
824
  * Dataset: `dim_128`
825
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
826
 
827
- | Metric | Value |
828
- |:--------------------|:----------|
829
- | cosine_accuracy@1 | 0.5 |
830
- | cosine_accuracy@3 | 0.5 |
831
- | cosine_accuracy@5 | 1.0 |
832
- | cosine_accuracy@10 | 1.0 |
833
- | cosine_precision@1 | 0.5 |
834
- | cosine_precision@3 | 0.1667 |
835
- | cosine_precision@5 | 0.2 |
836
- | cosine_precision@10 | 0.1 |
837
- | cosine_recall@1 | 0.5 |
838
- | cosine_recall@3 | 0.5 |
839
- | cosine_recall@5 | 1.0 |
840
- | cosine_recall@10 | 1.0 |
841
- | cosine_ndcg@10 | 0.7153 |
842
- | cosine_mrr@10 | 0.625 |
843
- | **cosine_map@100** | **0.625** |
844
 
845
  #### Information Retrieval
846
  * Dataset: `dim_64`
@@ -848,21 +848,21 @@ You can finetune this model on your own dataset.
848
 
849
  | Metric | Value |
850
  |:--------------------|:-----------|
851
- | cosine_accuracy@1 | 0.5 |
852
- | cosine_accuracy@3 | 0.75 |
853
  | cosine_accuracy@5 | 1.0 |
854
  | cosine_accuracy@10 | 1.0 |
855
- | cosine_precision@1 | 0.5 |
856
- | cosine_precision@3 | 0.25 |
857
  | cosine_precision@5 | 0.2 |
858
  | cosine_precision@10 | 0.1 |
859
- | cosine_recall@1 | 0.5 |
860
- | cosine_recall@3 | 0.75 |
861
  | cosine_recall@5 | 1.0 |
862
  | cosine_recall@10 | 1.0 |
863
- | cosine_ndcg@10 | 0.7327 |
864
- | cosine_mrr@10 | 0.6458 |
865
- | **cosine_map@100** | **0.6458** |
866
 
867
  <!--
868
  ## Bias, Risks and Limitations
@@ -880,12 +880,12 @@ You can finetune this model on your own dataset.
880
 
881
  ### Training Dataset
882
 
883
- #### Unnamed Dataset
884
-
885
 
 
886
  * Size: 36 training samples
887
  * Columns: <code>positive</code> and <code>anchor</code>
888
- * Approximate statistics based on the first 1000 samples:
889
  | | positive | anchor |
890
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
891
  | type | string | string |
@@ -1043,6 +1043,7 @@ You can finetune this model on your own dataset.
1043
  - `optim_target_modules`: None
1044
  - `batch_eval_metrics`: False
1045
  - `eval_on_start`: False
 
1046
  - `eval_use_gather_object`: False
1047
  - `batch_sampler`: no_duplicates
1048
  - `multi_dataset_batch_sampler`: proportional
@@ -1050,22 +1051,22 @@ You can finetune this model on your own dataset.
1050
  </details>
1051
 
1052
  ### Training Logs
1053
- | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
1054
  |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
1055
- | **1.0** | **1** | **0.625** | **0.6458** | **0.6458** | **0.6458** |
1056
- | 2.0 | 3 | 0.625 | 0.6458 | 0.6458 | 0.6458 |
1057
- | 3.0 | 4 | 0.625 | 0.6458 | 0.6458 | 0.6458 |
1058
 
1059
  * The bold row denotes the saved checkpoint.
1060
 
1061
  ### Framework Versions
1062
- - Python: 3.9.6
1063
- - Sentence Transformers: 3.0.1
1064
- - Transformers: 4.44.0
1065
- - PyTorch: 2.5.1
1066
- - Accelerate: 0.33.0
1067
- - Datasets: 2.20.0
1068
- - Tokenizers: 0.19.1
1069
 
1070
  ## Citation
1071
 
@@ -1087,7 +1088,7 @@ You can finetune this model on your own dataset.
1087
  #### MatryoshkaLoss
1088
  ```bibtex
1089
  @misc{kusupati2024matryoshka,
1090
- title={Matryoshka Representation Learning},
1091
  author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1092
  year={2024},
1093
  eprint={2205.13147},
@@ -1099,7 +1100,7 @@ You can finetune this model on your own dataset.
1099
  #### MultipleNegativesRankingLoss
1100
  ```bibtex
1101
  @misc{henderson2017efficient,
1102
- title={Efficient Natural Language Response Suggestion for Smart Reply},
1103
  author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1104
  year={2017},
1105
  eprint={1705.00652},
 
