Model name
SingBert Lite - Bert for Singlish (SG) and Manglish (MY).
Model description
Similar to SingBert but the lite-version, which was initialized from Albert base v2, with pre-training finetuned on singlish and manglish data.
Intended uses & limitations
How to use
>>> from transformers import pipeline
>>> nlp = pipeline('fill-mask', model='zanelim/singbert-lite-sg')
>>> nlp("die [MASK] must try")
[{'sequence': '[CLS] die die must try[SEP]',
'score': 0.7731555700302124,
'token': 1327,
'token_str': '▁die'},
{'sequence': '[CLS] die also must try[SEP]',
'score': 0.04763784259557724,
'token': 67,
'token_str': '▁also'},
{'sequence': '[CLS] die still must try[SEP]',
'score': 0.01859409362077713,
'token': 174,
'token_str': '▁still'},
{'sequence': '[CLS] die u must try[SEP]',
'score': 0.015824034810066223,
'token': 287,
'token_str': '▁u'},
{'sequence': '[CLS] die is must try[SEP]',
'score': 0.011271446943283081,
'token': 25,
'token_str': '▁is'}]
>>> nlp("dont play [MASK] leh")
[{'sequence': '[CLS] dont play play leh[SEP]',
'score': 0.4365769624710083,
'token': 418,
'token_str': '▁play'},
{'sequence': '[CLS] dont play punk leh[SEP]',
'score': 0.06880936771631241,
'token': 6769,
'token_str': '▁punk'},
{'sequence': '[CLS] dont play game leh[SEP]',
'score': 0.051739856600761414,
'token': 250,
'token_str': '▁game'},
{'sequence': '[CLS] dont play games leh[SEP]',
'score': 0.045703962445259094,
'token': 466,
'token_str': '▁games'},
{'sequence': '[CLS] dont play around leh[SEP]',
'score': 0.013458190485835075,
'token': 140,
'token_str': '▁around'}]
>>> nlp("catch no [MASK]")
[{'sequence': '[CLS] catch no ball[SEP]',
'score': 0.6197211146354675,
'token': 1592,
'token_str': '▁ball'},
{'sequence': '[CLS] catch no balls[SEP]',
'score': 0.08441998809576035,
'token': 7152,
'token_str': '▁balls'},
{'sequence': '[CLS] catch no joke[SEP]',
'score': 0.0676785409450531,
'token': 8186,
'token_str': '▁joke'},
{'sequence': '[CLS] catch no?[SEP]',
'score': 0.040638409554958344,
'token': 60,
'token_str': '?'},
{'sequence': '[CLS] catch no one[SEP]',
'score': 0.03546864539384842,
'token': 53,
'token_str': '▁one'}]
>>> nlp("confirm plus [MASK]")
[{'sequence': '[CLS] confirm plus chop[SEP]',
'score': 0.9608421921730042,
'token': 17144,
'token_str': '▁chop'},
{'sequence': '[CLS] confirm plus guarantee[SEP]',
'score': 0.011784233152866364,
'token': 9120,
'token_str': '▁guarantee'},
{'sequence': '[CLS] confirm plus confirm[SEP]',
'score': 0.010571340098977089,
'token': 10265,
'token_str': '▁confirm'},
{'sequence': '[CLS] confirm plus egg[SEP]',
'score': 0.0033525123726576567,
'token': 6387,
'token_str': '▁egg'},
{'sequence': '[CLS] confirm plus bet[SEP]',
'score': 0.0008760977652855217,
'token': 5676,
'token_str': '▁bet'}]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('zanelim/singbert-lite-sg')
model = AlbertModel.from_pretrained("zanelim/singbert-lite-sg")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
and in TensorFlow:
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained("zanelim/singbert-lite-sg")
model = TFAlbertModel.from_pretrained("zanelim/singbert-lite-sg")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Limitations and bias
This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias.
Training data
Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew)
corpus. The corpus is collected from subreddits- r/singapore
and r/malaysia
, and forums such as hardwarezone
.
Training procedure
Initialized with albert base v2 vocab and checkpoints (pre-trained weights).
Pre-training was further finetuned on training data with the following hyperparameters
- train_batch_size: 4096
- max_seq_length: 128
- num_train_steps: 125000
- num_warmup_steps: 5000
- learning_rate: 0.00176
- hardware: TPU v3-8
- Downloads last month
- 200