452
  If you already have one or more GCP Service Connectors configured in your ZenML
453
  deployment, you can check which of them can be used to access generic GCP resources
454
  like the GCP Image Builder required for your GCP Image Builder by running e.g.:'
 
455
  pipeline_tag: sentence-similarity
456
  library_name: sentence-transformers
457
  metrics:
 
481
  type: dim_384
482
  metrics:
483
  - type: cosine_accuracy@1
484
+ value: 0.75
485
  name: Cosine Accuracy@1
486
  - type: cosine_accuracy@3
487
+ value: 1.0
488
  name: Cosine Accuracy@3
489
  - type: cosine_accuracy@5
490
  value: 1.0
 
493
  value: 1.0
494
  name: Cosine Accuracy@10
495
  - type: cosine_precision@1
496
+ value: 0.75
497
  name: Cosine Precision@1
498
  - type: cosine_precision@3
499
+ value: 0.3333333333333333
500
  name: Cosine Precision@3
501
  - type: cosine_precision@5
502
  value: 0.2
 
505
  value: 0.1
506
  name: Cosine Precision@10
507
  - type: cosine_recall@1
508
+ value: 0.75
509
  name: Cosine Recall@1
510
  - type: cosine_recall@3
511
+ value: 1.0
512
  name: Cosine Recall@3
513
  - type: cosine_recall@5
514
  value: 1.0
 
517
  value: 1.0
518
  name: Cosine Recall@10
519
  - type: cosine_ndcg@10
520
+ value: 0.875
521
  name: Cosine Ndcg@10
522
  - type: cosine_mrr@10
523
+ value: 0.8333333333333334
524
  name: Cosine Mrr@10
525
  - type: cosine_map@100
526
+ value: 0.8333333333333334
527
  name: Cosine Map@100
528
  - task:
529
  type: information-retrieval
 
533
  type: dim_256
534
  metrics:
535
  - type: cosine_accuracy@1
536
+ value: 0.75
537
  name: Cosine Accuracy@1
538
  - type: cosine_accuracy@3
539
+ value: 1.0
540
  name: Cosine Accuracy@3
541
  - type: cosine_accuracy@5
542
  value: 1.0
 
545
  value: 1.0
546
  name: Cosine Accuracy@10
547
  - type: cosine_precision@1
548
+ value: 0.75
549
  name: Cosine Precision@1
550
  - type: cosine_precision@3
551
+ value: 0.3333333333333333
552
  name: Cosine Precision@3
553
  - type: cosine_precision@5
554
  value: 0.2
 
557
  value: 0.1
558
  name: Cosine Precision@10
559
  - type: cosine_recall@1
560
+ value: 0.75
561
  name: Cosine Recall@1
562
  - type: cosine_recall@3
563
+ value: 1.0
564
  name: Cosine Recall@3
565
  - type: cosine_recall@5
566
  value: 1.0
 
569
  value: 1.0
570
  name: Cosine Recall@10
571
  - type: cosine_ndcg@10
572
+ value: 0.875
573
  name: Cosine Ndcg@10
574
  - type: cosine_mrr@10
575
+ value: 0.8333333333333334
576
  name: Cosine Mrr@10
577
  - type: cosine_map@100
578
+ value: 0.8333333333333334
579
  name: Cosine Map@100
580
  - task:
581
  type: information-retrieval
 
585
  type: dim_128
586
  metrics:
587
  - type: cosine_accuracy@1
588
+ value: 0.75
589
  name: Cosine Accuracy@1
590
  - type: cosine_accuracy@3
591
+ value: 0.75
592
  name: Cosine Accuracy@3
593
  - type: cosine_accuracy@5
594
  value: 1.0
 
597
  value: 1.0
598
  name: Cosine Accuracy@10
599
  - type: cosine_precision@1
600
+ value: 0.75
601
  name: Cosine Precision@1
602
  - type: cosine_precision@3
603
+ value: 0.25
604
  name: Cosine Precision@3
605
  - type: cosine_precision@5
606
  value: 0.2
 
609
  value: 0.1
610
  name: Cosine Precision@10
611
  - type: cosine_recall@1
612
+ value: 0.75
613
  name: Cosine Recall@1
614
  - type: cosine_recall@3
615
+ value: 0.75
616
  name: Cosine Recall@3
617
  - type: cosine_recall@5
618
  value: 1.0
 
621
  value: 1.0
622
  name: Cosine Recall@10
623
  - type: cosine_ndcg@10
624
+ value: 0.8576691395183482
625
  name: Cosine Ndcg@10
626
  - type: cosine_mrr@10
627
+ value: 0.8125
628
  name: Cosine Mrr@10
629
  - type: cosine_map@100
630
+ value: 0.8125
631
  name: Cosine Map@100
632
  - task:
633
  type: information-retrieval
 
637
  type: dim_64
638
  metrics:
639
  - type: cosine_accuracy@1
640
+ value: 0.75
641
  name: Cosine Accuracy@1
642
  - type: cosine_accuracy@3
643
+ value: 1.0
644
  name: Cosine Accuracy@3
645
  - type: cosine_accuracy@5
646
  value: 1.0
 
649
  value: 1.0
650
  name: Cosine Accuracy@10
651
  - type: cosine_precision@1
652
+ value: 0.75
653
  name: Cosine Precision@1
654
  - type: cosine_precision@3
655
+ value: 0.3333333333333333
656
  name: Cosine Precision@3
657
  - type: cosine_precision@5
658
  value: 0.2
 
661
  value: 0.1
662
  name: Cosine Precision@10
663
  - type: cosine_recall@1
664
+ value: 0.75
665
  name: Cosine Recall@1
666
  - type: cosine_recall@3
667
+ value: 1.0
668
  name: Cosine Recall@3
669
  - type: cosine_recall@5
670
  value: 1.0
 
673
  value: 1.0
674
  name: Cosine Recall@10
675
  - type: cosine_ndcg@10
676
+ value: 0.875
677
  name: Cosine Ndcg@10
678
  - type: cosine_mrr@10
679
+ value: 0.8333333333333334
680
  name: Cosine Mrr@10
681
  - type: cosine_map@100
682
+ value: 0.8333333333333334
683
  name: Cosine Map@100
684
  ---
685
 
686
  # zenml/finetuned-snowflake-arctic-embed-m-v1.5
687
 
688
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
689
 
690
  ## Model Details
691
 
 
695
  - **Maximum Sequence Length:** 512 tokens
696
  - **Output Dimensionality:** 768 tokens
697
  - **Similarity Function:** Cosine Similarity
698
+ - **Training Dataset:**
699
+ - json
700
  - **Language:** en
701
  - **License:** apache-2.0
702
 
 
782
 
783
  | Metric | Value |
784
  |:--------------------|:-----------|
785
+ | cosine_accuracy@1 | 0.75 |
786
+ | cosine_accuracy@3 | 1.0 |
787
  | cosine_accuracy@5 | 1.0 |
788
  | cosine_accuracy@10 | 1.0 |
789
+ | cosine_precision@1 | 0.75 |
790
+ | cosine_precision@3 | 0.3333 |
791
  | cosine_precision@5 | 0.2 |
792
  | cosine_precision@10 | 0.1 |
793
+ | cosine_recall@1 | 0.75 |
794
+ | cosine_recall@3 | 1.0 |
795
  | cosine_recall@5 | 1.0 |
796
  | cosine_recall@10 | 1.0 |
797
+ | cosine_ndcg@10 | 0.875 |
798
+ | cosine_mrr@10 | 0.8333 |
799
+ | **cosine_map@100** | **0.8333** |
800
 
801
  #### Information Retrieval
802
  * Dataset: `dim_256`
 
804
 
805
  | Metric | Value |
806
  |:--------------------|:-----------|
807
+ | cosine_accuracy@1 | 0.75 |
808
+ | cosine_accuracy@3 | 1.0 |
809
  | cosine_accuracy@5 | 1.0 |
810
  | cosine_accuracy@10 | 1.0 |
811
+ | cosine_precision@1 | 0.75 |
812
+ | cosine_precision@3 | 0.3333 |
813
  | cosine_precision@5 | 0.2 |
814
  | cosine_precision@10 | 0.1 |
815
+ | cosine_recall@1 | 0.75 |
816
+ | cosine_recall@3 | 1.0 |
817
  | cosine_recall@5 | 1.0 |
818
  | cosine_recall@10 | 1.0 |
819
+ | cosine_ndcg@10 | 0.875 |
820
+ | cosine_mrr@10 | 0.8333 |
821
+ | **cosine_map@100** | **0.8333** |
822
 
823
  #### Information Retrieval
824
  * Dataset: `dim_128`
825
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
826
 
827
+ | Metric | Value |
828
+ |:--------------------|:-----------|
829
+ | cosine_accuracy@1 | 0.75 |
830
+ | cosine_accuracy@3 | 0.75 |
831
+ | cosine_accuracy@5 | 1.0 |
832
+ | cosine_accuracy@10 | 1.0 |
833
+ | cosine_precision@1 | 0.75 |
834
+ | cosine_precision@3 | 0.25 |
835
+ | cosine_precision@5 | 0.2 |
836
+ | cosine_precision@10 | 0.1 |
837
+ | cosine_recall@1 | 0.75 |
838
+ | cosine_recall@3 | 0.75 |
839
+ | cosine_recall@5 | 1.0 |
840
+ | cosine_recall@10 | 1.0 |
841
+ | cosine_ndcg@10 | 0.8577 |
842
+ | cosine_mrr@10 | 0.8125 |
843
+ | **cosine_map@100** | **0.8125** |
844
 
845
  #### Information Retrieval
846
  * Dataset: `dim_64`
 
848
 
849
  | Metric | Value |
850
  |:--------------------|:-----------|
851
+ | cosine_accuracy@1 | 0.75 |
852
+ | cosine_accuracy@3 | 1.0 |
853
  | cosine_accuracy@5 | 1.0 |
854
  | cosine_accuracy@10 | 1.0 |
855
+ | cosine_precision@1 | 0.75 |
856
+ | cosine_precision@3 | 0.3333 |
857
  | cosine_precision@5 | 0.2 |
858
  | cosine_precision@10 | 0.1 |
859
+ | cosine_recall@1 | 0.75 |
860
+ | cosine_recall@3 | 1.0 |
861
  | cosine_recall@5 | 1.0 |
862
  | cosine_recall@10 | 1.0 |
863
+ | cosine_ndcg@10 | 0.875 |
864
+ | cosine_mrr@10 | 0.8333 |
865
+ | **cosine_map@100** | **0.8333** |
866
 
867
  <!--
868
  ## Bias, Risks and Limitations
 
880
 
881
  ### Training Dataset
882
 
883
+ #### json
 
884
 
885
+ * Dataset: json
886
  * Size: 36 training samples
887
  * Columns: <code>positive</code> and <code>anchor</code>
888
+ * Approximate statistics based on the first 36 samples:
889
  | | positive | anchor |
890
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
891
  | type | string | string |
 
1043
  - `optim_target_modules`: None
1044
  - `batch_eval_metrics`: False
1045
  - `eval_on_start`: False
1046
+ - `use_liger_kernel`: False
1047
  - `eval_use_gather_object`: False
1048
  - `batch_sampler`: no_duplicates
1049
  - `multi_dataset_batch_sampler`: proportional
 
1051
  </details>
1052
 
1053
  ### Training Logs
1054
+ | Epoch | Step | dim_384_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
1055
  |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
1056
+ | **1.0** | **1** | **0.8333** | **0.8333** | **0.8125** | **0.8333** |
1057
+ | 2.0 | 3 | 0.8333 | 0.8333 | 0.8125 | 0.8333 |
1058
+ | 3.0 | 4 | 0.8333 | 0.8333 | 0.8125 | 0.8333 |
1059
 
1060
  * The bold row denotes the saved checkpoint.
1061
 
1062
  ### Framework Versions
1063
+ - Python: 3.11.9
1064
+ - Sentence Transformers: 3.2.0
1065
+ - Transformers: 4.45.2
1066
+ - PyTorch: 2.5.0+cu124
1067
+ - Accelerate: 1.0.1
1068
+ - Datasets: 3.0.1
1069
+ - Tokenizers: 0.20.1
1070
 
1071
  ## Citation
1072
 
 
1088
  #### MatryoshkaLoss
1089
  ```bibtex
1090
  @misc{kusupati2024matryoshka,
1091
+ title={Matryoshka Representation Learning},
1092
  author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1093
  year={2024},
1094
  eprint={2205.13147},
 
1100
  #### MultipleNegativesRankingLoss
1101
  ```bibtex
1102
  @misc{henderson2017efficient,
1103
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1104
  author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1105
  year={2017},
1106
  eprint={1705.00652},
config.json CHANGED
@@ -19,7 +19,7 @@
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
- "transformers_version": "4.44.0",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 30522
 
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 30522
config_sentence_transformers.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "3.0.1",
4
- "transformers": "4.44.0",
5
- "pytorch": "2.5.1"
6
  },
7
  "prompts": {
8
  "query": "Represent this sentence for searching relevant passages: "
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0+cu124"
6
  },
7
  "prompts": {
8
  "query": "Represent this sentence for searching relevant passages: "